Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = fan aerodynamic performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8784 KiB  
Article
Some RANS Modeling Results of the UHBR Fan: The Case of ECL5/CATANA
by Lorenzo Pinelli, Maria Malcaus, Giovanni Giannini and Michele Marconcini
Int. J. Turbomach. Propuls. Power 2025, 10(3), 17; https://doi.org/10.3390/ijtpp10030017 - 23 Jul 2025
Viewed by 227
Abstract
With the advancement of modern fan architectures, dedicated experimental benchmarks are becoming fundamental to improving the knowledge of flow physics, validating novel CFD methods, and fine-tuning existing methods. In this context the open test case ECL5/CATANA, representative of a modern Ultra High Bypass [...] Read more.
With the advancement of modern fan architectures, dedicated experimental benchmarks are becoming fundamental to improving the knowledge of flow physics, validating novel CFD methods, and fine-tuning existing methods. In this context the open test case ECL5/CATANA, representative of a modern Ultra High Bypass Ratio (UHBR) architecture, has been designed and experimentally investigated at École Centrale de Lyon (ECL) in a novel test facility with multi-physical instrumentation, providing a large database of high-quality aerodynamic and aeromechanic measurements. In this paper, a thorough numerical study of the fan stage aerodynamics was performed using the CFD TRAF code developed at the University of Florence. Fan stage performance was studied at design speed over the entire operating range. The results were discussed and compared with datasets provided by ECL. Detailed sensitivity on numerical schemes and state-of-the-art turbulence/transition models allowed for the selection of the best numerical setup to perform UHBR fan simulations. Moreover, to have a deeper understanding of the fan stall margin, unsteady simulations were also carried out. The results showed the appearance of blade tip instability, precursor of a rotating stall condition, which may generate non-synchronous blade vibrations. Full article
Show Figures

Figure 1

17 pages, 3534 KiB  
Article
Lift–Thrust Integrated Ducted-Grid Fusion Configuration Design for a Ducted Fan Tail-Sitter UAV
by Lei Liu and Baigang Mi
Appl. Sci. 2025, 15(14), 7687; https://doi.org/10.3390/app15147687 - 9 Jul 2025
Viewed by 244
Abstract
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced [...] Read more.
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced to expand through the grid channels, forming a significant force component difference with the non-grid side, thereby generating significant lift effects for the propeller of the ducted fan during level flight. Taking a ducted fan system as an example, a design method for embedding grids into the ducted wall is established. By using the sliding mesh technique to simulate propeller rotation, the effects of annular distribution angle, grid channel width, circumferential and flow direction grid quantity on its aerodynamic performance are evaluated. The results indicate that the ducted fan embedded in the grid can generate a lift about 22.16% of total thrust without significantly affecting thrust and power characteristics. The increase in circumferential distribution angle increases within a reasonable range and benefits the lift of the propeller. However, the larger the grid width, the more it affects the lip and tail of the duct. Ultimately, the overall effect actually deteriorates the performance. The number of circumferential grids has a relatively small impact. As the number of flow grids increases, the aerodynamic characteristics of the entire fusion configuration significantly improves, due to its favorable induction of airflow at the lip and tail of the duct, as well as blocking the dissipation of blade-tip vortices. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

