Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fast scan cyclic voltammograms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2631 KiB  
Article
Gold Nanoparticle-Modified Carbon-Fiber Microelectrodes for the Electrochemical Detection of Cd2+ via Fast-Scan Cyclic Voltammetry
by Noel Manring, Miriam Strini, Gene Koifman, Jessica L. Smeltz and Pavithra Pathirathna
Micromachines 2024, 15(3), 294; https://doi.org/10.3390/mi15030294 - 21 Feb 2024
Cited by 3 | Viewed by 3015
Abstract
Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and [...] Read more.
Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor’s selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+–ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor’s LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

16 pages, 5717 KiB  
Article
Modification of Graphite/SiO2 Film Electrodes with Hybrid Organic–Inorganic Perovskites for the Detection of Vasoconstrictor Bisartan 4-Butyl-Ν,Ν-bis{[2-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium Bromide
by Georgios Papathanidis, Anna Ioannou, Alexandros Spyrou, Aggeliki Mandrapylia, Konstantinos Kelaidonis, John Matsoukas, Ioannis Koutselas and Emmanuel Topoglidis
Inorganics 2023, 11(12), 485; https://doi.org/10.3390/inorganics11120485 - 18 Dec 2023
Viewed by 2522
Abstract
In the present work, a hybrid organic–inorganic semiconductor (HOIS) has been used to modify the surface of a graphite paste/silica (G–SiO2) film electrode on a conducting glass substrate to fabricate a promising, sensitive voltammetric sensor for the vasoconstrictor bisartan BV6, which [...] Read more.
In the present work, a hybrid organic–inorganic semiconductor (HOIS) has been used to modify the surface of a graphite paste/silica (G–SiO2) film electrode on a conducting glass substrate to fabricate a promising, sensitive voltammetric sensor for the vasoconstrictor bisartan BV6, which could possibly treat hypertension and COVID-19. The HOIS exhibits exceptional optoelectronic properties with promising applications not only in light-emitting diodes, lasers, or photovoltaics but also for the development of voltammetric sensors due to the ability of the immobilized HOIS lattice to interact with ions. This study involves the synthesis and characterization of an HOIS and its attachment on the surface of a G–SiO2 film electrode in order to develop a nanocomposite, simple, sensitive with a fast-response, low-cost voltammetric sensor for BV6. The modified HOIS electrode was characterized using X-ray diffraction, scanning electron microscopy, and optical and photoluminescence spectroscopy, and its electrochemical behavior was examined using cyclic voltammetry. Under optimal conditions, the modified G–SiO2 film electrode exhibited a higher electrocatalytic activity towards the oxidation of BV6 compared to a bare graphite paste electrode. The results showed that the peak current was proportional to BV6 concentration with a linear response range from 0 to 65 × 10−6 (coefficient of determination, 0.9767) and with a low detection limit of 1.5 × 10−6 M (S/N = 3), estimated based on the area under a voltammogram, while it was 3.5 × 10−6 for peak-based analysis. The sensor demonstrated good stability and reproducibility and was found to be appropriate for the determination of drug compounds such as BV6. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Materials)
Show Figures

Graphical abstract

12 pages, 1965 KiB  
Article
Laser-Scribed Pencil Lead Electrodes for Amperometric Quantification of Indapamide
by Thawan G. Oliveira, Irlan S. Lima, Wilson A. Ameku, Josué M. Gonçalves, Rodrigo S. Souza, Henrique E. Toma and Lúcio Angnes
Chemosensors 2023, 11(12), 574; https://doi.org/10.3390/chemosensors11120574 - 5 Dec 2023
Cited by 2 | Viewed by 2378
Abstract
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical [...] Read more.
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical tools such as cyclic voltammograms and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− and dopamine as redox probes. The electrochemical results observed showed that a treated surface showed an improvement in electron transfer and less resistance to charge transfer. To optimize the electrode performance, it was necessary to search for the most favorable graphite mines and optimize the parameters of the laser machine (laser power, scan rate, and output distance). The resultant material was adequately characterized by Raman spectroscopy and scanning electron microscopy (SEM), where an irregular surface composed of crystalline graphite particles was noticed. Furthermore, as a proof-of-concept, it was applied to detect indapamide (IND) in synthetic urine by flow injection analysis (FIA), a diuretic drug often used by athletes to alter urine composition to hide forbidden substance consumption in doping tests. Full article
(This article belongs to the Special Issue Advanced Electrochemical Sensors or Biosensors Based on Nanomaterial)
Show Figures

Figure 1

13 pages, 2375 KiB  
Article
The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms
by Yuanyuan Liu, Koichi Jeremiah Aoki and Jingyuan Chen
Electrochem 2023, 4(4), 460-472; https://doi.org/10.3390/electrochem4040030 - 23 Oct 2023
Cited by 9 | Viewed by 3571
Abstract
Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR [...] Read more.
Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR-drop effect due to solution resistance on the peaks, as well as a heterogeneously kinetic effect. It is also brought about by the negatively capacitive currents associated with charge transfer reactions. The reaction product generates dipoles with counterions to yield a capacitance, the current of which flows oppositely to that of the double-layer capacitance. The three effects are specified here in the oxidation of a ferrocenyl derivative using fast scan voltammetry. The expression for voltammograms complicated with IR-drop is derived analytically and yields deformed voltammograms. The peak shift is approximately linear with the IR-voltage, but exhibits a convex variation. The dependence of some parameters on the peaks due to the IR-drop is compared with those due to the negative capacitance. The latter is more conspicuous than the former under conventional conditions. The two effects cannot be distinguished specifically except for variations in the conductance of the solution. Full article
Show Figures

