Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = fault ride through (FRT) capability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 205
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

21 pages, 3892 KiB  
Article
Quantitative Analysis of the Fault Ride-Through Current and Control Parameters in Hybrid Modular Multilevel Converters
by Yi Xu and Bowen Tang
Appl. Sci. 2025, 15(15), 8331; https://doi.org/10.3390/app15158331 - 26 Jul 2025
Viewed by 226
Abstract
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations [...] Read more.
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations influence fault current profiles. Unlike conventional static topologies (e.g., RLC or fixed-voltage RL circuits), the proposed model integrates an RL network with a time-variant controlled voltage source, which can emulate closed-loop control response during the FRT transient. Then, the quantitative relationship is established to map the parameters of DC controllers to the fault current across diverse FRT strategies, including scenarios where control saturation dominates the transient response. Simulation studies conducted on a two-terminal MMC-HVDC architecture substantiate the efficacy and precision of the developed methodology. The proposed method enables the evaluation of DC fault behavior for hybrid MMCs, concurrently appraising FRT control strategies. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

27 pages, 5499 KiB  
Article
Enhancing Fault Ride-Through and Power Quality in Wind Energy Systems Using Dynamic Voltage Restorer and Battery Energy Storage System
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbs, Abdullrahman A. Al-Shammaa and Hassan M. Hussein Farh
Electronics 2025, 14(14), 2760; https://doi.org/10.3390/electronics14142760 - 9 Jul 2025
Viewed by 385
Abstract
Doubly Fed Induction Generator (DFIG)-based Wind Energy Systems (WESs) have become increasingly prominent in the global energy sector, owing to their superior efficiency and operational flexibility. Nevertheless, DFIGs are notably vulnerable to fluctuations in the grid, which can result in power quality issues—including [...] Read more.
Doubly Fed Induction Generator (DFIG)-based Wind Energy Systems (WESs) have become increasingly prominent in the global energy sector, owing to their superior efficiency and operational flexibility. Nevertheless, DFIGs are notably vulnerable to fluctuations in the grid, which can result in power quality issues—including voltage swells, sags, harmonic distortion, and flicker—while also posing difficulties in complying with Fault Ride-Through (FRT) standards established by grid regulations. To address the previously mentioned challenges, this paper develops an integrated approach utilizing a Dynamic Voltage Restorer (DVR) in conjunction with a Lithium-ion storage system. The DVR is coupled in series with the WES terminal, while the storage system is coupled in parallel with the DC link of the DFIG through a DC/DC converter, enabling rapid voltage compensation and bidirectional energy exchange. Simulation results for a 2 MW WES employing DFIG modeled in MATLAB/Simulink demonstrate the efficacy of the proposed system. The approach maintains terminal voltage stability, reduces Total Harmonic Distortion (THD) to below 0.73% during voltage sags and below 0.42% during swells, and limits DC-link voltage oscillations within permissible limits. The system also successfully mitigates voltage flicker (THD reduced to 0.41%) and harmonics (THD reduced to 0.4%), ensuring compliance with IEEE Standard 519. These results highlight the proposed system’s ability to enhance both PQ and FRT capabilities, ensuring uninterrupted wind power generation under various grid disturbances. Full article
Show Figures

Figure 1

22 pages, 3277 KiB  
Article
Power Oscillation Emergency Support Strategy for Wind Power Clusters Based on Doubly Fed Variable-Speed Pumped Storage Power Support
by Weidong Chen and Jianyuan Xu
Symmetry 2025, 17(6), 964; https://doi.org/10.3390/sym17060964 - 17 Jun 2025
Viewed by 331
Abstract
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power [...] Read more.
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power clusters, they may trigger the tripping of thermal power units and a transient voltage drop in most wind turbines in the high-proportion wind power area. This causes an instantaneous active power deficiency and poses a low-frequency oscillation risk. To address the deficiencies of wind turbine units in fault ride-through (FRT) and active frequency regulation capabilities, a power emergency support scheme for wind power clusters based on doubly fed variable-speed pumped storage dynamic excitation is proposed. A dual-channel energy control model for variable-speed pumped storage units is established via AC excitation control. This model provides inertia support and FRT energy simultaneously through AC excitation control of variable-speed pumped storage units. Considering the transient stability of the power network in the wind power cluster transmission system, this scheme prioritizes offering dynamic reactive power to support voltage recovery and suppresses power oscillations caused by power deficiency during LVRT. The electromagnetic torque completed the power regulation within 0.4 s. Finally, the effectiveness of the proposed strategy is verified through modeling and analysis based on the actual power network of a certain region in Northeast China. Full article
(This article belongs to the Special Issue Advances in Intelligent Power Electronics with Symmetry/Asymmetry)
Show Figures

