Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = fan pressurization test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5581 KiB  
Article
Film Cooling Performance and Superposition Method of an Actual Turbine Vane at High Freestream Turbulence
by Peng Chu, Yongfeng Sui, Bin Dai, Jibing Lan, Wenyang Shao, Binbin Xue, Xiliang Xu and Zhenping Feng
Aerospace 2025, 12(6), 533; https://doi.org/10.3390/aerospace12060533 - 12 Jun 2025
Viewed by 418
Abstract
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that [...] Read more.
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that the current design blowing ratio of S1 holes (0.89) is too high, resulting in poor film cooling effectiveness. However, the blowing ratios of P3 (0.78) and P4 (0.69) holes are relatively low, suggesting that increasing the coolant flow could improve the film cooling effectiveness. It is not recommended to design an excessively low blowing ratio on the suction surface, as this can lead to poor wall adherence downstream of the film holes. A slight increase in turbulence intensity enhances the film covering effect, particularly on the suction surface. Additionally, a novel superposition method for multirow fan-shaped film cooling holes on an actual turbine vane is proposed, exhibiting better agreement with experimental data. Compared with experimental results, the numerical predictions tend to underestimate the film cooling effectiveness with the examined k-ε-based viscosity turbulence models and Reynolds stress turbulence models, while the SST demonstrates relatively higher accuracy owing to its hybrid k-ω/k-ε formulation that better resolves near-wall physics and separation flows characteristic of turbine cooling configurations. This study contributes to the advancement of turbine vane thermal analysis and design in engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 3814 KiB  
Article
Static Aero-Propulsion Experiment of an Electric Ducted Fan
by Hoang-Quan Chu, Quang-Ngoc Dinh, Thai-Son Vu, Van-Yen Pham, Van-Trung Bui, Nhat-Minh Hoang, Trung-Kien Nguyen, Dong Nguyen, Gia-Diem Pham and Cong-Truong Dinh
Aerospace 2025, 12(6), 509; https://doi.org/10.3390/aerospace12060509 - 4 Jun 2025
Viewed by 1060
Abstract
Electric ducted fans are gaining prominence in aviation due to their compact size, low noise, and zero emissions compared to conventional gas turbines. This study presents an experimental test system for a 390 mm electric Ducted Propulsion Fan developed by the Aerospace Propulsion [...] Read more.
Electric ducted fans are gaining prominence in aviation due to their compact size, low noise, and zero emissions compared to conventional gas turbines. This study presents an experimental test system for a 390 mm electric Ducted Propulsion Fan developed by the Aerospace Propulsion Systems group at Hanoi University of Science and Technology. The carbon fiber composite thruster, driven by a centrally located BLDC motor, was mounted on a test stand equipped with force and rotational speed (rpm) sensors. Power was supplied through two battery configurations, eight-pack and nine-pack, with voltage and current monitored and controlled via an ESC module. Experiments conducted from 2000 to 7000 rpm explored the relationship between electrical inputs and aero-propulsive outputs. The results revealed that input power, current, and sound pressure level (SPL) amplified meaningfully with rpm, while the voltage slightly declined. The maximum rpm reached 6500 rpm for the eight-pack and 7000 rpm for the nine-pack configurations. When greater than 6000 rpm, the SPL reaches close to 120 dB. The eight-pack configuration provided higher thrust per volt, whereas the nine-pack offered better thrust per ampere and improved starting power. Although dimensionless indices, including power coefficient (CP), thrust coefficient (CT), and figure of merit (FM), reduced with rpm, the FM remained between 0.7 and 0.75 at medium speeds, demonstrating effective energy conversion. Full article
Show Figures

