Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = feline oral squamous cell carcinoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2723 KB  
Article
Ultrasound and Microbubbles Mediated Bleomycin Delivery in Feline Oral Squamous Cell Carcinoma—An In Vivo Veterinary Study
by Josanne S. de Maar, Maurice M. J. M. Zandvliet, Stefanie Veraa, Mauricio Tobón Restrepo, Chrit T. W. Moonen and Roel Deckers
Pharmaceutics 2023, 15(4), 1166; https://doi.org/10.3390/pharmaceutics15041166 - 6 Apr 2023
Cited by 2 | Viewed by 2936
Abstract
To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline companion animals with oral squamous cell carcinomas. Six cats were treated with a combination of bleomycin and USMB [...] Read more.
To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline companion animals with oral squamous cell carcinomas. Six cats were treated with a combination of bleomycin and USMB therapy three times, using the Pulse Wave Doppler mode on a clinical ultrasound system and EMA/FDA approved microbubbles. They were evaluated for adverse events, quality of life, tumour response and survival. Furthermore, tumour perfusion was monitored before and after USMB therapy using contrast-enhanced ultrasound (CEUS). USMB treatments were feasible and well tolerated. Among 5 cats treated with optimized US settings, 3 had stable disease at first, but showed disease progression 5 or 11 weeks after first treatment. One cat had progressive disease one week after the first treatment session, maintaining a stable disease thereafter. Eventually, all cats except one showed progressive disease, but each survived longer than the median overall survival time of 44 days reported in literature. CEUS performed immediately before and after USMB therapy suggested an increase in tumour perfusion based on an increase in median area under the curve (AUC) in 6 out of 12 evaluated treatment sessions. In this small hypothesis-generating study, USMB plus chemotherapy was feasible and well-tolerated in a feline companion animal model and showed potential for enhancing tumour perfusion in order to increase drug delivery. This could be a forward step toward clinical translation of USMB therapy to human patients with a clinical need for locally enhanced treatment. Full article
Show Figures

Graphical abstract

13 pages, 486 KB  
Review
Feline Oral Squamous Cell Carcinoma: A Critical Review of Etiologic Factors
by Inês Sequeira, Maria dos Anjos Pires, José Leitão, Joaquim Henriques, Carlos Viegas and João Requicha
Vet. Sci. 2022, 9(10), 558; https://doi.org/10.3390/vetsci9100558 - 11 Oct 2022
Cited by 11 | Viewed by 6968
Abstract
Feline oral squamous cell carcinoma (FOSCC) is the most common oral neoplasia in cats. This malignant tumor is locally invasive, has a high mortality rate, and its etiology is not yet known. In humans, head and neck squamous cell carcinoma is associated with [...] Read more.
Feline oral squamous cell carcinoma (FOSCC) is the most common oral neoplasia in cats. This malignant tumor is locally invasive, has a high mortality rate, and its etiology is not yet known. In humans, head and neck squamous cell carcinoma is associated with tobacco smoke, alcohol consumption, and human papillomavirus infection. Herein, a critical review about the potential etiologic factors of FOSCC was performed, considering publications between 2000 and 2022, aiming to synthesize all available scientific evidence regarding this issue. Recommendations of the PRISMA statement and the Cochrane Collaboration were followed and the PubMed database searched by using the MeSH terms MeSH terms “oral”, “mouth”, “lingual”, “labial”, “gingiva”, “carcinoma”, “squamous”, and “feline”. The selection process for eligible studies was based on specific inclusion and exclusion criteria and the quality of the studies assessed. The initial search resulted in 553 publications, with only 26 of these being included in the review. Sixteen studies were related to viral etiology and nine related to environmental factors such as exposure to tobacco smoke, ectoparasitic products, and the presence of oral comorbidities. When evaluated, feline papillomavirus was detected in 16.2% of samples of FOSCC. In the three studies focused on exposure to tobacco smoke, 35.2% (30/85) of cats with FOSCC had a history of this exposure. The consumption of canned food and the use of deworming collars were associated, in only one publication, with a risk of neoplasia increased by 4.7 and 5.3 times, respectively. Among 485 cats with FOSCC, 6.4% had dental and oral pathology (i.e., periodontal disease or feline chronic gingivostomatitis). The present study demonstrates that the available evidence on the etiology of FOSCC is still limited, however, there has been an increasing interest on this topic. To better understand the role of the possible etiological factors of this aggressive disease, and model for its human counterpart, large, prospective multi-institutional studies are needed. Full article
(This article belongs to the Special Issue Spotlight on Feline Oncology)
Show Figures

