Cats, Cancer and Comparative Oncology
Abstract
:1. Introduction
2. Feline Oral Squamous Cell Carcinoma
3. Feline Mammary Gland Tumors
4. Injection Site Sarcoma
5. Conclusions
Tumor Type | Cell Line |
---|---|
Head and neck squamous cell carcinoma | SCCF1 [112] SCCF1-Luc (luciferase-expressing) [47] SCCF1G (gefitinib-resistant) [10] |
SCCF2 [58] SCCF2-Luc | |
SCCF3 [58] SCCF3-Luc | |
Mammary gland tumor | K12 [113] |
JM [114] | |
FYMp (primary) [115] | |
FKNp [115] | |
FNNm (metastatic) [115] | |
FONp [116] FONm [116] | |
FMCp1 [115] FMCp2 [115] FMCm [115] | |
FRM [117] | |
NAC [118] | |
K248C [119] | |
K248P [119] | |
DT09/06 [120] | |
Injection site sarcoma | FSA [121] |
FSB [121] | |
FS1 [122] | |
FS2 [122] | |
FS3 [122] | |
FS4 [122] | |
VAS-1 [123] | |
VAS-2 [123] | |
VAS-3 [123] | |
VAS-4 [123] | |
VAS-5 [123] | |
JB [124] | |
JBLM [124] |
Conflicts of Interest
References and Notes
- Henson, M.S.; O’Brien, T.D. Feline models of type 2 diabetes mellitus. ILAR J. 2006, 47, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Narfstrom, K.; Deckman, K.H.; Menotti-Raymond, M. Cats: A gold mine for ophthalmology. Ann. Rev. Anim. Biosci. 2013, 1, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.; Paoloni, M.; Mazcko, C.; Khanna, C. The Comparative Oncology Trials Consortium: Using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 2009, 6, e1000161. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.K.; Khanna, C. Modeling opportunities in comparative oncology for drug development. ILAR J. 2010, 51, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Tamazian, G.; Simonov, S.; Dobrynin, P.; Makunin, A.; Logachev, A.; Komissarov, A.; Schevchenko, A.; Brukhin, V.; Cherkasov, N.; Svitin, A.; et al. Annotated features of domestic cat —Felis catus genome. GigaScience. 2014, 3. Available online: http://www.gigasciencejournal.com/content/3/1/13 (accessed on 25 June 2015). [CrossRef] [PubMed] [Green Version]
- Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J., 3rd; Zody, M.C.; et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Bonnett, B.N.; Page, R.L. Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier Saunders: St Louis, MO, USA, 2012; pp. 68–82. [Google Scholar]
- MacVean, D.W.; Monlux, A.W.; Anderson, P.S., Jr.; Silberg, S.L.; Roszel, J.F. Frequency of canine and feline tumors in a defined population. Vet. Pathol. 1978, 15, 700–715. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bergkvist, G.T.; Argyle, D.J.; Pang, L.Y.; Muirhead, R.; Yool, D.A. Studies on the inhibition of feline EGFR in squamous cell carcinoma: Enhancement of radiosensitivity and rescue of resistance to small molecule inhibitors. Cancer Biol. Therapy 2011, 11, 927–937. [Google Scholar] [CrossRef]
- De Maria, R.; Olivero, M.; Iussich, S.; Nakaichi, M.; Murata, T.; Biolatti, B.; Di Renzo, M.F. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res. 2005, 65, 907–912. [Google Scholar] [PubMed]
- Santos, S.; Bastos, E.; Baptista, C.S.; Sá, D.; Caloustian, C.; Guedes-Pinto, H.; Gärtner, F.; Gut, I.G.; Chaves, R. Sequence variants and haplotype analysis of cat ERBB2 gene: A survey on spontaneous cat mammary neoplastic and non-neoplastic lesions. Int. J. Mol. Sci. 2012, 13, 2783–2800. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R. Cytogenomics of Feline Cancers: Advances and Opportunities. Vet. Sci. 2015. in preparation. [Google Scholar]
- Bartlett, P.C.; Van Buren, J.W.; Neterer, M.; Zhou, C. Disease surveillance and referral bias in the veterinary medical database. Prev. Vet. Med. 2010, 94, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Teclaw, R.; Mendlein, J.; Garbe, P.; Mariolis, P. Characteristics of pet populations and households in the Purdue Comparative Oncology Program catchment area, 1988. J. Amer. Vet. Med. Assoc. 1992, 201, 1725–1729. [Google Scholar]
- Volk, J.O.; Felsted, K.E.; Thomas, J.G.; Siren, C.W. Executive summary of phase 2 of the Bayer veterinary care usage study. J. Amer. Vet. Med. Assoc. 2011, 239, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Volk, J.O.; Felsted, K.E.; Thomas, J.G.; Siren, C.W. Executive summary of the Bayer veterinary care usage study. J. Amer. Vet. Med. Assoc. 2011, 238, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- American Veterinary Medical Association. U.S. Pet Ownership Statistics. 2012. Available online: https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx (accessed on 19 March 2015).