Figure 1

27 pages, 5921 KiB  
Article
Development of a Simulation Model for Blade Tip Timing with Uncertainties
by Kang Chen, Guoning Xu, Xulong Zhang and Wei Qu
Aerospace 2025, 12(6), 480; https://doi.org/10.3390/aerospace12060480 - 28 May 2025
Viewed by 317
Abstract
Blades are widely used in the engines of aerospace vehicles, fans of near-space aerostat, and other equipment, and they are the key to completing energy conversion and pressure adjustment of the capsule. Blade tip timing (BTT) is the most cost-efficient approach for the [...] Read more.
Blades are widely used in the engines of aerospace vehicles, fans of near-space aerostat, and other equipment, and they are the key to completing energy conversion and pressure adjustment of the capsule. Blade tip timing (BTT) is the most cost-efficient approach for the monitoring of blades. The reliability and validity of BTT is mainly investigated through numerical simulation and experimental verification. However, not all researchers are able to carry out the expensive and time-consuming task of rotating the blade test bench and its monitoring systems. Therefore, a good and easily understood simulator is necessary. In this paper, an effective BTT simulation model that is capable of considering various uncertainties such as installation errors, probe accuracy, sampling clock frequency, speed fluctuations, and mistuning is presented. A blade multi-harmonic vibration model is also presented, which is not only easy to implement but also simplifies the solution of dynamic equations. Also, the simulation results show that the proposed model is accurate and consistent with the experimental results. This will help researchers to achieve an improved understanding of BTT and form the basis for conducting research in related areas in a short period of time. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 9694 KiB  
Article
Analysis of Performance and Noise on an Asymmetric Double-Suction Fan with Non-Uniformity Inlet Conditions
by Yougen Huang, Bin Li, Haohui Chen, Weigang Yang, Qianhao Xiao and Jun Wang
Machines 2025, 13(6), 463; https://doi.org/10.3390/machines13060463 - 27 May 2025
Viewed by 413
Abstract
Asymmetric double-suction centrifugal fans are commonly employed in home kitchens to remove cooking pollutants, and their performance is critical to maintaining a healthy indoor environment. However, inlet condition variations significantly influence the aerodynamic efficiency and noise levels. This study utilizes a combination of [...] Read more.
Asymmetric double-suction centrifugal fans are commonly employed in home kitchens to remove cooking pollutants, and their performance is critical to maintaining a healthy indoor environment. However, inlet condition variations significantly influence the aerodynamic efficiency and noise levels. This study utilizes a combination of performance testing and a large eddy simulation to analyze the impact of different inlet conditions on the performance curve, impeller outlet pressure pulsation, unsteady flow structures, and sound quality of an asymmetric double-suction centrifugal fan. A non-uniform air distribution at the inlet is proposed to enhance the fan’s aerodynamic and noise characteristics. The findings reveal that when the inlet area is reduced to less than 70% of its fully open state, the aerodynamic performance declines with decreasing intake area. The amplitude of the superimposed blade-passing frequency is minimized when only the left inlet is open; the pressure coefficient’s fluctuation amplitude in the time domain reaches 0.4, with sharpness peaking at 3.1. In the optimized design, the maximum deviation in total pressure efficiency is limited to 1.96%, with loudness reduced by four sones and improved sharpness and roughness. These results provide valuable insights into the design and noise reduction of asymmetric double-suction squirrel-cage fans. Full article
Show Figures

Figure 1

22 pages, 11671 KiB  
Article
CFD-Based Flow Field Characteristics of Air-Assisted Sprayer in Citrus Orchards
by Xiangfei Huang, Yunwu Li, Lang Chen and Kechao Wang
Agriculture 2025, 15(10), 1103; https://doi.org/10.3390/agriculture15101103 - 20 May 2025
Cited by 1 | Viewed by 535
Abstract
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted [...] Read more.
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted sprayer and analyzed its airflow characteristics and droplet deposition effects based on CFD simulation technology. The reliability of the simulation results was verified through air speed boundary tests, revealing that the maximum effective boundaries of the integrated air duct and the independent air duct in different directions were 18.4 cm and 17.2 cm, respectively, providing a reference for the spatial arrangement of the air duct. The study indicates that properly matching the fan speed, spray pressure, and spray distance could optimize droplet deposition, enhance spray uniformity, and improve pesticide utilization. However, excessively high fan speeds (>6000 r/min) or spray pressures (>0.8 MPa) may reduce droplet transport efficiency. This research provides theoretical support for the design and parameter optimization of sprayers in hilly citrus orchards. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

