Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = fagopyrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2390 KiB  
Review
Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum
by Ivan Kreft, Mateja Germ, Aleksandra Golob, Blanka Vombergar, Alena Vollmannová, Samo Kreft and Zlata Luthar
Molecules 2022, 27(20), 7101; https://doi.org/10.3390/molecules27207101 - 20 Oct 2022
Cited by 12 | Viewed by 3691
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of [...] Read more.
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson’s disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Figure 1

11 pages, 752 KiB  
Review
Molecular Shield for Protection of Buckwheat Plants from UV-B Radiation
by Ivan Kreft, Alena Vollmannová, Judita Lidiková, Janette Musilová, Mateja Germ, Aleksandra Golob, Blanka Vombergar, Darja Kocjan Ačko and Zlata Luthar
Molecules 2022, 27(17), 5577; https://doi.org/10.3390/molecules27175577 - 30 Aug 2022
Cited by 15 | Viewed by 3381
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances [...] Read more.
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances are synthesized in plants. The synthesis of UV-B defense metabolites is genetically conditioned, and their quantity depends on the intensity of the ultraviolet radiation to which the plants and plant parts are exposed. These substances include flavonoids, and especially rutin. Other substances with aromatic rings of six carbon atoms have a similar function, including fagopyrin, the metabolite specific for buckwheat. Defensive substances are formed in the leaves and flowers of common and Tartary buckwheat, up to about the same concentration in both species. In comparison, the concentration of rutin in the grain of Tartary buckwheat is much higher than in common buckwheat. Flavonoids also have other functions in plants so that they can protect them from pests and diseases. After crushing the grains, rutin is exposed to contact with the molecules of rutin-degrading enzymes. In an environment with the necessary humidity, rutin is turned into bitter quercetin under the action of rutin-degrading enzymes. This bitterness has a deterrent effect against pests. Moreover, flavonoids have important functions in human nutrition to prevent several chronic diseases, including obesity, cardiovascular diseases, gallstone formation, and hypertension. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources II)
Show Figures

Figure 1

19 pages, 6296 KiB  
Article
Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum
by Sebastian Szymański and Irena Majerz
Molecules 2022, 27(12), 3689; https://doi.org/10.3390/molecules27123689 - 8 Jun 2022
Cited by 8 | Viewed by 2059
Abstract
Compounds characterized by a double-anthrone moiety are found in many plant species. One of them are fagopyrins—naturally occurring photosensitizers of Fagopyrum. The photosensitizing properties of fagopyrins are related to the selective absorption of light, which is a direct result of their spatial [...] Read more.
Compounds characterized by a double-anthrone moiety are found in many plant species. One of them are fagopyrins—naturally occurring photosensitizers of Fagopyrum. The photosensitizing properties of fagopyrins are related to the selective absorption of light, which is a direct result of their spatial and electronic structure and many intramolecular interactions. The nature of the interactions varies in different parts of the molecule. The aim of this study is to determine the structure and intramolecular interactions of fagopyrin molecules. For this purpose, in silico calculations were used to perform geometry optimization in the gas phase. QTAIM and NCI analysis suggest the formation of the possible conformers in the fagopyrin molecules. The presence of a strong OHO hydrogen bond was shown in the anthrone moiety of fagopyrin. The minimum energy difference for selected conformers of fagopyrins was 1.1 kcal∙mol−1, which suggested that the fagopyrin structure may exist in a different conformation in plant material. Similar interactions were observed in previously studied structures of hypericin and sennidin; however, only fagopyrin showed the possibility of brake the strong OHO hydrogen bond in favor of forming a new OHN hydrogen bond. Full article
(This article belongs to the Collection Hydrogen Bonds)
Show Figures

Figure 1

18 pages, 376 KiB  
Review
Buckwheat in Tissue Culture Research: Current Status and Future Perspectives
by Alicja Tomasiak, Meiliang Zhou and Alexander Betekhtin
Int. J. Mol. Sci. 2022, 23(4), 2298; https://doi.org/10.3390/ijms23042298 - 18 Feb 2022
Cited by 18 | Viewed by 4354
Abstract
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, [...] Read more.
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing. Full article
(This article belongs to the Collection Advances in Plant Cell and Organism Development)
13 pages, 4250 KiB  
Article
The Effects of Photosensitizing Dyes Fagopyrin and Hypericin on Planktonic Growth and Multicellular Life in Budding Yeast
by Oksana Sytar, Konstantia Kotta, Dimitrios Valasiadis, Anatoliy Kosyan, Marian Brestic, Venetia Koidou, Eleftheria Papadopoulou, Maria Kroustalaki, Christina Emmanouilidou, Alexandros Pashalidis, Ilias Avdikos and Zoe Hilioti
Molecules 2021, 26(16), 4708; https://doi.org/10.3390/molecules26164708 - 4 Aug 2021
Cited by 9 | Viewed by 3634
Abstract
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of [...] Read more.
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources (2020, 2021))
Show Figures

