Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = fad diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2282 KiB  
Article
Comparison of LC-PUFAs Biosynthetic Characteristics in Male and Female Tilapia at Different Ontogenetic Stages
by Fang Chen, Liuling Gao, Junfeng Guan, Chao Xu, Deshou Wang, Yuanyou Li and Dizhi Xie
Life 2025, 15(8), 1167; https://doi.org/10.3390/life15081167 - 23 Jul 2025
Viewed by 254
Abstract
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil [...] Read more.
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil (rich in α-linolenic acid, ALA) and peanut oil (rich in linoleic acid, LA)—over 24 weeks, spanning four growth stages (I-IV, from fry to adult). The results revealed that during stages I to III, both diets produced similar final body weights. However, in stage IV, male tilapia fed the peanut oil diet exhibited significantly higher body weight compared to those fed perilla oil, whereas females showed no significant differences between diets. Throughout stages III and IV, males were consistently heavier than females. LC-PUFA levels in the liver and intestine varied across growth stages, with the lowest levels at stage II and the highest at stage III. Notably, male tilapia exhibited higher expression levels of fads2 and elovl5 compared to the females across stages II to IV. The hepatic and intestinal mRNA levels increased by up to 6.40-fold and 3.85-fold, respectively, indicating a greater LC-PUFA biosynthetic capacity in males. This study provides valuable insights into the biosynthesis of LC-PUFA in tilapia, highlighting the influence of growth stage, sex and dietary fatty acid composition on this process, and laying a foundation for further evaluating the functional significance of dietary lipid sources in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

25 pages, 3761 KiB  
Article
N-Acetylcysteine Attenuates Aβ-Mediated Oxidative Stress, Blood–Brain Barrier Leakage, and Renal Dysfunction in 5xFAD Mice
by Atcharaporn Ontawong, Geetika Nehra, Bryan J. Maloney, Chutima S. Vaddhanaphuti, Björn Bauer and Anika M. S. Hartz
Int. J. Mol. Sci. 2025, 26(9), 4352; https://doi.org/10.3390/ijms26094352 - 3 May 2025
Viewed by 1730
Abstract
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood–brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ [...] Read more.
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood–brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ levels, barrier leakage, renal function, and cognition in 5xFAD mice. Eight-week-old 5xFAD mice were fed a rodent diet supplemented with 600 mg/kgDiet NAC for 4 weeks; wild-type (WT) mice and control 5xFAD mice were fed a regular rodent diet. We detected elevated brain and renal 4-hydroxynonenal(4-HNE) levels, reduced creatinine clearance, and increased plasma S100β levels in untreated 5xFAD mice compared to WT controls. Untreated 5xFAD mice also had higher capillary leakage, reduced P-gp activity, and impaired cognition compared to WT. NAC treatment of 5xFAD mice reduced brain Aβ40 levels, normalized 4-HNE levels to control levels, improved creatinine clearance, decreased capillary leakage, and lowered S100β plasma levels. NAC improved cognitive performance in 5xFAD mice, as shown by Y-maze. Our findings indicate that Aβ-induced oxidative stress contributes to barrier dysfunction, renal impairment, and cognitive deficits in 5xFAD mice. Notably, NAC treatment mitigates these effects, suggesting its potential as an adjunct therapy for AD and other Aβ-related pathologies by reducing oxidative stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 740 KiB  
Opinion
Myths and Facts Regarding Low-Carbohydrate Diets
by Nina Teicholz, Steven M. Croft, Ignacio Cuaranta, Mark Cucuzzella, Mariela Glandt, Dina H. Griauzde, Karen Jerome-Zapadka, Tro Kalayjian, Kendrick Murphy, Mark Nelson, Catherine Shanahan, Jodi L. Nishida, Robert C. Oh, Naomi Parrella, Erin M. Saner, Shebani Sethi, Jeff S. Volek, Micalla Williden and Susan Wolver
Nutrients 2025, 17(6), 1047; https://doi.org/10.3390/nu17061047 - 17 Mar 2025
Cited by 1 | Viewed by 78705
Abstract
As the prevalence of chronic diseases persists at epidemic proportions, health practitioners face ongoing challenges in providing effective lifestyle treatments for their patients. Even for those patients on GLP-1 agonists, nutrition counseling remains a crucial strategy for managing these conditions over the long [...] Read more.
As the prevalence of chronic diseases persists at epidemic proportions, health practitioners face ongoing challenges in providing effective lifestyle treatments for their patients. Even for those patients on GLP-1 agonists, nutrition counseling remains a crucial strategy for managing these conditions over the long term. This paper aims to address the concerns of patients and practitioners who are interested in a low-carbohydrate or ketogenic diet, but who have concerns about its efficacy, safety, and long-term viability. The authors of this paper are practitioners who have used this approach and researchers engaged in its study. The paper reflects our opinion and is not meant to review low-carbohydrate diets systematically. In addressing common concerns, we hope to show that this approach has been well researched and can no longer be seen as a “fad diet” with adverse health effects such as impaired renal function or increased risk of heart disease. We also address persistent questions about patient adherence, affordability, and environmental sustainability. This paper reflects our perspective as clinicians and researchers engaged in the study and application of low-carbohydrate dietary interventions. While the paper is not a systematic review, all factual claims are substantiated with citations from the peer-reviewed literature and the most rigorous and recent science. To our knowledge, this paper is the first to address potential misconceptions about low-carbohydrate and ketogenic diets comprehensively. Full article
(This article belongs to the Special Issue Ketogenic Diet in Therapy and Rehabilitation)
Show Figures