23 pages, 15421 KiB  
Article
Evaluation of a Microporous Acoustic Liner Using Advanced Noise Control Fan Engine
by Bharath Kenchappa and Kunigal Shivakumar
Appl. Sci. 2025, 15(9), 4734; https://doi.org/10.3390/app15094734 - 24 Apr 2025
Viewed by 808
Abstract
A novel microstructurally controlled graded micro-porous material was developed and experimentally validated for noise reduction through a normal incidence impedance test. Extensive parametric studies were conducted to understand the influence of test specimen size, particle size, porosity, pore size, and its distribution on [...] Read more.
A novel microstructurally controlled graded micro-porous material was developed and experimentally validated for noise reduction through a normal incidence impedance test. Extensive parametric studies were conducted to understand the influence of test specimen size, particle size, porosity, pore size, and its distribution on acoustic absorption and transmission loss. Based on previous research, this study evaluates the application of graded microporous material as an acoustic liner technology for aircraft turbomachine engines. The liner was fabricated in eight 45° segments, assembled in an aluminum test rig, and tested on NASA Glenn Research Center’s Advanced Noise Control Fan (ANCF) low-speed test bed for tonal and broadband noise. The study demonstrates that microstructurally controlled graded microporous material is very effective in dissipating sound energy with reductions in tonal sound pressure level (SPL) of 2 to 13 dB at blade passing frequencies and reductions in broadband SPL of about 2 to 3 dB for the shaft order greater than 40. While the proposed two-layer graded liner model successfully validated the concept, additional design optimization is needed to enhance performance further. This work highlights the potential of graded microporous material as next-generation acoustic liners, offering lightweight, efficient, and scalable aircraft engine noise reduction solutions. Full article
(This article belongs to the Special Issue New Advances in Acoustic Materials: Design and Application)
Show Figures

Figure 1

13 pages, 9471 KiB  
Article
Effects of Nozzle Arrangement Strategies on Spray Uniformity in Soybean–Maize Intercropping
by Wei Zhong, Wanting Yang, Yalong Li, Guanqun Wang, Xiang Dong, Mingxiong Ou, Weidong Jia and Xiaowen Wang
Agronomy 2025, 15(4), 985; https://doi.org/10.3390/agronomy15040985 - 19 Apr 2025
Cited by 1 | Viewed by 691
Abstract
Soybean–maize intercropping involves the simultaneous planting of maize and soybean. Compound planting sprayers are equipped with a dual-spraying system, particularly for herbicide application, where isolation between crops is essential. To isolate the spraying, it is necessary to select appropriate nozzles that minimize the [...] Read more.
Soybean–maize intercropping involves the simultaneous planting of maize and soybean. Compound planting sprayers are equipped with a dual-spraying system, particularly for herbicide application, where isolation between crops is essential. To isolate the spraying, it is necessary to select appropriate nozzles that minimize the interference between spray boundaries while ensuring spray uniformity. This study focuses on soybean–maize intercropping systems and investigates the variation patterns of spray boundary under different nozzle arrangement types. Eccentric nozzles (i.e., spray pattern is asymmetric fan-shaped) and fan-shaped nozzles (i.e., spray pattern is symmetric fan-shaped) were evaluated at a working pressure of 0.3 MPa. The results showed that the eccentric nozzle achieved a coefficient of variation (CV) of 0.57 and a compactness of 0.43, while the fan-shaped nozzle had a CV of 0.50 and a compactness of 0.52. This indicates the eccentric nozzle maintains uniformity with a narrower boundary. In addition, this validation was conducted at 0.4 MPa, having similar observations. In soybean–maize intercropping, the maize row width ranges from 40 to 80 cm and where the maize plants exceed 2 m in height, two-eccentric nozzles are required, tested at spacing intervals of 50 cm, 70 cm, and 90 cm. At 0.3 MPa, the CV reached its minimum value (0.3) at a spacing of 70 cm. Additionally, the spray volume on the eccentric nozzle side decreased as the spacing increased. The soybean row width ranges from 160 to 240 cm, requiring eccentric nozzles on both sides and a fan-shaped nozzle in the middle. The spacing between the eccentric and fan-shaped nozzles is chosen to be 50, 70, and 90 cm. A combination of eccentric and fan-shaped nozzles was tested at the same spacing intervals. The results showed that the CV consistently decreased with increasing spacing, and the spray volume on the eccentric nozzle side also declined. Overall, the optimal nozzle configuration for maize zones is two eccentric nozzles at a spacing of 70 cm, while for soybean zones, combining an eccentric nozzle with a fan-shaped nozzle at a spacing of 90 cm effectively ensures both spray uniformity and boundary compactness when variation in windspeed and direction are ignored. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport
by Tao Sun, Zhijun Yan, Lixia Xue, Yuanyuan Jiang and Shibo Wu
Biomimetics 2025, 10(4), 248; https://doi.org/10.3390/biomimetics10040248 - 17 Apr 2025
Viewed by 472
Abstract
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped [...] Read more.
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped curves is designed, and the numerical simulation model is established according to this texture. Through simulation research, the variation rules of pressure distribution, interfacial velocity, and outlet volume flow rate on the biomimetic fish scale texture surface at different velocities and temperatures are obtained. Moreover, the biomimetic fish scale texture is machined on the surface of a reciprocating friction pair by laser etching, and the oil transport speed of the interface is tested under different conditions. The results show that the existence of the biomimetic fish scale texture on the friction pair can effectively improve the pressure difference between interfaces during reciprocating motion. The pressure difference enhances the flow properties of interfacial lubricating oil, thereby improving its mass transport capacity. In addition, increasing the movement speed and oil temperature can increase the oil transport speed of interfacial lubricating oil. The results of the experiment suggest that, under continuous and discontinuous interface conditions, compared with a friction pair without texture, the improvement rate of the lubricating oil transport speed at the interface of the friction pair with the biomimetic fish scale texture can reach 40.7% and 69.1%, respectively. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