- Gruen, M.E.; Jiamachello, K.N.; Thomson, A.; Lascelles, B.D. Clinical trials involving cats: What factors affect owner participation? J. Feline Med. Surg. 2014, 16, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Thamm, D.H.; Grunerud, K.K.; Rose, B.J.; Vail, D.M.; Bailey, S.M. DNA repair deficiency as a susceptibility marker for spontaneous lymphoma in golden retriever dogs: A case-control study. PLoS ONE 2013, 8, e69192. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, M.J.; Froenicke, L.; Baysac, K.C.; Billings, N.C.; Leutenegger, C.M.; Levy, A.M.; Longeri, M.; Niini, T.; Ozpinar, H.; Slater, M.R.; et al. The ascent of cat breeds: Genetic evaluations of breeds and worldwide random-bred populations. Genomics 2008, 91, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Kurushima, J.D.; Lipinski, M.J.; Gandolfi, B.; Froenicke, L.; Grahn, J.C.; Grahn, R.A.; Lyons, L.A. Variation of cats under domestication: Genetic assignment of domestic cats to breeds and worldwide random-bred populations. Anim. Genet. 2013, 44, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Egenvall, A.; Bonnett, B.N.; Haggstrom, J.; Ström Holst, B.; Möller, L.; Nødtvedt, A. Morbidity of insured Swedish cats during 1999–2006 by age, breed, sex, and diagnosis. J. Feline Med. Surg. 2010, 12, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Egenvall, A.; Nødtvedt, A.; Haggstrom, J.; Ström Holst, B.; Möller, L.; Bonnett, B.N. Mortality of life-insured Swedish cats during 1999–2006: Age, breed, sex, and diagnosis. J. Vet. Intern. Med. 2009, 23, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Rissetto, K.; Villamil, J.A.; Selting, K.A.; Tyler, J.; Henry, C.J. Recent trends in feline intestinal neoplasia: An epidemiologic study of 1,129 cases in the veterinary medical database from 1964 to 2004. J. Am. Anim. Hosp. Assoc. 2011, 47, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Schänzle, G.; Weber, W.; Sent, U.; Elliott, J. In vitro glucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: A comparison with other species. J. Vet. Pharmacol. Therapeut. 2013, 36, 154–160. [Google Scholar] [CrossRef] [PubMed]
- van Beusekom, C.D.; Fink-Gremmels, J.; Schrickx, J.A. Comparing the glucuronidation capacity of the feline liver with substrate-specific glucuronidation in dogs. J. Vet. Pharmacol. Therapeut. 2014, 37, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Richardson, R.C.; DeNicola, D.B.; Long, G.G.; Blevins, W.E. Cisplatin toxicity in cats. J. Vet. Intern. Med. 1987, 1, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Saba, C.F.; Schmiedt, C.W.; Freeman, K.G.; Edwards, G.L. Indirect assessment of dihydropyrimidine dehydrogenase activity in cats. Vet. Compar. Oncol. 2013, 11, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Musser, M.L.; Quinn, H.T.; Chretin, J.D. Low apparent risk of CCNU (lomustine)-associated clinical hepatotoxicity in cats. J. Feline Med. Surg. 2012, 14, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.L.; Page, R.L. Cancer Chemotherapy. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier Saunders: St Louis, MO, USA, 2012; pp. 157–179. [Google Scholar]
- Bertone, E.R.; Snyder, L.A.; Moore, A.S. Environmental and lifestyle risk factors for oral squamous cell carcinoma in domestic cats. J. Vet. Intern. Med. 2003, 17, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Belcher, R.; Hayes, K.; Fedewa, S.; Chen, A.Y. Current treatment of head and neck squamous cell cancer. J. Surg. Oncol. 2014, 110, 551–574. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.A.; Tantiwongkosi, B. Oral and oropharyngeal cancer. Med. Clin. North Amer. 2014, 98, 1299–1321. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; Aberdein, D. Loss of retinoblastoma protein, but not p53, is associated with the presence of papillomaviral DNA in feline viral plaques, Bowenoid in situ carcinomas, and squamous cell carcinomas. Vet. Pathol. 2012, 49, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; Fairley, R.A.; Mills, H.; Kiupel, M.; Vaatstra, B.L. Oral Papillomas Associated With Felis catus Papillomavirus Type 1 in 2 Domestic Cats. Vet. Pathol. 2015. Available online: http://vet.sagepub.com/content/early/2015/01/02/0300985814565133 (accessed on 26 June 2015). [CrossRef] [PubMed]