Figure 1

22 pages, 2253 KiB  
Review
Doubly Fed Induction Machine Models for Integration into Grid Management Software for Improved Post Fault Response Calculation Accuracy—A Short Review
by Andrija Mitrovic, Luka Strezoski and Kenneth A. Loparo
Energies 2025, 18(1), 147; https://doi.org/10.3390/en18010147 - 2 Jan 2025
Cited by 2 | Viewed by 939
Abstract
With the escalating proliferation of wind power plants, the imperative focus on system robustness and stability intensifies. Doubly fed induction machines (DFIMs) are extensively employed in land-based wind power plants due to their performance advantages. While the stator windings are directly connected to [...] Read more.
With the escalating proliferation of wind power plants, the imperative focus on system robustness and stability intensifies. Doubly fed induction machines (DFIMs) are extensively employed in land-based wind power plants due to their performance advantages. While the stator windings are directly connected to the power system, the rotor windings are connected via power converters, making these units vulnerable to voltage disturbances. During faults, voltage drops at the stator terminals lead to elevated voltages and currents on the rotor side due to electromagnetic coupling between stator and rotor, potentially damaging rotor insulation and costly power electronics. Historically, wind power plants employing DFIMs were disconnected from the grid during faults—an unsatisfactory solution given the burgeoning number of these installations. Consequently, grid operators and IEEE standard 2800 mandate fault ride-through (FRT) capabilities to maintain system stability during disturbances. This paper provides a short review of the existing techniques for protecting DFIMs during faults, focusing on both passive and active protection methods. Additionally, a simple calculation is presented to compare two different protection strategies, illustrating the differences in their effectiveness. The review emphasizes the necessity for developing models that represent all protection methods for DFIMs, due to the clear differences in the results obtained. Full article
Show Figures

Figure 1

20 pages, 26056 KiB  
Article
Development of Grid-Forming and Grid-Following Inverter Control in Microgrid Network Ensuring Grid Stability and Frequency Response
by V. Vignesh Babu, J. Preetha Roselyn, C. Nithya and Prabha Sundaravadivel
Electronics 2024, 13(10), 1958; https://doi.org/10.3390/electronics13101958 - 16 May 2024
Cited by 22 | Viewed by 9256
Abstract
This paper proposes a control strategy for grid-following inverter control and grid-forming inverter control developed for a Solar Photovoltaic (PV)–battery-integrated microgrid network. A grid-following (GFL) inverter with real and reactive power control in a solar PV-fed system is developed; it uses a Phase [...] Read more.
This paper proposes a control strategy for grid-following inverter control and grid-forming inverter control developed for a Solar Photovoltaic (PV)–battery-integrated microgrid network. A grid-following (GFL) inverter with real and reactive power control in a solar PV-fed system is developed; it uses a Phase Lock Loop (PLL) to track the phase angle of the voltages at the PCC and adopts a vector control strategy to adjust the active and reactive currents that are injected into the power grid. The drawback of a GFL inverter is that it lacks the capability to operate independently when the utility grid is down due to outages or disturbances. The proposed grid-forming (GFM) inverter control with a virtual synchronous machine provides inertia to the grid, generates a stable grid-like voltage and frequency and enables the integration of the grid. The proposed system incorporates a battery energy storage system (BESS) which has inherent energy storage capability and is independent of geographical areas. The GFM control includes voltage and frequency control, enhanced islanding and black start capability and the maintenance of the stability of the grid-integrated system. The proposed model is validated under varying irradiance conditions, load switching, grid outages and temporary faults with fault ride-through (FRT) capability, and fast frequency response and stability are achieved. The proposed model is validated under varying irradiance conditions, load switching, grid outages and line faults incorporating fault ride-through capability in GFM-based control. The proposed controller was simulated in a 100 MW solar PV system and 60 MW BESS using the MATLAB/Simulink 2023 tool, and the experimental setup was validated in a 1 kW grid-connected system. The percentage improvement of the system frequency and voltage with FRT-capable GFM control is 69.3% and 70%, respectively, and the percentage improvement is only 3% for system frequency and 52% for grid voltage in the case of an FRT-capable GFL controller. The simulation and experimental results prove that GFM-based inverter control achieves fast frequency response, and grid stability is also ensured. Full article
(This article belongs to the Special Issue State-of-the-Art Power Electronics Systems)
Show Figures