19 pages, 2822 KiB  
Article
Aero-Structural Design Optimization of a Transonic Fan Rotor Using an Adaptive POD-Based Hybrid Surrogate Model
by Jiaqi Luo, Zhen Fu and Jiaxing Li
Aerospace 2025, 12(6), 504; https://doi.org/10.3390/aerospace12060504 - 2 Jun 2025
Viewed by 389
Abstract
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is [...] Read more.
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is optimized through blade sweeping controlled by Gaussian radial basis functions. Calculations of aerodynamic and structural performance are achieved through computational fluid dynamics and computational structural mechanics. With a number of performance snapshots, singular value decomposition is employed to extract the basis modes, which are then used as the kernel functions in training the POD-based hybrid model. The inverse multi-quadratic radial basis function is adopted to construct the response surfaces for the coefficients of kernel functions. Aerodynamic design optimization is first investigated to preliminarily explore the impact of blade sweeping. In the aero-structural optimization, the aerodynamic performance, and von Mises stress are considered equally important and incorporated into one single objective function with different weight coefficients. The results are given and compared in detail, demonstrating that the average stress is dependent on the aerodynamic loading, and the configuration with forward sweeping on inner spans and backward sweeping on outer spans is the most effective for increasing the adiabatic efficiency while decreasing the average stress when the total pressure ratio is constrained. Through this study, the optimization framework is validated and a practical configuration for reducing the stress in a transonic fan rotor is provided. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 9694 KiB  
Article
Analysis of Performance and Noise on an Asymmetric Double-Suction Fan with Non-Uniformity Inlet Conditions
by Yougen Huang, Bin Li, Haohui Chen, Weigang Yang, Qianhao Xiao and Jun Wang
Machines 2025, 13(6), 463; https://doi.org/10.3390/machines13060463 - 27 May 2025
Viewed by 413
Abstract
Asymmetric double-suction centrifugal fans are commonly employed in home kitchens to remove cooking pollutants, and their performance is critical to maintaining a healthy indoor environment. However, inlet condition variations significantly influence the aerodynamic efficiency and noise levels. This study utilizes a combination of [...] Read more.
Asymmetric double-suction centrifugal fans are commonly employed in home kitchens to remove cooking pollutants, and their performance is critical to maintaining a healthy indoor environment. However, inlet condition variations significantly influence the aerodynamic efficiency and noise levels. This study utilizes a combination of performance testing and a large eddy simulation to analyze the impact of different inlet conditions on the performance curve, impeller outlet pressure pulsation, unsteady flow structures, and sound quality of an asymmetric double-suction centrifugal fan. A non-uniform air distribution at the inlet is proposed to enhance the fan’s aerodynamic and noise characteristics. The findings reveal that when the inlet area is reduced to less than 70% of its fully open state, the aerodynamic performance declines with decreasing intake area. The amplitude of the superimposed blade-passing frequency is minimized when only the left inlet is open; the pressure coefficient’s fluctuation amplitude in the time domain reaches 0.4, with sharpness peaking at 3.1. In the optimized design, the maximum deviation in total pressure efficiency is limited to 1.96%, with loudness reduced by four sones and improved sharpness and roughness. These results provide valuable insights into the design and noise reduction of asymmetric double-suction squirrel-cage fans. Full article
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Research on an Intelligent Design Method for the Geometric Structure of Three-Layer Hollow Fan Blades
by Jialin Lei, Jiale Chao, Chuipin Kong and Xionghui Zhou
Aerospace 2025, 12(6), 469; https://doi.org/10.3390/aerospace12060469 - 26 May 2025
Viewed by 371
Abstract
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules [...] Read more.
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules and process constraints, an intelligent design method for the geometric structure of three-layer hollow blades is proposed: A new cross-section curve design method based on a non-equidistant offset is presented to enable the rapid design of wall plate structure. An innovative parametric design method for the corrugation structure in cross-sections driven by process constraints such as diffusion bonding angle thresholds is put forward. The spanwise rib smoothing optimization is realized based on the minimum energy method with the corrugation angle change term. The cross-section densification design is carried out to improve the accuracy of wireframe structure and achieve the rapid solid modeling of hollow blades. Finally, the proposed methods are seamlessly integrated into the NX software (version 12), and a three-layer hollow fan blade intelligent design system is developed, which enables the automated design and modeling of the complex geometric structure of the hollow blade under an aerodynamic shape and a large number of design and process constraints. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 5975 KiB  
Article
Optimization Design of Multi-Blade Centrifugal Fan Based on Variable Weight PSO-BP Prediction Model and Multi-Objective Beluga Optimization Algorithm
by Wenyang Jin, Jiaxuan Wang, Junyu Li, Ren Xu, Ming Zhou and Qibai Huang
Appl. Sci. 2025, 15(11), 5950; https://doi.org/10.3390/app15115950 - 25 May 2025
Viewed by 439
Abstract
Multi-blade centrifugal fans are the main workhorse of automotive air conditioners, and the performance of these fans affects riding comfort. This article proposes a prediction model and a multi-objective optimization algorithm and applies them to the optimization design of a multi-blade centrifugal fan. [...] Read more.
Multi-blade centrifugal fans are the main workhorse of automotive air conditioners, and the performance of these fans affects riding comfort. This article proposes a prediction model and a multi-objective optimization algorithm and applies them to the optimization design of a multi-blade centrifugal fan. A prediction model between the design variables and optimization objectives, named wPSO-BP, is proposed, and the model is more effective than the BP prediction model in predicting fan performance. A multi-objective optimization algorithm, named NSGA-III-LBWO, is proposed and applied to the optimization design of the fan along with the wPSO-BP prediction model. The results indicate that the aerodynamics and noise performance of the optimized fan were improved, which provides a reference for the optimized design of these types of fans. Full article
Show Figures