Figure 1

15 pages, 6322 KiB  
Article
Gender Differences in Adenine Diet-Induced Kidney Toxicity: The Impact of 17β-Estradiol on Renal Inflammation and Fibrosis
by Sugyeong Ha, Minjung Son, Jeongwon Kim, Doyeon Kim, Mi-Jeong Kim, Jian Yoo, Byeong Moo Kim, Donghwan Kim, Hae Young Chung and Ki Wung Chung
Int. J. Mol. Sci. 2025, 26(3), 1358; https://doi.org/10.3390/ijms26031358 - 6 Feb 2025
Cited by 1 | Viewed by 1328
Abstract
Chronic kidney disease (CKD) involves ongoing impairment of kidney function and structural changes. Previous studies indicated that males have a substantially higher prevalence of CKD than those observed in females. Here, we compared the gender differences in CKD development by comparing age-matched male [...] Read more.
Chronic kidney disease (CKD) involves ongoing impairment of kidney function and structural changes. Previous studies indicated that males have a substantially higher prevalence of CKD than those observed in females. Here, we compared the gender differences in CKD development by comparing age-matched male and female mice subjected to a 0.25% adenine diet (AD) for two weeks. Male mice showed a significantly greater decrease in kidney function than female mice, as evidenced by the elevated blood urea nitrogen levels (M-AD: 160 ± 5 mg/dL, F-AD: 90 ± 4 mg/dL; p < 0.001). Furthermore, male mice kidneys exhibited pronounced tubule dilation and kidney damage, as detected by histological and biochemical methods. The extent of fibrosis was quantified using multiple biological methods, revealing a greater degree of fibrosis in male kidneys. We next indicated the inflammatory responses in the kidneys. Similar to the extent of fibrosis, AD-fed male mice showed significantly increased levels of pro-inflammatory markers, including cytokine expression and infiltration of immune cell, compared to female mice. Based on in vivo observations, the anti-inflammatory and anti-fibrotic effects of 17β-estradiol (E2) were further evaluated in vitro conditions. E2 pre-treatment significantly reduced lipopolysaccharide-induced inflammatory response through inhibition of the nuclear factor-kappa B (NF-κB) pathway in NRK52E renal epithelial cells. In NRK49F renal fibroblasts, E2 pre-treatment also reduced TGFβ-induced fibrotic responses. We further demonstrated that E2 markedly decreased fibrosis and inflammation in AD-fed mouse kidneys. Our observations revealed that male mice kidneys exhibited a heightened inflammatory and fibrotic response compared to female mice kidneys. Additionally, our findings suggest that the observed sex differences may be partially attributed to the potential anti-inflammatory and anti-fibrotic effects of E2. Full article
Show Figures

Figure 1

15 pages, 2091 KiB  
Article
Generation of Codon-Optimized Fad3 Gene Transgenic Bovine That Produce More n-3 Polyunsaturated Fatty Acids
by Guanghua Su, Zhuying Wei, Chunling Bai, Danyi Li, Xiaoyu Zhao, Xuefei Liu, Lishuang Song, Li Zhang, Guangpeng Li and Lei Yang
Animals 2025, 15(1), 93; https://doi.org/10.3390/ani15010093 - 3 Jan 2025
Cited by 1 | Viewed by 1064
Abstract
Polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2, n-6) and α-linolenic acid (18:3, n-3) are essential for the growth, development, and well-being of mammals. However, most mammals, including humans, cannot synthesize n-3 and n-6 PUFAs and these must be obtained through diet. [...] Read more.
Polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2, n-6) and α-linolenic acid (18:3, n-3) are essential for the growth, development, and well-being of mammals. However, most mammals, including humans, cannot synthesize n-3 and n-6 PUFAs and these must be obtained through diet. The beneficial effect of converting n-6 polyunsaturated fatty acids (n-6 PUFAs) into n-3 polyunsaturated fatty acids (n-3 PUFAs) has led to extensive research on the flax fatty acid desaturase 3 (Fad3) gene, which encodes fatty acid desaturase. Still, the plant-derived Fad3 gene is used much less in transgenic animals than the Fat-1 gene from Caenorhabditis elegans. To address this problem, we used somatic cell nuclear transfer (SCNT) technology to create codon-optimized Fad3 transgenic cattle. Gas chromatographic analysis showed that the n-3 PUFA content of transgenic cattle increased significantly, and the ratio of n-6 PUFAs to n-3 PUFAs decreased from 3.484 ± 0.46 to about 2.78 ± 0.14 (p < 0.05). In conclusion, Fad3 gene knock-in cattle are expected to improve the nutritional value of beef and can be used as an animal model to study the therapeutic effects of n-3 PUFAs in various diseases. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