Figure 1

6 pages, 3795 KiB  
Proceeding Paper
Nonlinear Control Design of Three-Level Neutral-Point-Clamped-Based High-Voltage Direct Current Systems for Enhanced Availability during AC Faults with Semi-Experimental Validation
by Ilyass El Myasse, Aziz Watil, Abdelmounime El Magri and Ambe Harrison
Eng. Proc. 2023, 56(1), 35; https://doi.org/10.3390/ASEC2023-15336 - 26 Oct 2023
Cited by 6 | Viewed by 919
Abstract
This research paper addresses the issue of enhancing the operational availability of NPC three-level converter-based high-voltage direct current (HVDC) transport systems during alternating current (AC) grid fault conditions. During short-circuit faults in power transmission lines, voltage sags can occur, causing fluctuations in the [...] Read more.
This research paper addresses the issue of enhancing the operational availability of NPC three-level converter-based high-voltage direct current (HVDC) transport systems during alternating current (AC) grid fault conditions. During short-circuit faults in power transmission lines, voltage sags can occur, causing fluctuations in the DC link voltage of converter systems. These voltage sags have the potential to induce a reversed power flow and trip the VSC-HVDC transmission system. The objective of this paper is to develop a nonlinear control technique that investigates the fault ride-through (FRT) capability of VSC-HVDC transmission system characteristics during voltage sag events. To achieve this, we conduct semi-experimental investigations using Processor-in-the-Loop (PIL) simulations and analyze the results. Symmetrical and asymmetrical voltage sag events with different remaining voltages are applied to an AC grid, and their effects are observed for varying durations. The proposed nonlinear control technique aims to mitigate the impact of voltage sags on the operational availability of HVDC transport systems. By analyzing the semi-experimental results, we aim to gain insights into the FRT capability of the VSC-HVDC transmission system. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

13 pages, 752 KiB  
Article
Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies
by Pankaj Saha, Weihao Zhao, Daniel-Ioan Stroe, Florin Iov and Stig Munk-Nielsen
Batteries 2023, 9(11), 527; https://doi.org/10.3390/batteries9110527 - 24 Oct 2023
Cited by 3 | Viewed by 3252
Abstract
This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and [...] Read more.
This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and accurate models. The system components consist of a 500 kW alkaline electrolyzer module integrated with a medium-voltage grid and three different commercially available ESSs based on Li-ion battery, Li-ion capacitor, and supercapacitor technology, respectively. The performance of these ESSs is extensively studied for three LVRT profiles, with a primary focus on the upcoming Danish grid code. In order to perform simulation studies, the system is implemented on the MATLAB®/Simulink®-PLECS® platform. The results demonstrate that all three energy storage technologies are capable of supporting the electrolyzer systems during low-voltage abnormalities in the distribution grid. The study also reveals that the supercapacitor-based technology seems to be more appropriate, from a techno-economic perspective, for fault ride-through (FRT) compliance. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