Figure 1

27 pages, 8377 KiB  
Article
An Improved Multi-Objective Grey Wolf Optimizer for Aerodynamic Optimization of Axial Cooling Fans
by Yanzhao Gong, Richard Amankwa Adjei, Guocheng Tao, Yitao Zeng and Chengwei Fan
Appl. Sci. 2025, 15(9), 5197; https://doi.org/10.3390/app15095197 - 7 May 2025
Viewed by 495
Abstract
This paper introduces an improved multi-objective grey wolf optimizer (IMOGWO) and demonstrates its application to the aerodynamic optimization of an axial cooling fan. Building upon the traditional multi-objective grey wolf optimizer (MOGWO), several improvement strategies were adopted to enhance its performance. Firstly, the [...] Read more.
This paper introduces an improved multi-objective grey wolf optimizer (IMOGWO) and demonstrates its application to the aerodynamic optimization of an axial cooling fan. Building upon the traditional multi-objective grey wolf optimizer (MOGWO), several improvement strategies were adopted to enhance its performance. Firstly, the IMOGWO started population initialization based on the Bloch coordinates of qubits to ensure a high-quality initial population. Additionally, it employed a nonlinear convergence factor to facilitate global exploration and integrated the inspiration of Manta Ray Foraging to enhance the information exchange between populations. Finally, associative learning was leveraged for archive updating, allowing for perturbative mutation of solutions in crowded regions of the archive to increase solution diversity and improve the algorithm’s search capability. The proposed IMOGWO was applied to five multi-objective benchmark functions, comprising three two-objective and two three-objective problems, and experimental results were compared with three well-known multi-objective algorithms: the non-dominated sorting genetic algorithm II (NSGA II), MOGWO, and the multi-objective multi-verse optimizer (MOMVO). It is demonstrated that the proposed algorithm had advantages in convergence accuracy and diversity of solutions, which were quantified by the performance metrics (generational distance (GD), inverted generational distance (IGD), Spacing (SP), and Hypervolume (HV)). Furthermore, a multi-objective optimization process coupled with the IMOGWO algorithm and Computational Fluid Dynamics (CFD) was proposed. By optimizing the design parameters of an axial cooling fan, a set of non-dominated solutions was obtained within limited iteration steps. Consequently, the IMOGWO also presented an effective and practical approach for addressing multi-objective optimization challenges with respect to engineering problems. Full article
Show Figures

Figure 1

18 pages, 9785 KiB  
Article
Optimization Design of Centrifugal Fan Blades Based on Bézier Curve Method
by Jiaju Wang, Kunfeng Liang, Tao He, Haijiang He, Dayuan Zheng, Min Li, Dewu Gong and Lihua Jiang
Appl. Sci. 2025, 15(9), 5052; https://doi.org/10.3390/app15095052 - 1 May 2025
Viewed by 733
Abstract
In order to improve the aerodynamic performance of the voluteless centrifugal fan, a multi-objective optimization design system was established by combining parametric modeling, experimental design, surrogate models, and optimization algorithms, with the static pressure and static pressure efficiency of the fan as the [...] Read more.
In order to improve the aerodynamic performance of the voluteless centrifugal fan, a multi-objective optimization design system was established by combining parametric modeling, experimental design, surrogate models, and optimization algorithms, with the static pressure and static pressure efficiency of the fan as the optimization objectives. The design parameters of the blade profile were obtained by fitting the blade profile with a Bézier curve. A mapping relationship between design parameters and optimization objectives was established by combining numerical simulation with a radial basis function neural network, and a genetic algorithm was used to optimize the blade profile. The results indicated a highly significant correlation between design parameters and optimization objectives, with a prediction error of no more than 1% for the surrogate model. The determination coefficients for static pressure and static pressure efficiency were 0.98 and 0.96, respectively. After optimization, the static pressure of the fan increased by 12.7 Pa at the design operating point, and the static pressure efficiency increased by 3.2%. The separation vortex decreased near the trailing edge of the blade suction surface, and the airflow impact at the leading edge of the blade decreased. The entropy production in the flow channel decreased, and the overall flow state of the fluid was improved. Full article
Show Figures