Figure 1

15 pages, 1522 KB  
Review
Companion Animal Model in Translational Oncology; Feline Oral Squamous Cell Carcinoma and Canine Oral Melanoma
by Antonio Giuliano
Biology 2022, 11(1), 54; https://doi.org/10.3390/biology11010054 - 31 Dec 2021
Cited by 22 | Viewed by 12870
Abstract
Companion animals with naturally occurring cancers can provide an advantageous model for cancer research and in particular anticancer drug development. Compared to commonly utilized mouse models, companion animals, specifically dogs and cats, share a closer phylogenetical distance, body size, and genome organization. Most [...] Read more.
Companion animals with naturally occurring cancers can provide an advantageous model for cancer research and in particular anticancer drug development. Compared to commonly utilized mouse models, companion animals, specifically dogs and cats, share a closer phylogenetical distance, body size, and genome organization. Most importantly, pets develop spontaneous, rather than artificially induced, cancers. The incidence of cancer in people and companion animals is quite similar and cancer is the leading cause of death in dogs over 10 years of age. Many cancer types in dogs and cats have similar pathological, molecular, and clinical features to their human counterparts. Drug toxicity and response to anti-cancer treatment in dogs and cats are also similar to those in people. Companion animals share their lives with their owners, including the environmental and socioeconomic cancer-risk factors. In contrast to humans, pets have a shorter life span and cancer progression is often more rapid. Clinical trials in companion animals are cheaper and less time consuming compared to human trials. Dogs and cats with naturally occurring cancers are an ideal and unique model for human cancer research. Model selection for the specific type of cancer is of pivotal importance. Although companion animal models for translational research have been reviewed previously, this review will try to summarize the most important advantages and disadvantages of this model. Feline oral squamous cell carcinoma as a model for head and neck squamous cell carcinoma and canine oral melanoma as a model for mucosal melanoma and immunotherapy in people will be discussed as examples. Full article
(This article belongs to the Special Issue Preclinical Models in Translational Medicine)
Show Figures

Figure 1

15 pages, 5490 KB  
Article
CD147 and Cyclooxygenase Expression in Feline Oral Squamous Cell Carcinoma
by Walaa Hamed Shaker Nasry, Haili Wang, Kathleen Jones, Wessel P. Dirksen, Thomas J. Rosol, Juan Carlos Rodriguez-Lecompte and Chelsea K. Martin
Vet. Sci. 2018, 5(3), 72; https://doi.org/10.3390/vetsci5030072 - 13 Aug 2018
Cited by 14 | Viewed by 5788
Abstract
Feline oral squamous cell carcinoma (OSCC) is a highly invasive form of cancer in cats. In human OSCC, cluster of differentiation 147 (CD147) contributes to inflammation and tumor invasiveness. CD147 is a potential therapeutic target, but the expression of CD147 in feline OSCC [...] Read more.
Feline oral squamous cell carcinoma (OSCC) is a highly invasive form of cancer in cats. In human OSCC, cluster of differentiation 147 (CD147) contributes to inflammation and tumor invasiveness. CD147 is a potential therapeutic target, but the expression of CD147 in feline OSCC has not been examined. Immunohistochemistry was used to determine if cyclooxygenase 2 (COX-2) and CD147 expression in feline OSCC biopsies was coordinated. Tumor cells were more likely to express COX-2 (22/43 cases or 51%) compared to stroma (8/43 or 19%) and adjacent oral epithelium (9/31 cases or 29%) (p < 0.05). CD147 was also more likely to occur in tumor cells compared to stroma and adjacent mucosa, with 21/43 (49%) of cases having >50% tumor cells with mild or moderate CD147 expression, compared to 9/28 (32%) in adjacent epithelium and only 5/43 (12%) in adjacent stroma (p < 0.05). In feline OSCC cell lines (SCCF1, SCCF2, and SCCF3), CD147 gene expression was more consistently expressed compared to COX-2, which was 60-fold higher in SCCF2 cells compared to SCCF1 cells (p < 0.05). CD147 expression did not correlate with COX-2 expression and prostaglandin E2 (PGE2) secretion, indicating that they may be independently regulated. CD147 potentially represents a novel therapeutic target for the treatment of feline OSCC and further study of CD147 is warranted. Full article
(This article belongs to the Special Issue Canine Cancer Immunotherapeutics)
Show Figures