21 pages, 4072 KiB  
Article
Enhancing the Dynamic Stability of Integrated Offshore Wind Farms and Photovoltaic Farms Using STATCOM with Intelligent Damping Controllers
by Kai-Hung Lu and Qianlin Rao
Sustainability 2023, 15(18), 13962; https://doi.org/10.3390/su151813962 - 20 Sep 2023
Cited by 3 | Viewed by 1530
Abstract
To build a large-scale renewable energy integrated system in the power system, power fluctuation mitigation and damping measures must be implemented during grid connection. PID damping controllers and traditional intelligent controllers with pole configuration are usually used for improving damping. Integration of large [...] Read more.
To build a large-scale renewable energy integrated system in the power system, power fluctuation mitigation and damping measures must be implemented during grid connection. PID damping controllers and traditional intelligent controllers with pole configuration are usually used for improving damping. Integration of large wind power plants and photovoltaic power plants into the power system faces transient power oscillation and fault ride-through (FRT) capability under fault conditions. Therefore, this paper proposes a static synchronous compensator (STATCOM) damper based on a recurrent Petri fuzzy probabilistic neural network (RPFPNN) to improve the transient stability of the power system when large offshore wind farms and photovoltaic power plants are integrated into the power system, suppress power fluctuation, and increase FRT capability. To verify the effectiveness of the proposed control scheme, a three-phase short circuit fault at the connected busbar is modeled in the time domain as part of a nonlinear model. From the comparison of simulation results, the proposed control scheme can effectively slow down the transient fluctuation of power supply to the grid-connected point when the grid is faulty, reach steady-state stability within 1–1.5 s, and reduce overshoot by more than 50%. It can also provide system voltage support at an 80% voltage drop and assist in stabilizing the system voltage to increase FRT capability. It also improves stability more than PID controllers when disturbances are present. Therefore, it maximizes the stability and safety of the power grid system. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 7512 KiB  
Article
Improvement of Fault Ride-Through Capability of Grid Connected Wind Turbine Based on a Switched Reluctance Generator Using a Dynamic Voltage Restorer
by Saeed A. AlGhamdi
Sustainability 2023, 15(14), 11061; https://doi.org/10.3390/su151411061 - 14 Jul 2023
Cited by 5 | Viewed by 1712
Abstract
This paper presents an improvement to the fault ride-through (FRT) capabilities for a wind turbine that employs a switched reluctance generator (SRG) using a dynamic voltage restorer (DVR). The wind turbine may be disconnected from the grid by voltage sag, swell, and faulty [...] Read more.
This paper presents an improvement to the fault ride-through (FRT) capabilities for a wind turbine that employs a switched reluctance generator (SRG) using a dynamic voltage restorer (DVR). The wind turbine may be disconnected from the grid by voltage sag, swell, and faulty line voltage in the grid. To improve the stator voltage of an SRG during grid failures, the DVR is applied to inject voltage at the point of common coupling (PCC) into the grid voltage. A control strategy for the DVR based on fuzzy logic controller (FLC) is proposed in this study to improve the FRT capability and meet the grid codes while avoiding the disconnection of the turbine from the grid. MATLAB/SIMULINK simulation validated the effectiveness and performance of this approach under three test cases: balanced sag, unbalanced sag, and a single line-to-ground fault. In addition, the total harmonic distortions utilizing different controllers were compared in sag mode. Furthermore, the simulation results exhibited significant improvement in transient and steady-state response, thus verifying the effectiveness of the control strategy compared to traditional methods. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 4426 KiB  
Article
An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System
by Jahangeer Badar Soomro, Dileep Kumar, Faheem Akhtar Chachar, Semih Isik and Mohammed Alharbi
Sustainability 2023, 15(11), 8922; https://doi.org/10.3390/su15118922 - 1 Jun 2023
Cited by 6 | Viewed by 2297
Abstract
This study presents an improved, communication-free Fault Ride-Through (FRT) strategy for type-3 and type-4 wind turbine integrated modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems in offshore wind power plants (OWPPs). The research aims to enhance the reliability and resilience of OWPPs by [...] Read more.
This study presents an improved, communication-free Fault Ride-Through (FRT) strategy for type-3 and type-4 wind turbine integrated modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems in offshore wind power plants (OWPPs). The research aims to enhance the reliability and resilience of OWPPs by ensuring their connection with AC grids remains intact during and after faults. Simulation results conducted on a 580 kV, 850 MW MMC-HVDC system using PSCAD/EMTDC software v.4.6.2 demonstrate quick post-fault recovery operation and the ability to effectively manage DC link and capacitor voltages within safe limits. Furthermore, the circulating current (CC) and capacitor voltage ripple (CVR) remain within acceptable limits, ensuring safe and reliable operation. The study’s major conclusion is that the proposed FRT strategy effectively mitigates the adverse effects of short circuit faults, such as a rapid rise in DC-link voltage, on the performance of the MMC-HVDC system. By promptly suppressing DC-link overvoltage, the proposed FRT scheme prevents compromising the safe operation of various power electronics equipment. These findings highlight the significance of FRT capability in OWPPs and emphasize the practical applicability of the proposed strategy in enhancing the reliability of offshore wind power generation. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Renewable Energy Applications)
Show Figures