17 pages, 833 KiB  
Article
ARES: A Meanline Code for Outboard Dynamic-Inlet Waterjet Axial-Flow Pumps Design
by Filippo Avanzi, Francesco De Vanna, Andrea Magrini and Ernesto Benini
Fluids 2025, 10(3), 66; https://doi.org/10.3390/fluids10030066 - 10 Mar 2025
Cited by 1 | Viewed by 753
Abstract
We introduce the solver ARES: Axial-flow pump Radial Equilibrium through Streamlines. The code implements a meanline method, enforcing the conservation of flow momentum and continuity across a set of discrete streamlines in the axial-flow pump’s meridional channel. Real flow effects are modeled with [...] Read more.
We introduce the solver ARES: Axial-flow pump Radial Equilibrium through Streamlines. The code implements a meanline method, enforcing the conservation of flow momentum and continuity across a set of discrete streamlines in the axial-flow pump’s meridional channel. Real flow effects are modeled with empirical correlations, including off-design deviation and losses due to profile shape, secondary flows, tip leakage, and the end-wall boundary layer (EWBL). Inspired by aeronautical fan and compressor methods, this implementation is specifically tailored for the analysis of the Outboard Dynamic-inlet Waterjet (ODW), the latest aero-engine-derived innovation in marine engineering. To ensure the reliable application of ARES for the systematic designs of ODW pumps, the present investigation focuses on prediction accuracy. Global and local statistics are compared between numerical estimates and available measurements of three test cases: two single rotors and a rotor–stator waterjet configuration. At mass flow rates near the design point, hydraulic efficiency is predicted within 1% discrepancy to tests. Differently, as the flow coefficient increases, the loss prediction accuracy degrades, incrementing the error for off-design estimates. Spanwise velocity and pressure distributions exhibit good alignment with experiments near midspan, especially at the rotor exit, while end-wall boundary layer complex dynamics are hardly recovered by the present implementation. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 2nd Edition)
Show Figures

Figure 1

31 pages, 9973 KiB  
Article
Measuring Airtightness of High-Rise Buildings (Lessons Learned)
by Stefanie Rolfsmeier, Emanuel Mairinger, Johannes Neubig and Thomas Gayer
Buildings 2025, 15(5), 724; https://doi.org/10.3390/buildings15050724 - 24 Feb 2025
Cited by 1 | Viewed by 2144
Abstract
Measuring the airtightness of high-rise buildings presents significant challenges due to the effects of wind and thermal lift (stack effect). Small indoor/outdoor temperature differences, combined with the building’s height, can create substantial natural pressure differences on the building envelope, while winds induce pressure [...] Read more.
Measuring the airtightness of high-rise buildings presents significant challenges due to the effects of wind and thermal lift (stack effect). Small indoor/outdoor temperature differences, combined with the building’s height, can create substantial natural pressure differences on the building envelope, while winds induce pressure fluctuations. The international standard ISO 9972 provides insufficient guidelines for dealing with these high and fluctuating natural pressure differences. In addition, it is crucial to achieve a uniform internal pressure distribution during the test. This paper discusses the airtightness testing of high-rise buildings up to 125 m tall using portable blower door devices, following the “airtightness measurement of high-rise buildings” Passive House guideline. Differential pressure sensors were placed on the ground and top floors to record the effects of wind and thermal lift, and additional sensors helped to achieve a uniform pressure distribution within the building. The readings from the ground and top floors ensured full depressurization and pressurization during testing. The setup of the measuring fans, mainly on the ground floor, was supplemented with additional fans on higher floors to maintain pressure uniformity within a 10% tolerance. To be able to conduct a multi-point regression test, it is recommended to limit the product of the indoor/outdoor temperature difference and building height to ≤1250 mK and to achieve a coefficient of determination of 0.98 or higher, a wind speed ≤ 3 Beaufort. The study concludes that an airtight building envelope and larger internal flow paths, such as stairwells and elevator shafts, simplify the measurement. Full article
(This article belongs to the Special Issue Research on the Airtightness of Buildings)
Show Figures

