Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Quantitative Determination of 2-(piperidine-2-yl)-emodindianthron, Protofagopyrin and Fagopyrin by Differential Spectrophotometry
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sytar, O. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J. King Saud Univ. Sci. 2015, 27, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Sytar, O.; Kosyan, A.; Taran, N.; Smetanska, I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanz. 2014, 66, 165–169. [Google Scholar] [CrossRef]
- Singh, M.; Malhotra, N.; Sharma, K. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop Evol. 2020, 67, 1639–1658. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.S. The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity. Curr. Genom. 2016, 17, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; He, M.; Fan, Y.; Zhao, H.; Gao, B.; Yang, K.; Li, F.; Tang, Y.; Gao, Q.; Lin, T.; et al. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol. 2021, 22, 23. [Google Scholar] [CrossRef]
- Huda, N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef]
- Brockmann, H.; Lackner, H. Zur Konstitution des Fagopyrins. Tetrahedron Lett. 1979, 20, 1575–1578. [Google Scholar] [CrossRef]
- Frohne, D.; Pfander, H.J. Poisonous Plants, a Handbook for Pharmacists, Doctors, Toxicologists, Biologists and Veterinarians, 2nd ed.; Timber Press: Portland, OR, USA, 2005; p. 450. [Google Scholar]
- Dai, T.; Huang, Y.-Y.; Hamblin, M.R. Photodynamic therapy for localized infections—State of the art. Photodiagn. Photodyn. Ther. 2009, 6, 170–188. [Google Scholar] [CrossRef] [Green Version]
- Sytar, O.; Švedienė, J.; Ložienė, K.; Paškevičius, A.; Kosyan, A.; Taran, N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol. 2016, 54, 3121–3125. [Google Scholar] [CrossRef] [Green Version]
- Zambounis, A.; Sytar, O.; Valasiadis, D.; Hilioti, Z. Effect of photosensitisers on growth and morphology of Phytophthora citrophthora coupled with leaf bioassays in pear seedlings. Plant Prot. Sci. 2020, 56, 74–82. [Google Scholar] [CrossRef]
- Tavčar Benković, E.; Kreft, S. Fagopyrins and protofagopyrins: Detection, analysis, and potential phototoxicity in buckwheat. J. Agric. Food Chem. 2015, 63, 5715–5724. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, K.T. Fagopyrins in different parts of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) during growth. J. Food Compos. Anal. 2020, 86, 103354. [Google Scholar] [CrossRef]
- Tavčar Benković, E.; Žigon, D.; Friedrich, M.; Plavec, J.; Kreft, S. Isolation, analysis and structures of phototoxic fagopyrins from buckwheat. Food Chem. 2014, 143, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Hagels, H.; Wagenbreth, D.; Schier, H. Phenolic compounds of buckwheat herb and influence of plant and agricultural factors (Fagopyrum esculentum Moench and Fagopyrum tataricum Gartner). Curr. Adv. Buckwheat Res. 1995, 115, 801–809. [Google Scholar]
- Ožbolt, L.; Kreft, S.; Kreft, I.; Germ, M.; Stibilj, V. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem. 2008, 110, 691–696. [Google Scholar] [CrossRef]
- Eguchi, K.; Anase, T.; Osuga, H. Development of a high-performance liquid chromatography method to determine the fagopyrin content of tartary buckwheat (Fagopyrum tartaricum Gaertn.) and common buckwheat (F. esculentum Moench). Plant Prod. Sci. 2009, 12, 475–480. [Google Scholar] [CrossRef]
- Christa, K.; Soral-Smietana, M. Buckwheat grains and buckwheat products: Nutritional and prophylactic value of their components—A review. Czech J. Food Sci. 2008, 26, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Sha, L.U.; Li, Y.-Q.; Li, B.-C.; Ma, M.-C. Research of fagopyrins isolation from buckwheat and analysis of the difference in content between species and varieties. Nat. Prod. Res. Dev. 2018, 49–56. [Google Scholar] [CrossRef]
- Hinneburg, I.; Neubert, R.H. Influence of extraction parameters on the phytochemical characteristics of extracts from buckwheat (Fagopyrum esculentum) herb. J. Agric. Food Chem. 2005, 53, 3–7. [Google Scholar] [CrossRef]
- Toleikytė, L.; Žvikas, V.; Jakštas, V. Isolation and analysis of naphthodianthrones in buckwheat (Fagopyrum esculentum) and St. John’s wort (Hypericum perforatum) plant extracts. In The 7th International Pharmaceutical Conference “Science and Practice 2016”, Dedicated to the 240th Anniversary of Prof. Johann Friedrich Wolfgang: Book of Abstracts: October 20–21, 2016, Kaunas, Lithuania/Faculty of Pharmacy of Lithuanian University of Health Sciences [et al.]; Lithuanian university of Health Sciences: Kaunas, Lithuania, 2016; pp. 45–46. [Google Scholar]
- Brown, S.D.; Barker, T.Q.; Larivee, R.A.; Monfre, S.L.; Wilk, H. Chemometrics: Fundamental review. Anal. Chem. 1988, 60, 252R–274R. [Google Scholar] [CrossRef]
- Hargis, L.G.; Howell, J.A. Ultraviolet and light absorption spectrometry. Anal. Chem. 1988, 60, 131R–146R. [Google Scholar] [CrossRef] [PubMed]