Figure 1

23 pages, 12242 KiB  
Article
Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform
by Aliekber Karabag, Dilek Soyler, Yasemin Arslan Udum, Levent Toppare, Gorkem Gunbas and Saniye Soylemez
Biosensors 2023, 13(7), 677; https://doi.org/10.3390/bios13070677 - 25 Jun 2023
Cited by 2 | Viewed by 2017
Abstract
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure–property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), [...] Read more.
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure–property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor–acceptor polymers. Full article
(This article belongs to the Special Issue Biosensor Nanoengineering: Design, Operation and Implementation)
Show Figures

Figure 1

13 pages, 2274 KiB  
Article
Carbon Electrode Sensor for the Measurement of Cortisol with Fast-Scan Cyclic Voltammetry
by Michelle Hadad, Nadine Hadad and Alexander G. Zestos
Biosensors 2023, 13(6), 626; https://doi.org/10.3390/bios13060626 - 6 Jun 2023
Cited by 6 | Viewed by 4129
Abstract
Cortisol is a vital steroid hormone that has been known as the “stress hormone”, which is elevated during times of high stress and anxiety and has a significant impact on neurochemistry and brain health. The improved detection of cortisol is critically important as [...] Read more.
Cortisol is a vital steroid hormone that has been known as the “stress hormone”, which is elevated during times of high stress and anxiety and has a significant impact on neurochemistry and brain health. The improved detection of cortisol is critically important as it will help further our understanding of stress during several physiological states. Several methods exist to detect cortisol; however, they suffer from low biocompatibility and spatiotemporal resolution, and they are relatively slow. In this study, we developed an assay to measure cortisol with carbon fiber microelectrodes (CFMEs) and fast-scan cyclic voltammetry (FSCV). FSCV is typically utilized to measure small molecule neurotransmitters by producing a readout cyclic voltammogram (CV) for the specific detection of biomolecules on a fast, subsecond timescale with biocompatible CFMEs. It has seen enhanced utility in measuring peptides and other larger compounds. We developed a waveform that scanned from −0.5 to −1.2 V at 400 V/s to electro-reduce cortisol at the surface of CFMEs. The sensitivity of cortisol was found to be 0.87 ± 0.055 nA/μM (n = 5) and was found to be adsorption controlled on the surface of CFMEs and stable over several hours. Cortisol was co-detected with several other biomolecules such as dopamine, and the waveform was fouling resistant to repeated injections of cortisol on the surface of the CFMEs. Furthermore, we also measured exogenously applied cortisol into simulated urine to demonstrate biocompatibility and potential use in vivo. The specific and biocompatible detection of cortisol with high spatiotemporal resolution will help further elucidate its biological significance and further understand its physiological importance and impact on brain health. Full article
(This article belongs to the Special Issue Biosensors and Neuroscience)
Show Figures

Graphical abstract

13 pages, 1541 KiB  
Article
Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry
by Alexander Mendoza, Thomas Asrat, Favian Liu, Pauline Wonnenberg and Alexander G. Zestos
Sensors 2020, 20(4), 1173; https://doi.org/10.3390/s20041173 - 20 Feb 2020
Cited by 38 | Viewed by 5798
Abstract
Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been [...] Read more.
Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry. Carbon nanotubes are ideal for neurotransmitter detection because they have higher aspect ratios enabling monoamine adsorption and lower limits of detection, faster electron transfer kinetics, and a resistance to surface fouling. Several methods to modify CFMEs with CNTs have resulted in increases in sensitivity, but have also increased noise and led to irreproducible results. In this study, we utilize commercially available CNT-yarns to make microelectrodes as enhanced neurotransmitter sensors for neurotransmitters such as serotonin. CNT-yarn microelectrodes have significantly higher sensitivities (peak oxidative currents of the cyclic voltammograms) than CFMEs and faster electron transfer kinetics as measured by peak separation (ΔEP) values. Moreover, both serotonin and dopamine are adsorption controlled to the surface of the electrode as measured by scan rate and concentration experiments. CNT yarn microelectrodes also resisted surface fouling of serotonin onto the surface of the electrode over thirty minutes and had a wave application frequency independent response to sensitivity at the surface of the electrode. Full article
(This article belongs to the Special Issue Carbon Nanotube Yarn-Based Sensors)
Show Figures

Graphical abstract

13 pages, 12147 KiB  
Article
Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries
by Jing Su, Hao Liang, Xian-Nian Gong, Xiao-Yan Lv, Yun-Fei Long and Yan-Xuan Wen
Nanomaterials 2017, 7(6), 121; https://doi.org/10.3390/nano7060121 - 26 May 2017
Cited by 19 | Viewed by 6156
Abstract
Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), [...] Read more.
Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g−1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g−1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g−1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a microchannel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large scale. Full article
Show Figures

Graphical abstract

Back to TopTop