Figure 1

17 pages, 6422 KiB  
Article
Insight into the Impact of Blade Perforation on the Aerodynamics and Acoustics of a Two-Stage Variable-Pitch Axial Fan
by Chen Qiao, Xuemin Ye, Yunhao Wu and Chunxi Li
Energies 2025, 18(8), 1966; https://doi.org/10.3390/en18081966 - 11 Apr 2025
Viewed by 422
Abstract
For a two-stage variable-pitch axial fan, a perforation design in first-stage rotor blades was proposed to improve aerodynamic performance and reduce acoustic noise. Utilizing steady-state simulations in Fluent, the internal flow characteristics of the fan before and after perforation were studied, and the [...] Read more.
For a two-stage variable-pitch axial fan, a perforation design in first-stage rotor blades was proposed to improve aerodynamic performance and reduce acoustic noise. Utilizing steady-state simulations in Fluent, the internal flow characteristics of the fan before and after perforation were studied, and the changes in noise and vortex structure were examined by the large eddy simulation. Additionally, the perforation diameter with better performance was applied to the second-stage rotor blades and both first- and second-stage rotor blades, and the effects of perforation on blades of different stages were compared. The results show that an appropriate perforation diameter can improve the performance of the fan. Considering the changes in total pressure rise and efficiency, d = 6 mm is the preferable choice. Proper perforation diameter has a significant effect on noise suppression, and the noise-reduction effect is more pronounced in the high-frequency range. Among the models, d = 10 mm shows the best noise-reduction effect. At this perforation diameter, the vortex at the trailing edge of the rotor blades forms a regular ring-like vortex chain, resulting in lower noise levels. Perforation in the first-stage rotor blade can enhance the fan’s performance, while perforation in the second-stage rotor blades leads to a decrease in performance. Additionally, perforation can effectively reduce the noise at each stage. Considering both performance and noise variations, the preferable perforation scheme is simultaneous perforating in the first- and second-stage rotor blades with a perforation diameter of 10 mm. Full article
Show Figures

Figure 1

18 pages, 15002 KiB  
Article
Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas
by Lev Levin, Mikhail Semin, Stanislav Maltsev, Roman Luzin and Andrey Sukhanov
Computation 2025, 13(4), 85; https://doi.org/10.3390/computation13040085 - 24 Mar 2025
Viewed by 388
Abstract
This paper addresses the numerical simulation of unsteady, non-isothermal ventilation in a dead-end mine working of a potash mine excavated using a borer miner. During its operations, airflow can become unsteady due to the variable operating modes of the borer miner, the switching [...] Read more.
This paper addresses the numerical simulation of unsteady, non-isothermal ventilation in a dead-end mine working of a potash mine excavated using a borer miner. During its operations, airflow can become unsteady due to the variable operating modes of the borer miner, the switching on and off of its motor cooling fans, and the movement of a shuttle car transporting ore. While steady ventilation in a dead-end working with a borer miner has been previously studied, the specific features of air microclimate parameter distribution in more complex and realistic unsteady scenarios remain unexplored. Our experimental studies reveal that over time, air velocity and, particularly, air temperature experience significant fluctuations. In this study, we develop and parameterize a mathematical model and perform a series of numerical simulations of unsteady heat and mass transfer in a dead-end working. These simulations account for the switching on and off of the borer miner’s fans and the movement of the shuttle car. The numerical model is calibrated using data from our experiments conducted in a potash mine. The analysis of the first factor is carried out by examining two extreme scenarios under steady-state ventilation conditions, while the second factor is analyzed within a fully unsteady framework using a dynamic mesh approach in the ANSYS Fluent 2021 R2. The numerical results demonstrate that the borer miner’s operating mode notably impacts the velocity and temperature fields, with a twofold decrease in maximum velocity near the cabin after the shuttle car departed and a temperature difference of about 1–1.5 °C between extreme scenarios in the case of forcing ventilation. The unsteady simulations using the dynamic mesh approach revealed that temperature variations were primarily caused by the borer miner’s cooling system, while the moving shuttle car generated short-term aerodynamic oscillations. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