- Munday, J.S.; Howe, L.; French, A.; Squires, R.A.; Sugiarto, H. Detection of papillomaviral DNA sequences in a feline oral squamous cell carcinoma. Res. Vet. Sci. 2009, 86, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; French, A.F. Felis catus papillomavirus types 1 and 4 are rarely present in neoplastic and inflammatory oral lesions of cats. Res. Vet. Sci. 2015. Available online: http://www.sciencedirect.com/science/article/pii/S0034528815000569. [CrossRef] [PubMed]
- Farcas, N.; Lommer, M.J.; Kass, P.H.; Verstraete, F.J. Dental radiographic findings in cats with chronic gingivostomatitis (2002–2012). J. Amer. Vet. Med. Assoc. 2014, 244, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Liptak, J.M.; Withrow, S.J. Cancer of the Gastrointestinal Tract. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier Saunders: St Louis, MO, USA, 2012; pp. 381–431. [Google Scholar]
- Mognetti, B.; Di Carlo, F.; Berta, G.N. Animal models in oral cancer research. Oral Oncol. 2006, 42, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.A.; Noguti, J.; Oshima, C.T.; Ribeiro, D.A. Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: A promising approach. Anticancer Res. 2014, 34, 1547–1552. [Google Scholar] [PubMed]
- Bergkvist, G.T.; Argyle, D.J.; Morrison, L.; MacIntyre, N.; Hayes, A.; Yool, D.A. Expression of epidermal growth factor receptor (EGFR) and Ki67 in feline oral squamous cell carcinomas (FOSCC). Vet. Compar. Oncol. 2011, 9, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Looper, J.S.; Malarkey, D.E.; Ruslander, D.; Proulx, D.; Thrall, D.E. Epidermal growth factor receptor expression in feline oral squamous cell carcinomas. Vet. Compar. Oncol. 2006, 4, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S.; Marconato, L.; Zoff, A.; Morini, M.; Scarpa, F.; Capitani, O.; Bettini, G. Epidermal growth factor receptor expression is predictive of poor prognosis in feline cutaneous squamous cell carcinoma. J. Feline Med. Surg. 2010, 12, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Ehrhart, E.J.; Charles, J.B.; Thamm, D.H.; Larue, S.M. Immunohistochemical characterization of feline oral squamous cell carcinoma. Amer. J. Vet. Res. 2012, 73, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Tannehill-Gregg, S.H.; Levine, A.L.; Rosol, T.J. Feline head and neck squamous cell carcinoma: A natural model for the human disease and development of a mouse model. Vet. Compar. Oncol. 2006, 4, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.A.; Bertone, E.R.; Jakowski, R.M.; Booner, M.S.; Jennings-Ritchie, J.; Moore, A.S. p53 expression and environmental tobacco smoke exposure in feline oral squamous cell carcinoma. Vet. Pathol. 2004, 41, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Faust, R.A.; Gapany, M.; Tristani, P.; Davis, A.; Adams, G.L.; Ahmed, K. Elevated protein kinase CK2 activity in chromatin of head and neck tumors: Association with malignant transformation. Cancer Lett. 1996, 101, 31–35. [Google Scholar] [CrossRef]
- Cannon, C.M.; Trembley, J.H.; Modiano, J.F.; Cespedes Gomez, O.; Kren, B.; Unger, G.; Ahmed, K. CK2 inhibition in feline cancer cell lines using synthetic oligonucleotides. In Proceedings of the American Veterinary Internal Medicine Forum, Seattle, WA, USA, June 2013.