Figure 1

15 pages, 4332 KB  
Article
p16, pRb, and p53 in Feline Oral Squamous Cell Carcinoma
by Wachiraphan Supsavhad, Wessel P. Dirksen, Blake E. Hildreth and Thomas J. Rosol
Vet. Sci. 2016, 3(3), 18; https://doi.org/10.3390/vetsci3030018 - 18 Aug 2016
Cited by 13 | Viewed by 7428
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a highly aggressive head and neck cancer in cats, but the molecular pathogenesis of this cancer is still uncertain. In this study, p16, p53, and pRb proteins were detected and quantified by immunohistochemistry in forty-three FOSCC [...] Read more.
Feline oral squamous cell carcinoma (FOSCC) is a highly aggressive head and neck cancer in cats, but the molecular pathogenesis of this cancer is still uncertain. In this study, p16, p53, and pRb proteins were detected and quantified by immunohistochemistry in forty-three FOSCC primary tumors and three FOSCC xenografts. p16 mRNA levels were also measured in three FOSCC cell lines (SCCF1, F2, and F3), which were consistent with their p16 immunoreactivity. Feline SCCF1 cells had very high levels of p16 protein and mRNA (55-fold greater) compared to SCCF2 and F3. A partial feline p16 cDNA sequence was amplified and sequenced. The average age of cats with FOSCC with high p16 immunoreactivity was significantly lower than the average age in the low p16 group. Eighteen of 43 (42%) FOSCCs had low p16 intensity, while 6/43 (14%) had high p16 immunoreactivity. Feline papillomavirus L1 (major capsid) DNA was not detected in the SCC cell lines or the FOSCCs with high p16 immunostaining. Five of 6 (83%) of the high p16 FOSCC had low p53, but only 1/6 (17%) had low pRb immunoreactivity. In summary, the staining pattern of p16, p53, and pRb in FOSCC was different from human head and neck squamous cell carcinoma and feline cutaneous squamous cell carcinoma. The majority of FOSCCs have low p16 immunostaining intensity, therefore, inactivation of CDKN2A is suspected to play a role in the pathogenesis of FOSCC. A subset of FOSCCs had increased p16 protein, which supports an alternate pathogenesis of cancer in these cats. Full article
Show Figures

Graphical abstract

16 pages, 99 KB  
Review
Cats, Cancer and Comparative Oncology
by Claire M. Cannon
Vet. Sci. 2015, 2(3), 111-126; https://doi.org/10.3390/vetsci2030111 - 30 Jun 2015
Cited by 77 | Viewed by 15317
Abstract
Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial [...] Read more.
Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial completion and data collection, lack of standard of care for many cancers allowing evaluation of therapies in treatment-naïve populations), but have not been utilized to the same degree in the One Medicine approach to cancer. There are both challenges and opportunities in feline compared to canine models. This review will discuss three specific tumor types where cats may offer insights into human cancers. Feline oral squamous cell carcinoma is common, shares both clinical and molecular features with human head and neck cancer and is an attractive model for evaluating new therapies. Feline mammary tumors are usually malignant and aggressive, with the ‘triple-negative’ phenotype being more common than in humans, offering an enriched population in which to examine potential targets and treatments. Finally, although there is not an exact corollary in humans, feline injection site sarcoma may be a model for inflammation-driven tumorigenesis, offering opportunities for studying variations in individual susceptibility as well as preventative and therapeutic strategies. Full article
(This article belongs to the Special Issue Comparative Pathogenesis of Cancers in Animals and Humans)
Back to TopTop