Figure 1

18 pages, 20166 KiB  
Article
Parameter Optimization of Spiral Step Cleaning Device for Ratooning Rice Based on Computational Fluid Dynamics-Discrete Element Method Coupling
by Weijian Liu, Shan Zeng and Zhandong Wu
Agriculture 2024, 14(12), 2141; https://doi.org/10.3390/agriculture14122141 - 25 Nov 2024
Cited by 2 | Viewed by 951
Abstract
Ratooning rice plants have a high moisture content and strong adhesion during harvesting. Traditional cleaning devices are prone to clogging when processing ratooning rice, resulting in a series of problems such as high grain loss rate and high grain impurity rate. In response [...] Read more.
Ratooning rice plants have a high moisture content and strong adhesion during harvesting. Traditional cleaning devices are prone to clogging when processing ratooning rice, resulting in a series of problems such as high grain loss rate and high grain impurity rate. In response to the above issues, this article adopts the CFD-DEM coupling method to design a spiral step cleaning device. A detailed analysis was conducted on the influence of the cone angle and thickness of the spiral-stepped skeletons on the flow state, and flow velocity and pressure distribution cloud maps were obtained under different structural parameters. The vortex morphology under different thicknesses of the spiral-stepped skeletons was compared, and the structural parameters of the device were determined. The motion trajectory and distribution of impurity particles under different inlet flow velocities were analyzed using data superposition, and the appropriate inlet flow velocity range was determined. A test bench was built, and a three-factor quadratic regression orthogonal rotation combination experiment was conducted with fan speed, feeding rate, and device inclination angle as experimental factors. The results of the bench test show that the performance index reaches its optimum when the device inclination angle, fan speed, and feeding rate are 2.47°, 2906 r/min, and 4.0 kg/s, respectively. At this time, the grain impurity rate, grain loss rate, and sieve clogging rate are 2.21%, 2.15%, and 3.5%, respectively. Compared to those of traditional cleaning equipment, these value are reduced by 44.5%, 39.6%, and 83.9%, respectively. This study can provide ideas for the design of ratooning rice cleaning devices. Full article
Show Figures

Figure 1

14 pages, 2647 KiB  
Article
Influence of Control Strategy on Heat Recovery Efficiency in a Single-Duct Periodic Ventilation Device
by Piotr Koper
Energies 2024, 17(22), 5801; https://doi.org/10.3390/en17225801 - 20 Nov 2024
Cited by 1 | Viewed by 706
Abstract
The subject of the research was a single-duct, decentralised periodic ventilation unit, using accumulative heat exchanger for heat recovery (also called single-core fixed-bed regenerator). It can achieve high efficiency of heat recovery but is vulnerable to pressure differences between the interior of the [...] Read more.
The subject of the research was a single-duct, decentralised periodic ventilation unit, using accumulative heat exchanger for heat recovery (also called single-core fixed-bed regenerator). It can achieve high efficiency of heat recovery but is vulnerable to pressure differences between the interior of the building and the outside. To counter this, two control strategies were proposed: adjustment of the fan speed based on an air flow sensor and adjustment of the working cycle length based on temperature sensors. The strategies were tested experimentally in actual working conditions. Due to the use of cheap and simple sensors, it was possible to retain the low price of the device. Both control strategies proved to be successful in equalising the amount of supplied and removed air in a single cycle. Moreover, the heat recovery efficiency increased by more than 10% compared to the default working mode. Full article
(This article belongs to the Special Issue Thermal Comfort, Environment Quality and Energy Consumption)
Show Figures