- Wypij, J.M.; Fan, T.M.; Fredrickson, R.L.; Barger, A.M.; de Lorimier, L.P.; Charney, S.C. In vivo and in vitro efficacy of zoledronate for treating oral squamous cell carcinoma in cats. J. Vet. Intern. Med. 2008, 22, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Kumagai, S.; Kawashiri, S.; Kojima, K.; Kakihara, K.; Yamamoto, E. Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma. Oral Oncol. 1997, 33, 369–374. [Google Scholar] [CrossRef]
- Hayes, A.; Scase, T.; Miller, J.; Murphy, S.; Sparkes, A.; Adams, V. COX-1 and COX-2 expression in feline oral squamous cell carcinoma. J. Compar. Pathol. 2006, 135, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Wakshlag, J.J.; Peters-Kennedy, J.; Bushey, J.J.; Loftus, J.P. 5-lipoxygenase expression and tepoxalin-induced cell death in squamous cell carcinomas in cats. Amer. J. Vet. Res. 2011, 72, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Liu, J.; Liu, H.B.; Ye, M.; Zhang, Y.F.; Yang, D.S. Abnormal COX2 protein expression may be correlated with poor prognosis in oral cancer: A meta-analysis. BioMed Res. Int. 2014. Available online: http://www.hindawi.com/journals/bmri/2014/364207/ (accessed on 25 June 2015). [CrossRef] [PubMed]
- Celenk, F.; Bayramoglu, I.; Yilmaz, A.; Menevse, A.; Bayazit, Y. Expression of cyclooxygenase-2, 12-lipoxygenase, and inducible nitric oxide synthase in head and neck squamous cell carcinoma. J. Craniofac. Surg. 2013, 24, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Ballegeer, E.A.; Madrill, N.J.; Berger, K.L.; Agnew, D.W.; McNiel, E.A. Evaluation of hypoxia in a feline model of head and neck cancer using 64Cu-ATSM positron emission tomography/computed tomography. BMC Cancer. 2013, 13. Available online: http://www.biomedcentral.com/1471–2407/13/218 (accessed on 25 June 2015). [CrossRef] [PubMed]
- Martin, C.K.; Dirksen, W.P.; Shu, S.T.; Werbeck, J.L.; Thudi, N.K.; Yamaguchi, M.; Wolfe, T.D.; Heller, K.N.; Rosol, T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol. 2012, 48, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.K.; Tannehill-Gregg, S.H.; Wolfe, T.D.; Rosol, T.J. Bone-invasive oral squamous cell carcinoma in cats: Pathology and expression of parathyroid hormone-related protein. Vet. Pathol. 2011, 48, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.K.; Dirksen, W.P.; Carlton, M.M.; Lanigan, L.G.; Pillai, S.P.; Werbeck, J.L.; Simmons, J.K.; Hildreth, B.E., 3rd; London, C.A.; Toribio, R.E.; Rosol, T.J. Combined zoledronic acid and meloxicam reduced bone loss and tumour growth in an orthotopic mouse model of bone-invasive oral squamous cell carcinoma. Vet. Compar. Oncol. 2013. Available online: http://onlinelibrary.wiley.com/doi/10.1111/vco.12037/epdf (accessed on 25 June 2015). [CrossRef]
- Martin, C.K.; Werbeck, J.L.; Thudi, N.K.; Lanigan, L.G.; Wolfe, T.D.; Toribio, R.E.; Rosol, T.J. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma. Cancer Res. 2010, 70, 8607–8616. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Cohen, E.E.; Grandis, J.R. New strategies in head and neck cancer: Understanding resistance to epidermal growth factor receptor inhibitors. Clin. Cancer Res. 2010, 16, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.Y.; Bergkvist, G.T.; Cervantes-Arias, A.; Yool, D.A.; Muirhead, R.; Argyle, D.J. Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition. Vet. J. 2012, 193, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, V.; DeStefano Shields, C.; Murray-Stewart, T.; Casero , R.A., Jr. Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids 2014, 46, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Weeks, R.S.; Burns, M.R.; Boorman, D.W.; Klein-Szanto, A.; O’Brien, T.G. Combination therapy with 2-difluoromethylornithine and a polyamine transport inhibitor against murine squamous cell carcinoma. Int. J. Cancer 2006, 118, 2344–2349. [Google Scholar] [CrossRef] [PubMed]