Figure 1

18 pages, 8267 KiB  
Article
Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults
by Saif Ul Islam and Soobae Kim
Sustainability 2023, 15(8), 6705; https://doi.org/10.3390/su15086705 - 15 Apr 2023
Cited by 4 | Viewed by 2767
Abstract
As the integration of inverter-based resources (IBRs) is rapidly increasing in regard to the existing power system, switching from grid-following (GFL) to grid-forming (GFM) inverter control is the solution to maintain grid resilience. However, additional overcurrent protection, especially during fault transition, is required [...] Read more.
As the integration of inverter-based resources (IBRs) is rapidly increasing in regard to the existing power system, switching from grid-following (GFL) to grid-forming (GFM) inverter control is the solution to maintain grid resilience. However, additional overcurrent protection, especially during fault transition, is required due to limited overcurrent capability and the high magnitude of spikes during fault recovery in IBRs, specifically in the GFM control mode. Furthermore, the power system stability should not be compromised by the employment of additional fault ride through (FRT) schemes. This article presents the design and implementation of an adoptive fault ride through (FRT) scheme for grid-forming inverters under symmetrical fault conditions. The proposed adoptive FRT scheme is comprised of two cascaded power electronic-based circuits, i.e., fault current ride through and a spikes reactor. This adoptive FRT scheme optimizes the fault variables during the fault time and suppresses the fault clearing spikes, without affecting system stability. A three-bus inverter-based grid-forming model is used in MATLAB/Simulink for the implementation of the proposed scheme. Further, a conventionally used FRT scheme, which includes fault current reactors, is simulated in the same test environment for justification of the proposed adoptive scheme. The adoptive FRT scheme is simulated for both time domain and frequency domain to analyze the response of harmonic distortion with the suppression of the fault current. Moreover, the proposed scheme is also simulated under the GFL mode of IBRs to justify the reliability of the scheme. The overall simulation results and performance evaluation indices authenticate the optimal, fault tolerant, harmonic, and spike-free behavior of the proposed scheme at both the AC and DC side of the grid-forming inverters. Full article
Show Figures

Figure 1

15 pages, 4995 KiB  
Article
FRT Capability Enhancement of Offshore Wind Farm by DC Chopper
by Gilmanur Rashid and Mohd Hasan Ali
Energies 2023, 16(5), 2129; https://doi.org/10.3390/en16052129 - 22 Feb 2023
Cited by 2 | Viewed by 2040
Abstract
Offshore wind farms (OWF) are establishing their position to be the next strategy to expand the growth horizon of wind power production. For proper integration of OWFs into the existing grid, the voltage source converter (VSC)-based high voltage direct current (HVDC) transmission is [...] Read more.
Offshore wind farms (OWF) are establishing their position to be the next strategy to expand the growth horizon of wind power production. For proper integration of OWFs into the existing grid, the voltage source converter (VSC)-based high voltage direct current (HVDC) transmission is being vastly utilized. For the stable operation of the existing grid, these VSC-HVDC-connected OWFs need to abide by the fault ride through (FRT) grid codes. Though there are many proposed solutions to tackle the FRT problem of the onshore wind farms, all of them cannot be applied to the OWFs. The OWFs cannot respond to the onshore faults depending solely on local measurements. Additionally, there are very few techniques available for FRT capability enhancement of the doubly fed induction generator (DFIG)-based OWFs. One notable solution is the use of the DC chopper resistor across the HVDC line. No intelligent controller is yet to be reported for better control of the DC chopper resistor. To enhance the performance of the DC chopper resistor in enhancing the FRT capability of the DFIG-based OWF, a particle swarm optimization (PSO)-based nonlinear controller is proposed. Simulations carried out in the Matlab/Simulink environment reveal that the PSO-optimized nonlinear controller-based DC chopper is very effective in maintaining the FRT of the DFIG-based OWF systems. Additionally, the proposed method provides better FRT performance than that of the conventional controller-based DC chopper. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies)
Show Figures