Figure 1

18 pages, 2613 KiB  
Article
Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House
by Ji-Qin Ni
Animals 2024, 14(22), 3339; https://doi.org/10.3390/ani14223339 - 20 Nov 2024
Cited by 2 | Viewed by 956
Abstract
Determining ventilation rates in commercial animal buildings has been technically challenging. This study aimed to develop an innovative method and a ventilation model and provide new insights into animal building ventilation. A layer house with 46 fans was studied over six months. A [...] Read more.
Determining ventilation rates in commercial animal buildings has been technically challenging. This study aimed to develop an innovative method and a ventilation model and provide new insights into animal building ventilation. A layer house with 46 fans was studied over six months. A full-size and fast-response portable fan tester was developed for on-site fan ventilation measurement. Results indicated that the house differential pressures (dP) varied from +10.4 to <−100.0 Pa but remained between −10 and −30 Pa for 75.7% of the time. The mean house dP was −18.1 ± 8.9 Pa (mean ± standard deviation). Fan rotational speeds ranged from 495 to 580 rpm, with an average of 555 ± 14 rpm. Daily mean house ventilation rates ranged from 1800 to 22,142 m3 min−1, averaging 4.68 m3 h−1 per hen. This study concluded that house dP can be greatly affected by strong winds in addition to fan operations and air inlet openings. Fan rotational speeds are influenced by pulley sizes and fan belt maintenance. On-site fan tests with the fan tester can generate reliable data for fan ventilation characterization. Fan models that incorporate both fan rotational speeds and differential pressures considerably improve ventilation rate calculations. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

16 pages, 6563 KiB  
Article
The Prediction of the Leakage Airflow Rate Using the Supply and Return Airflow Rate in a Variable Air Volume System
by Kyung-Won Kim, Hyo-Jun Kim, Jin-Hyun Lee and Young-Hum Cho
Appl. Sci. 2024, 14(22), 10363; https://doi.org/10.3390/app142210363 - 11 Nov 2024
Viewed by 1028
Abstract
Pressure differences in the envelope of a building result in leakage airflow (i.e., the unintended flow of air). This can lead to increased building heating and cooling energy, decreased thermal comfort for occupants, and the spread of moisture. To address this problem, it [...] Read more.
Pressure differences in the envelope of a building result in leakage airflow (i.e., the unintended flow of air). This can lead to increased building heating and cooling energy, decreased thermal comfort for occupants, and the spread of moisture. To address this problem, it is necessary to know the leakage airflow in a building. Generally, the leakage airflow in a building is calculated by determining the leakage function through fan pressurization methods, such as the blower door test, and substituting the pressure difference measured by the pressure sensor. However, it is difficult to install continuous pressure sensors in an operating building. Therefore, this study proposes a method to utilize the supply and return airflow of an air conditioning system to predict the variation in the leakage airflow with changing indoor and outdoor airflow, and the efficacy of this approach was verified through experiments. The experiment measured the indoor and outdoor pressure difference of the building with a change in the speed of the supply and return fans and the opening rate of the variable air volume (VAV) damper. As a result of the experiment, the indoor–outdoor pressure difference is proportional to the difference between the indoor supply airflow and the ventilation airflow. In addition, the relationship between the pressure difference and the leakage airflow was derived through the pressurization/decompression method using an air handler, and the leakage airflow from the pressure difference generated by the operation of the air conditioning system was calculated. Lastly, the relationship between the supply and return airflow difference and the leakage airflow was derived based on the experimental results, and the leakage airflow was predicted based on the relationship. Full article
Show Figures

Figure 1

19 pages, 19550 KiB  
Article
Development and Assessment of a Miniaturized Test Rig for Evaluating Noise Reduction in Serrated Blades Under Turbulent Flow Conditions
by Andrei-George Totu, Cristian-Teodor Olariu, Andrei-Tudor Trifu, Andreea-Cătălina Totu and Grigore Cican
Acoustics 2024, 6(4), 978-996; https://doi.org/10.3390/acoustics6040054 - 11 Nov 2024
Cited by 1 | Viewed by 1589
Abstract
The implementation of serrated stator blades in axial compressor and fan stages offers significant advantages, such as enhanced performance and reduced noise levels, making it a practical and cost-effective solution. This study explores the impact of serrated blade design on noise reduction under [...] Read more.
The implementation of serrated stator blades in axial compressor and fan stages offers significant advantages, such as enhanced performance and reduced noise levels, making it a practical and cost-effective solution. This study explores the impact of serrated blade design on noise reduction under specific engine operating conditions. A small-scale experimental test setup with a turbulence-inducing grid was designed for testing multiple grid sizes in order to identify the most promising configuration which replicates rotor–stator interaction. Numerical simulations and early experimental tests in an anechoic chamber using a four-blade cascade configuration at an airflow speed of 50 m/s revealed a small but notable noise reduction in the 1–6 kHz range for a partially matched grid–blade geometry. Serrated blades demonstrated an overall sound pressure level reduction of 1.5 dB and up to 12 dB in tonal noise, highlighting the potential of cascade configurations to improve acoustic performance in gas turbine applications. Full article
(This article belongs to the Special Issue Vibration and Noise (2nd Edition))
Show Figures

Figure 1

Back to TopTop