- Skorupski, K.A.; O’Brien, T.G.; Guerrero, T.; Rodrigeuz, C.O.; Burns, M.R. Phase I/II clinical trial of 2-difluoromethyl-ornithine (DFMO) and a novel polyamine transport inhibitor (MQT 1426) for feline oral squamous cell carcinoma. Vet. Compar. Oncol. 2011, 9, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Trembley, J.H.; Unger, G.M.; Korman, V.L.; Tobolt, D.K.; Kazimierczuk, Z.; Pinna, L.A.; Kren, B.T.; Ahmed, K. Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett. 2012, 315, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Unger, G.M.; Kren, B.T.; Korman, V.L.; Kimbrough, T.G.; Vogel, R.I.; Ondrey, F.G.; Trembley, J.H.; Ahmed, K. Mechanism and efficacy of sub-50-nm tenfibgen nanocapsules for cancer cell-directed delivery of anti-CK2 RNAi to primary and metastatic squamous cell carcinoma. Mol. Cancer Ther. 2014, 13, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
- Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; et al. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol. Cell. Biochem. 2011, 356, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Marconato, L.; Buchholz, J.; Keller, M.; Bettini, G.; Valenti, P.; Kaser-Hotz, B. Multimodal therapeutic approach and interdisciplinary challenge for the treatment of unresectable head and neck squamous cell carcinoma in six cats: A pilot study. Vet. Compar. Oncol. 2013, 11, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Poirier, V.J.; Kaser-Hotz, B.; Vail, D.M.; Straw, R.C. Efficacy and toxicity of an accelerated hypofractionated radiation therapy protocol in cats with oral squamous cell carcinoma. Vet. Radiol. Ultrasound 2013, 54, 81–88. [Google Scholar] [PubMed]
- VetCancerTrials.org. Available online: http://www.vetcancertrials.org/studies/analysis-of-vegfr-pdgfr-and-c-kit-in-feline-oral-squamous-cell-carcinoma (accessed on 12 May 2015).
- Hayes, H.M., Jr.; Milne, K.L.; Mandell, C.P. Epidemiological features of feline mammary carcinoma. Vet. Rec. 1981, 108, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Sorenmo, K.U.; Worley, D.R.; Goldschmidt, M.H. Tumors of the Mammary Gland. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier Saunders: St Louis, MO, USA, 2012; pp. 538–556. [Google Scholar]
- Benjamin, S.A.; Lee, A.C.; Saunders, W.J. Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in beagles. Vet. Pathol. 1999, 36, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Sorenmo, K.U.; Kristiansen, V.M.; Cofone, M.A.; Shofer, F.S.; Breen, A.M.; Langeland, M.; Mongil, C.M.; Grondahl, A.M.; Teige, J.; Goldschmidt, M.H. Canine mammary gland tumours; A histological continuum from benign to malignant; Clinical and histopathological evidence. Vet. Compar. Oncol. 2009, 7, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Overley, B.; Shofer, F.S.; Goldschmidt, M.H.; Sherer, D.; Sorenmo, K.U. Association between ovarihysterectomy and feline mammary carcinoma. J. Vet. Intern. Med. 2005, 19, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R. Genetic testing for inherited breast and ovarian cancer syndromes: Important concepts for the primary care physician. Postgraduate Med. J. 2001, 77, 11–15. [Google Scholar] [CrossRef]