21 pages, 8873 KiB  
Article
Research on the Aerodynamic–Propulsion Coupling Characteristics of a Distributed Propulsion System
by Xiaojun Yang, Tao Liu and Wei Jia
Appl. Sci. 2025, 15(7), 3536; https://doi.org/10.3390/app15073536 - 24 Mar 2025
Viewed by 419
Abstract
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic [...] Read more.
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic performance of the ducted fan. To investigate the influence of the internal and external flow interaction on the aerodynamic–propulsion coupling characteristics of the distributed propulsion system, an over-wing symmetric configuration with five distributed ducted fans was constructed, and numerical simulations were performed using a method based on the body force model. Results show that as the flight Mach number increases, the lift obtained by the wing increases, while the stall angle of attack decreases, and the stall angle of attack at a Mach number of 0.5 is reduced by 15° compared with a Mach number of 0.2. At large angles of attack, the edge fans have the strongest ability to resist airflow separation, while the middle fan has the weakest ability to resist airflow separation, and its fan performance index drops the fastest. When the Mach number is 0.4, the mass flow rate and thrust of the middle fan are reduced by 16% and 28%, respectively, compared with those when the Mach number is 0.2. The higher the flight Mach number, the larger the intake distortion degree of the ducted fans. The middle fan is most affected by total pressure distortion and least affected by swirl distortion, whereas the edge fans are least affected by total pressure distortion and most affected by swirl distortion. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 18271 KiB  
Article
Active Flow Control Technology Based on Simple Droop Devices and a Co-Flow Jet for Lift Enhancement
by Jin Jiao, Cheng Chen, Bo Wang, Pei Ying, Qiong Wei and Shengyang Nie
Aerospace 2025, 12(3), 198; https://doi.org/10.3390/aerospace12030198 - 28 Feb 2025
Viewed by 895
Abstract
The missions of modern aircraft require multiple abilities, such as highly efficient taking-off and landing, fast arrival, and long-endurance hovering. It is difficult to achieve all technical objectives using traditional aircraft design technology. The active flow control technology using the concept of a [...] Read more.
The missions of modern aircraft require multiple abilities, such as highly efficient taking-off and landing, fast arrival, and long-endurance hovering. It is difficult to achieve all technical objectives using traditional aircraft design technology. The active flow control technology using the concept of a co-flow jet (CFJ) is a flow control method without a mass source that does not require air from the engine. It has strong flow control ability in low-speed flow, can greatly improve the stall angle of the aircraft, and can obtain large lift enhancement. At transonic conditions, it can lead to a larger lift–drag ratio with a small expense. CFJ technology has great application potential for aircraft due to its flexible control strategy and remarkable control effect. In this paper, the concept of a combination of CFJ and variable camber technology is proposed which realizes the change of airfoil camber to meet different task requirements with the movable droop head. By using the built-in ducted fan, air is blown and sucked in the jet channel so as to realize CFJ flow control. In a state of high-speed flight, complete geometric restoration is achieved by closing the channel and retracting the droop head. In this paper, the design and aerodynamic analysis of a CFJ device with variable camber based on a supercritical airfoil with small camber and a small leading-edge radius are carried out using the computational fluid dynamics (CFD) method. Comparative studies are conducted for different schemes on the taking off and landing performances, and discussions are had on core technical parameters such as power consumption. The results indicate that by utilizing the CFJ technology with more than 10 degrees of droop device, the maximum lift coefficient of a supercritical airfoil with a small camber and leading-edge radius, which is suitable for transonic flight, can be increased to a value larger than 4.0. Full article
Show Figures