Figure 1

13 pages, 2514 KiB  
Article
Antibacterial Photodynamic Inactivation of Fagopyrin F from Tartary Buckwheat (Fagopyrum tataricum) Flower against Streptococcus mutans and Its Biofilm
by Jaecheol Kim, Suna Kim, Kiuk Lee, Ryun Hee Kim and Keum Taek Hwang
Int. J. Mol. Sci. 2021, 22(12), 6205; https://doi.org/10.3390/ijms22126205 - 8 Jun 2021
Cited by 14 | Viewed by 3027
Abstract
The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing [...] Read more.
The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study. Full article
(This article belongs to the Special Issue Materials for Photobiology)
Show Figures

Graphical abstract

10 pages, 1783 KiB  
Article
Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis
by Anatolij Kosyan and Oksana Sytar
Molecules 2021, 26(7), 2013; https://doi.org/10.3390/molecules26072013 - 1 Apr 2021
Cited by 9 | Viewed by 2911
Abstract
The present work aims at studying the possible biosynthesis of fagopyrin in buckwheat plants with an attempt to address the existing gaps. The developed method of differential spectrophotometry can be used for identification of naphthodianthrones fagopyrins. It was found that in the vegetative [...] Read more.
The present work aims at studying the possible biosynthesis of fagopyrin in buckwheat plants with an attempt to address the existing gaps. The developed method of differential spectrophotometry can be used for identification of naphthodianthrones fagopyrins. It was found that in the vegetative mass of buckwheat plants, fagopyrin precursor-2-(piperidine-2-yl)-emodindianthron could be present. As fagopyrin can be produced by light effect, the temperature factor may influence the formation of protofagopyrin in vitro. An optimum temperature range was estimated for protofagopyrin formation. A possible fagopyrin biosynthesis under in vitro conditions was suggested. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources (2020, 2021))
Show Figures

Figure 1

13 pages, 902 KiB  
Review
Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects
by Zlata Luthar, Mateja Germ, Matevž Likar, Aleksandra Golob, Katarina Vogel-Mikuš, Paula Pongrac, Anita Kušar, Igor Pravst and Ivan Kreft
Plants 2020, 9(12), 1638; https://doi.org/10.3390/plants9121638 - 24 Nov 2020
Cited by 53 | Viewed by 5911
Abstract
Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common [...] Read more.
Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common and Tartary buckwheat is degraded to quercetin by rutin-degrading enzymes (e.g., rutinosidase). From Tartary buckwheat varieties with low rutinosidase activity it is possible to prepare foods with high levels of rutin, with the preserved initial levels in the grain. The quercetin from rutin degradation in Tartary buckwheat grain is responsible in part for inhibition of α-glucosidase in the intestine, which helps to maintain normal glucose levels in the blood. Rutin and emodin have the potential for antiviral effects. Grain embryos are rich in rutin, so breeding buckwheat with the aim of producing larger embryos may be a promising strategy to increase the levels of rutin in common and Tartary buckwheat grain, and hence to improve its nutritional value. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

10 pages, 805 KiB  
Article
Antioxidant and Rutin Content Analysis of Leaves of the Common Buckwheat (Fagopyrum esculentum Moench) Grown in the United Kingdom: A Case Study
by Solomon Habtemariam
Antioxidants 2019, 8(6), 160; https://doi.org/10.3390/antiox8060160 - 3 Jun 2019
Cited by 27 | Viewed by 6261
Abstract
The common buckwheat, Fagopyrum esculentum Moench (Polygonaceae) is a gluten-free pseudocereal that has been gaining in popularity in recent years as a low-calorie and nutrient-rich healthy food option. Buckwheat farming is common in Eastern European countries and the Far East, while in the [...] Read more.
The common buckwheat, Fagopyrum esculentum Moench (Polygonaceae) is a gluten-free pseudocereal that has been gaining in popularity in recent years as a low-calorie and nutrient-rich healthy food option. Buckwheat farming is common in Eastern European countries and the Far East, while in the UK and other Western European countries, the plant has limited medicinal or food applications. The vegetative parts, particularly the leaves and flowers, are among the best-known sources of the bioactive compound, rutin. Hence, functional foods originated from buckwheat leaves are common, although the scope of such applications is limited by phototoxicity associated with the fagopyrin composition. Here, the antioxidant and rutin composition of the leaves of the plant grown in the UK are assessed. The methanol extract of the leaves displayed a potent DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging effect along with reducing power. Quantitative High Performance Liquid Chromatography (HPLC)-based analysis showed the rutin content of the leaves as 3417 mg/100g (on dry weight (DW) basis). The identity of rutin was also confirmed by isolation and structural elucidation based on spectroscopic studies. From the chemical content analysis, including fagopyrin levels and the antioxidant assays, UK-grown buckwheat has potential as a commercial source of rutin or as a functional food. Full article
(This article belongs to the Special Issue Modulation of Reactive Oxygen Species in Health and Disease)
Show Figures

Graphical abstract

Back to TopTop