- Wiese, D.A.; Thaiwong, T.; Yuzbasiyan-Gurkan, V.; Kiupel, M. Feline mammary basal-like adenocarcinomas: A potential model for human triple-negative breast cancer (TNBC) with basal-like subtype. BMC Cancer 2013, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Beha, G.; Muscatello, L.V.; Brunetti, B.; Asproni, P.; Millanta, F.; Poli, A.; Benazzi, C.; Sarli, G. Molecular phenotype of primary mammary tumours and distant metastases in female dogs and cats. J. Compar. Pathol. 2014, 150, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, B.; Asproni, P.; Beha, G.; Muscatello, L.V.; Millanta, F.; Benazzi, C.; Sarli, G. Molecular phenotype in mammary tumours of queens: Correlation between primary tumour and lymph node metastasis. J. Compar. Pathol. 2013, 148, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Martin de las Mulas, J.; Van Niel, M.; Millán, Y.; Ordás, J.; Blankenstein, M.A.; Van Mil, F.; Misdorp, W. Progesterone receptors in normal, dysplastic and tumourous feline mammary glands. Comparison with oestrogen receptors status. Res. Vet. Sci. 2002, 72, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Millanta, F.; Calandrella, M.; Vannozzi, I.; Poli, A. Steroid hormone receptors in normal, dysplastic and neoplastic feline mammary tissues and their prognostic significance. Vet. Rec. 2006, 158, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Caliari, D.; Zappulli, V.; Rasotto, R.; Cardazzo, B.; Frassineti, F.; Goldschmidt, M.H.; Castagnaro, M. Triple-negative vimentin-positive heterogeneous feline mammary carcinomas as a potential comparative model for breast cancer. BMC Vet. Res. 2014, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.W.; Allred, D.C.; Anderson, B.O.; Burstein, H.J.; Carter, W.B.; Edge, S.B.; Erban, J.K.; Farrar, W.B.; Goldstein, L.J.; Gradishar, W.J.; et al. Breast cancer. Clinical practice guidelines in oncology. J. Nat. Compr. Cancer Network 2009, 7, 122–192. [Google Scholar]
- Millanta, F.; Calandrella, M.; Citi, S.; Della Santa, D.; Poli, A. Overexpression of HER-2 in feline invasive mammary carcinomas: An immunohistochemical survey and evaluation of its prognostic potential. Vet. Pathol. 2005, 42, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Rasotto, R.; Caliari, D.; Castagnaro, M.; Zanetti, R.; Zappulli, V. An immunohistochemical study of HER-2 expression in feline mammary tumours. J. Compar. Pathol. 2011, 144, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Correia, J.; Rodrigues, P.; Simões, M.; de Matos, A.; Ferreira, F. Feline HER2 protein expression levels and gene status in feline mammary carcinoma: Optimization of immunohistochemistry (IHC) and in situ hybridization (ISH) techniques. Microsc. Microanal. 2013, 19, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Winston, J.; Craft, D.M.; Scase, T.J.; Bergman, P.J. Immunohistochemical detection of HER-2/neu expression in spontaneous feline mammary tumours. Vet. Compar. Oncol. 2005, 3, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, L.; Iussich, S.; de Las Mulas, J.M.; Millán, Y.; Biolatti, B.; Sasaki, N.; Nakagawa, T.; De Maria, R. Activation of AKT in feline mammary carcinoma: A new prognostic factor for feline mammary tumours. Vet. J. 2012, 191, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Gibson, H.M.; Veenstra, J.; Jones, R.F.; Vaishampayan, U.; Sauerbrey, M.; Bepler, G.; Lum, L.; Reyes, J.; Weise, A.; Wei, W.Z. Induction of HER2 Immunity in Outbred Domestic Cats by DNA Electrovaccination. Cancer Immunol. Res. 2015. Available online: http://www.biomedcentral.com/1471-2407/13/218 (accessed on 25 June 2015). [CrossRef] [PubMed]
- Santos, S.; Baptista, C.S.; Abreu, R.M.; Bastos, E.; Amorim, I.; Gut, I.G.; Gärtner, F.; Chaves, R. ERBB2 in cat mammary neoplasias disclosed a positive correlation between RNA and protein low expression levels: a model for erbB-2 negative human breast cancer. PLoS ONE. 2013, 8. Available online: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083673 (accessed on 25 June 2015). [CrossRef] [PubMed]
- Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Therapy 2010, 10, 955–960. [Google Scholar] [CrossRef]