Figure 1

17 pages, 2442 KiB  
Article
On the Aerodynamic Performance of a Blended-Wing-Body, Low-Mach Number Unmanned Aerial Vehicle
by Nikolaos Lampropoulos, Alexandros Vouros, Ioannis Templalexis and Theodoros Lekas
Fluids 2025, 10(3), 54; https://doi.org/10.3390/fluids10030054 - 20 Feb 2025
Viewed by 1226
Abstract
A study on aerodynamic design studies of a blended wing–body (BWB) unmanned aerial vehicle (UAV) operating at low Mach numbers is presented. First, a parametric investigation based on analytical equations is carried out to identify the range of the necessary wetted area for [...] Read more.
A study on aerodynamic design studies of a blended wing–body (BWB) unmanned aerial vehicle (UAV) operating at low Mach numbers is presented. First, a parametric investigation based on analytical equations is carried out to identify the range of the necessary wetted area for the UAV to maximize endurance at a Mach number close to 0.1. A base-of-reference configuration is designed, and its aerodynamic performance is evaluated by utilizing a panel method in Xflr5. An optimization algorithm is then incorporated to trim the UAV and produce the ‘clean’ configuration. Computational fluid dynamics (CFD) simulations are performed within the OpenFoam environment to produce first the updated drag polars, and then, to analyze the integration of the nacelle and the pair of electric ducted fans (EDFs) used for the propulsion system. In particular, when examining the integration of the nacelle with a spinning electric ducted fan (EDF) standing as the propulsion system of the vehicle, a rotating, sliding mesh computational approach is adopted. Results indicate that the clean configuration is characterized by strong longitudinal stability so that the UAV has the potential to fly trimmed at very low speeds. Mounting EDFs on the back of the fuselage is conducive to higher loading with minimal drag penalty. An increased lift-to-drag ratio is achieved. Reduced wake mixing due to the EDF’s jet flow is observed. The spanwise flow that is conducive to pitch brake and loss of stability is also weak, as the suction produced by the EDF diverts the flow inboard. Full article
Show Figures

Figure 1

25 pages, 4799 KiB  
Article
Optimized Structural Design of a Reciprocating Wing for the Reciprocating Airfoil (RA)-Driven Vertical Take-Off and Landing (VTOL) Aircraft
by Johnson Imumbhon Okoduwa, Osezua Obehi Ibhadode and Yiding Cao
Actuators 2025, 14(3), 104; https://doi.org/10.3390/act14030104 - 20 Feb 2025
Viewed by 1120
Abstract
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, [...] Read more.
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, including susceptibility to aerodynamic inefficiencies and mechanical issues. Additionally, achieving a seamless transition from VTOL to fixed-wing flight mode remains a significant challenge for hybrid UAVs. A novel approach is the reciprocating airfoil (RA) or reciprocating wing (RW) VTOL aircraft, which employs a fixed-wing configuration driven by a reciprocating mechanism to generate lift. The RA wing is uniquely designed to mimic a fixed-wing while leveraging its reciprocating motion for efficient lift production and a smooth transition between VTOL and forward flight. Despite its advantages, the RA wing endures substantial stress due to the high inertial forces involved in its operation. This study presents an optimized structural design of the RA wing through wing topology optimization and finite element analysis (FEA) to enhance its load-bearing capacity and stress performance. A comparative analysis with existing RA wing configurations at maximum operating velocities highlights significant improvements in the safety margin, failure criteria, and overall stress distribution. The key results of this study show an 80.4% reduction in deformation, a 43.8% reduction in stress, and a 78% improvement in safety margin. The results underscore the RA wing’s potential as an effective and structurally stable lift mechanism for RA-driven VTOL aircraft, demonstrating its capability to enhance the performance and reliability of next-generation UAVs. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation—Second Edition)
Show Figures

Figure 1

26 pages, 11358 KiB  
Article
Computational Design of an Energy-Efficient Small Axial-Flow Fan Using Staggered Blades with Winglets
by Mustafa Tutar and Janset Betul Cam
Int. J. Turbomach. Propuls. Power 2025, 10(1), 1; https://doi.org/10.3390/ijtpp10010001 - 9 Jan 2025
Viewed by 2261
Abstract
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. [...] Read more.
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. A stepwise solution, in which a proper stagger angle adjustment of a specifically generated blade profile is followed by appending a winglet at the tip of the blade with consideration of different geometrical parameters, is proposed to improve the performance characteristics of the fan. The initial model comparison analysis demonstrates that a three-dimensional, Reynolds-averaged Navier–Stokes (RANS) equation-based renormalization group (RNG) kε turbulence modeling approach coupled with the multiple reference frame (MRF) technique which adapts multi-block topology generation meshing method successfully resolves the rotating flow around the fan. The results suggest that the use of a proper stagger angle with the winglet considerably increases the fan performance and the fan attains the best total efficiency with an additional stagger angle of +10° and a winglet, which has a curvature radius of 6.77 mm and a twist angle of −7° for the investigated dimensioning range. The present study also underlines the effectiveness of passive flow control mechanisms of the stagger angle and winglets for energy-efficient axial-flow fans. Full article
Show Figures

Figure 1

Back to TopTop