Figure 1

25 pages, 2822 KiB  
Article
An Improved Phase-Disposition Pulse Width Modulation Method for Hybrid Modular Multilevel Converter
by Fayun Zhou, Xinxing Xiang, Fujun Ma, Yichao Wang, Fangyuan Zhou and Peng Peng
Energies 2023, 16(3), 1192; https://doi.org/10.3390/en16031192 - 21 Jan 2023
Cited by 4 | Viewed by 2609
Abstract
The hybrid modular multilevel converter (MMC) consisting of half-bridge submodules (HBSMs) and full-bridge submodules (FBSMs) is a promising solution for overhead lines high-voltage direct current systems (HVDC) due to the advantages of direct current short circuit fault ride-through (DC-FRT) capability. This paper proposes [...] Read more.
The hybrid modular multilevel converter (MMC) consisting of half-bridge submodules (HBSMs) and full-bridge submodules (FBSMs) is a promising solution for overhead lines high-voltage direct current systems (HVDC) due to the advantages of direct current short circuit fault ride-through (DC-FRT) capability. This paper proposes an improved phase-disposition pulse width modulation (PDPWM) method for the hybrid modular multilevel converter. The number of carriers can be reduced from 3N (N is the number of submodules in each arm) to 6. The theoretical harmonic analysis of the improved PDPWM method for hybrid MMC is performed by using double Fourier integral analysis. The influence of three carrier displacement angles between HBSMs and FBSMs in the upper and lower arms on harmonic characteristics is investigated. The output voltage harmonics minimization PDPWM scheme and circulating current harmonics cancellation PDPWM scheme can be achieved by selecting the optimum carrier displacement angles, respectively. The proposed method for hybrid MMC is verified by the simulation and experimental results. Full article
(This article belongs to the Special Issue Power Quality Analysis and Control of Railway Power Supply Systems)
Show Figures

Figure 1

28 pages, 8477 KiB  
Article
Dynamic Performance Assessment of PMSG and DFIG-Based WECS with the Support of Manta Ray Foraging Optimizer Considering MPPT, Pitch Control, and FRT Capability Issues
by Mohamed Metwally Mahmoud, Basiony Shehata Atia, Almoataz Y. Abdelaziz and Noura A. Nour Aldin
Processes 2022, 10(12), 2723; https://doi.org/10.3390/pr10122723 - 16 Dec 2022
Cited by 34 | Viewed by 3563
Abstract
Wind generators have attracted a lot of attention in the realm of renewable energy systems, but they are vulnerable to harsh environmental conditions and grid faults. The influence of the manta ray foraging optimizer (MRFO) on the dynamic performance of the two commonly [...] Read more.
Wind generators have attracted a lot of attention in the realm of renewable energy systems, but they are vulnerable to harsh environmental conditions and grid faults. The influence of the manta ray foraging optimizer (MRFO) on the dynamic performance of the two commonly used variable speed wind generators (VSWGs), called the permanent magnet synchronous generator (PMSG) and doubly-fed induction generator (DFIG), is investigated in this research article. The PMSG and DFIG were exposed to identical wind speed changes depending on their wind turbine characteristics, as well as a dangerous three-phase fault, to evaluate the durability of MRFO-based wind side controllers. To protect VSWGs from hazardous gusts and obtain the optimum power from incoming wind speeds, we utilized a pitch angle controller and optimal torque controller, respectively, in our study. During faults, the commonly utilized industrial approach (crowbar system) was exclusively employed to aid the studied VSWGs in achieving fault ride-through (FRT) capability and control of the DC link voltage. Furthermore, an MRFO-based PI controller was used to develop a crowbar system. The modeling of PMSG, DFIG, and MRFO was performed using the MATLAB/Simulink toolbox. We compared performances of PMSG and DFIG in reference tracking and resilience against changes in system parameters under regular and irregular circumstances. The effectiveness and reliability of the optimized controllers in mitigating the adverse impacts of faults and wind gusts were demonstrated by the simulation results. Without considering the exterior circuit of VSWGs or modifying the original architecture, MRFO-PI controllers in the presence of a crowbar system may help cost-effectively alleviate FRT concerns for both studied VSWGs. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems)
Show Figures

Figure 1

Back to TopTop