- Morrison, W.B. Inflammation and cancer: A comparative view. J. Vet. Intern. Med. 2012, 26, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, M.; Melchiotti, E.; Bozza, M.A.; Mutinelli, F. Fibrosarcomas at presumed sites of injection in dogs: Characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, M.; Melchiotti, E.; Mutinelli, F. Fibrosarcoma with typical features of postinjection sarcoma at site of microchip implant in a dog: Histologic and immunohistochemical study. Vet. Pathol. 2006, 43, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, M.; Mutinelli, F.; Cossettini, R.; Altinier, E. Liposarcoma at the site of an implanted microchip in a dog. Vet. J. 2004, 168, 188–190. [Google Scholar] [CrossRef]
- Murray, J. Vaccine injection-site sarcoma in a ferret. J. Amer. Vet. Med. Assoc. 1998, 213, 955. [Google Scholar]
- Keel, S.B.; Jaffe, K.A.; Petur Nielsen, G.; Rosenberg, A.E. Orthopaedic implant-related sarcoma: A study of twelve cases. Modern Pathol. 2001, 14, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Liptak, J.M.; Forrest, L.J. Soft Tissue Sarcomas. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier Saunders: St Louis, MO, USA, 2012; pp. 356–380. [Google Scholar]
- Dean, R.S.; Pfeiffer, D.U.; Adams, V.J. The incidence of feline injection site sarcomas in the United Kingdom. BMC Vet. Res. 2013, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Doddy, F.D.; Glickman, L.T.; Glickman, N.W.; Janovitz, E.B. Feline fibrosarcomas at vaccination sites and non-vaccination sites. J. Compar. Pathol. 1996, 114, 165–174. [Google Scholar] [CrossRef]
- Couto, S.S.; Griffey, S.M.; Duarte, P.C.; Madewell, B.R. Feline vaccine-associated fibrosarcoma: Morphologic distinctions. Vet. Pathol. 2002, 39, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, M.J.; Brooks, J.J. Postvaccinal Sarcomas in the Cat: Histology and Immunohistochemistry. Vet. Pathol. 1994, 31, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Aberdein, D.; Munday, J.S.; Dyer, C.B.; Knight, C.G.; French, A.F.; Gibson, I.R. Comparison of the histology and immunohistochemistry of vaccination-site and non-vaccination-site sarcomas from cats in New Zealand. New Zealand Vet. J. 2007, 55, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Dubielzig, R.R.; Everitt, J.; Shadduck, J.A.; Albert, D.M. Clinical and morphologic features of post-traumatic ocular sarcomas in cats. Vet. Pathol. 1990, 27, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.L.; Gustin, J.K.; Moses, A.V.; Dezube, B.J.; Pantanowitz, L. Kaposi Sarcoma Pathogenesis: A Triad of Viral Infection, Oncogenesis and Chronic Inflammation. Transl. Biomed. 2010, 1. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472629/ (accessed on 25 June 2015).
- Jourdier, T.M.; Moste, C.; Bonnet, M.C.; Delisle, F.; Tafani, J.P.; Devauchelle, P.; Tartaglia, J.; Moingeon, P. Local immunotherapy of spontaneous feline fibrosarcomas using recombinant poxviruses expressing interleukin 2 (IL2). Gene Therapy 2003, 10, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Banerji, N.; Kanjilal, S. Somatic alterations of the p53 tumor suppressor gene in vaccine-associated feline sarcoma. Amer. J. Vet. Res. 2006, 67, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- McEntee, M.C.; Page, R.L. Feline vaccine-associated sarcomas. J. Vet. Intern. Med. 2001, 15, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Tannehill-Gregg, S.; Kergosien, E.; Rosol, T.J. Feline head and neck squamous cell carcinoma cell line: characterization, production of parathyroid hormone-related protein, and regulation by transforming growth factor-beta. In Vitro Cell. Dev. Biol. Anim. 2001, 37, 676–683. [Google Scholar] [CrossRef]
- Modiano, J.F.; Kokai, Y.; Weiner, D.B.; Pykett, M.J.; Nowell, P.C.; Lyttle, C.R. Progesterone augments proliferation induced by epidermal growth factor in a feline mammary adenocarcinoma cell line. J. Cell. Biochem. 1991, 45, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Norval, M.; Maingay, J.; Else, R.W. Characteristics of a feline mammary carcinoma cell line. Res. Vet. Sci. 1985, 39, 157–164. [Google Scholar] [PubMed]