- Wender, S.H.; Gortner, R.A.; Inman, O.L. The isolation of photosensitizing agents from buckwheat. J. Am. Chem. Soc. 1943, 65, 1733–1735. [Google Scholar] [CrossRef]
- Milan, D.; Rojas, M.; Pavez, P.; Isaacs, M.; Diaz, C.P.; Santos, J.G. Influence of the ionic liquid on the rate and the mechanism of reaction of p-nitrophenyl acetate with secondary alicyclic amines. New J. Chem. 2013, 37, 3281. [Google Scholar] [CrossRef]
- Kubin, A.; Loew, H.G.; Burner, U.; Jessner, G.; Kolbabek, H.; Wierrani, F. How to make hypericin water-soluble. Pharmazie 2008, 63, 263–269. [Google Scholar] [PubMed]
- Huang, L.F.; Wang, Z.H.; Chen, S.L. Hypericin: Chemical synthesis and biosynthesis. Chin. J. Nat. Med. 2014, 12, 81–88. [Google Scholar] [CrossRef]
- Falk, H.; Abd-El-Wareth, A.O.; Tran, H.T.; Altmann, R. Synthesis and properties of hypericins substituted with acidic and basic residues: Hypericin tetrasulfonic acid—A water soluble hypericin derivative. Mon. Chem. 1998, 129, 309–318. [Google Scholar]
- Sytar, O.; Brestic, M.; Rai, M. Possible ways of fagopyrin biosynthesis and production in buckwheat plants. Fitoterapia 2013, 84, 72–79. [Google Scholar] [CrossRef]
- Monisha, B.A.; Kumar, N.; Tiku, A.B. Emodin and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 928, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir. Res. 2007, 74, 92–101. [Google Scholar] [CrossRef]
- Ebermann, R.; Alth, G.; Kreitner, M.; Kubin, A. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J. Photochem. Photobiol. B 1996, 36, 95–97. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Vu Dang, H.; Aboul-Enein, H.Y. Differential spectrophotometry in analytical chemistry. Crit. Rev. Anal. Chem. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Bais, H.P.; Vepachedu, R.; Lawrence, C.B.; Stermitz, F.R.; Vivanco, J.M. Molecularand biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J. Biolchem. 2003, 278, 32413–32422. [Google Scholar]
- Zobayed, S.M.A.; Afreen, F.; Goto, E.; Kozai, T. Plant–environment interactions:accumulation of hypericin in dark glands of Hypericum perforatum. Ann. Bot. 2006, 98, 793–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalska, K.; Fernandes, H.; Sikorski, M.; Jaskolski, M. Crystal structure ofhyp-1, a St.John’s wort protein implicated in the biosynthesis of hypericin. J. Struct. Biol. 2010, 169, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Bilia, A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci. 2010, 11, 562–594. [Google Scholar] [CrossRef] [Green Version]
- Kubin, A.; Wierrani, F.; Burner, U.; Alth, G.; Cronberger, W. Hypericin—The facts about a controversial agent. Curr. Pharm. Des. 2005, 11, 233–253. [Google Scholar] [CrossRef]
- Tavcar, E.; Stojilkovski, K.; Kreft, S. Fagopyrin and its derivatives inbuckwheat (Fagopyrum sp.). Planta Med. 2011, 77, 65. [Google Scholar] [CrossRef]
- Alali, F.; Tawaha, K.; Al-Eleimat, T. Determination of hypericin content in Hypericum triquetrifolium Turra (Hypericaceae) growing wild in Jordan. Nat. Prod. Res. 2004, 18, 147–151. [Google Scholar] [CrossRef]
Method | Plant Weight | Solvent for Extraction | Time and Conditions of Extraction | Supernatant Solvent | Wavelength | References |
---|---|---|---|---|---|---|
A spectrophotometric method | 80 mg | 80% tetrahydrofuran | 80% tetrahydrofuran in water at 65 °C for 30 min | methanol | 590 nm | [16] |
A spectrophotometric method | 5 g | 30% ethanol | freeze drying for 24 h at −30 °C | methanol | 590 nm | [20] |
A spectrophotometric method | - | 80% acetone | 10 min at 65 °C. | Solid-Phase extraction with column, methanol | 590 nm | [21] |
A spectrophotometric method | 105 mg | 90% acetone extract under temperature 55 °C | 1.5 h at 55 °C | 90% acetone | 590 nm | [19] |
Compound | Conditions of Determination by Differential Spectrophotometry | Content mg per g DW |
---|---|---|
2-(piperidine-2-yl)-emodindianthron | Extract with 90% aquatic acetone | 0.64 + 0.05 |
protofagopyrin | 80 °C temperature treatment, duration 20 min | 0.64 + 0.03 |
protofagopyrin | 60 °C temperature treatment, duration 60 min | 0.70 + 0.04 |
fagopyrin | LED lamp with a power of 10 watts, 10–15 min | 0.69 + 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosyan, A.; Sytar, O. Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis. Molecules 2021, 26, 2013. https://doi.org/10.3390/molecules26072013
Kosyan A, Sytar O. Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis. Molecules. 2021; 26(7):2013. https://doi.org/10.3390/molecules26072013
Chicago/Turabian StyleKosyan, Anatolij, and Oksana Sytar. 2021. "Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis" Molecules 26, no. 7: 2013. https://doi.org/10.3390/molecules26072013
APA StyleKosyan, A., & Sytar, O. (2021). Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis. Molecules, 26(7), 2013. https://doi.org/10.3390/molecules26072013