- Uyama, R.; Hong, S.H.; Nakagawa, T.; Yazawa, M.; Kadosawa, T.; Mochizuki, M.; Tsujimoto, H.; Nishimura, R.; Sasaki, N. Establishment and characterization of eight feline mammary adenocarcinoma cell lines. J. Vet. Med. Sci. 2005, 67, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Takauji, S.R.; Watanabe, M.; Uyama, R.; Nakagawa, T.; Miyajima, N.; Mochizuki, M.; Nishimura, R.; Sugano, S.; Sasaki, N. Expression and subcellular localization of E-cadherin, alpha-catenin, and beta-catenin in 8 feline mammary tumor cell lines. J. Vet. Med. Sci. 2007, 69, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Muleya, J.S.; Nakaichi, M.; Sugahara, J.; Taura, Y.; Murata, T.; Nakama, S. Establishment and characterization of a new cell line derived from feline mammary tumor. J. Vet. Med. Sci. 1998, 60, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Muleya, J.S.; Nakaichi, M.; Taura, Y.; Yamaguchi, R.; Nakama, S. In-vitro anti-proliferative effects of some anti-tumour drugs on feline mammary tumour cell lines. Res. Vet. Sci. 1999, 66, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Minke, J.M.; Schuuring, E.; van den Berghe, R.; Stolwijk, J.A.; Boonstra, J.; Cornelisse, C.; Hilkens, J.; Misdorp, W. Isolation of two distinct epithelial cell lines from a single feline mammary carcinoma with different tumorigenic potential in nude mice and expressing different levels of epidermal growth factor receptors. Cancer Res. 1991, 51, 4028–4037. [Google Scholar] [PubMed]
- Adelfinger, M.; Gentschev, I.; Grimm de Guibert, J.; Weibel, S.; Langbein-Laugwitz, J.; Härtl, B.; Murua Escobar, H.; Chen, N.G.; Aguilar, R.J.; Yu, Y.A.; et al. Evaluation of a new recombinant oncolytic vaccinia virus strain GLV-5b451 for feline mammary carcinoma therapy. PLoS ONE. 2014, 9. Available online: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104337 (accessed on 25 June 2015). [CrossRef] [PubMed]
- Williams, L.E.; Banerji, N.; Klausner, J.S.; Kapur, V.; Kanjilal, S. Establishment of two vaccine-associated feline sarcoma cell lines and determination of in vitro chemosensitivity to doxorubicin and mitoxantrone. Amer. J. Vet. Res. 2001, 62, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Banerji, N.; Li, X.; Klausner, J.S.; Kapur, V.; Kanjilal, S. Evaluation of in vitro chemosensitivity of vaccine-associated feline sarcoma cell lines to vincristine and paclitaxel. Amer. J. Vet. Res. 2002, 63, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Katayama, R.; Huelsmeyer, M.K.; Marr, A.K.; Kurzman, I.D.; Thamm, D.H.; Vail, D.M. Imatinib mesylate inhibits platelet-derived growth factor activity and increases chemosensitivity in feline vaccine-associated sarcoma. Cancer Chemother. Pharmacol. 2004, 54, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Saba, C.; Gogal, R., Jr.; Lamberth, O.; Vandenplas, M.L.; Hurley, D.J.; Dubreuil, P.; Dobbin, K.; Turek, M. Masitinib demonstrates anti-proliferative and pro-apoptotic activity in primary and metastatic feline injection-site sarcoma cells. Vet. Compar. Oncol. 2012, 10, 143–154. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannon, C.M. Cats, Cancer and Comparative Oncology. Vet. Sci. 2015, 2, 111-126. https://doi.org/10.3390/vetsci2030111
Cannon CM. Cats, Cancer and Comparative Oncology. Veterinary Sciences. 2015; 2(3):111-126. https://doi.org/10.3390/vetsci2030111
Chicago/Turabian StyleCannon, Claire M. 2015. "Cats, Cancer and Comparative Oncology" Veterinary Sciences 2, no. 3: 111-126. https://doi.org/10.3390/vetsci2030111
APA StyleCannon, C. M. (2015). Cats, Cancer and Comparative Oncology. Veterinary Sciences, 2(3), 111-126. https://doi.org/10.3390/vetsci2030111