13 pages, 6090 KiB  
Article
Mitigation of Atherosclerotic Vascular Damage and Cognitive Improvement Through Mesenchymal Stem Cells in an Alzheimer’s Disease Mouse Model
by Woong Jin Lee, Kyoung Joo Cho and Gyung Whan Kim
Int. J. Mol. Sci. 2024, 25(23), 13210; https://doi.org/10.3390/ijms252313210 - 9 Dec 2024
Cited by 2 | Viewed by 1466
Abstract
Alzheimer’s disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other cognitive disturbances. Patients with AD can be vulnerable to vascular damage, and damaged vessels can lead to cognitive impairment. Mesenchymal stem cell (MSC) treatment has shown potential in ameliorating [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other cognitive disturbances. Patients with AD can be vulnerable to vascular damage, and damaged vessels can lead to cognitive impairment. Mesenchymal stem cell (MSC) treatment has shown potential in ameliorating AD pathogenesis, but its effect on vascular function remains unclear. This study aimed to improve cognitive function by alleviating atherosclerosis-induced vessel damage using MSCs in mice with a genetic AD background. In this study, a 5xFAD mouse model of AD was used, and atherosclerotic vessel damage was induced by high-fat diets (HFDs). MSCs were injected into the tail vein along with mannitol in 5xFAD mice on an HFD. MSCs were detected in the brain, and vascular damage was improved following MSC treatment. Behavioral tests showed that MSCs enhanced cognitive function, as measured by the Y-maze and passive avoidance tests. Additionally, muscle strength measured by the rotarod test was also increased by MSCs in AD mice with vessel damage induced by HFDs. Overall, our results suggest that stem cells can alleviate vascular damage caused by metabolic diseases, including HFDs, and vascular disease in individuals carrying the AD gene. Consequently, this alleviates cognitive decline related to vascular dementia symptoms. Full article
Show Figures

Figure 1

16 pages, 1199 KiB  
Article
Development of Body Weight Management Among the Hungarian Population
by Cintia Szilágyi, Mihály Soós and Marietta Kiss
Healthcare 2024, 12(22), 2236; https://doi.org/10.3390/healthcare12222236 - 10 Nov 2024
Cited by 1 | Viewed by 1310
Abstract
Background/Objectives: Nowadays, body weight management has gained significant consumer attention due to the health megatrend. It plays a key role in preventing diseases, maintaining health, and creating a balanced diet, as well as in mental and physical health. Overweight and obesity are serious [...] Read more.
Background/Objectives: Nowadays, body weight management has gained significant consumer attention due to the health megatrend. It plays a key role in preventing diseases, maintaining health, and creating a balanced diet, as well as in mental and physical health. Overweight and obesity are serious problems that can result in various non-communicable diseases; thus, managing the body weight of those who are overweight or obese without pathological changes would help reduce the prevalence of these diseases. By reducing body weight, not only individual health expenses but also public health costs could be reduced. To do so, it is necessary to assess at what levels consumers perceive their own health status, as well as the extent to which they pay attention to body weight management. Our research aimed to contribute to the foundation of public intervention programs by exploring some characteristics of body weight management among Hungarian consumers. Methods: We used a large-sample questionnaire survey involving a total of 550 people. Various statistical methods were used to analyze the data, including descriptive statistics, association tests, and hypothesis tests. Results: According to our results, those who want to lose weight are more engaged in managing their body weight than those who are satisfied with their weight or who want to gain weight, often aiming to reach an ideal weight through diet and exercise, and are willing to invest more in healthier lifestyles, both in terms of their diet and physical activity. In this regard, we did not find significant differences between the genders. Conclusions: Based on our findings, we can conclude that dietitians and doctors should play a more active role in guiding lifestyle changes since the majority of our respondents do not consider them credible sources of information on healthy eating, and they do not consult them on this topic. On the other hand, however, a much larger proportion seek information from them regarding regular physical activity, and after personal trainers, they are considered the second most authentic source of information. Full article
(This article belongs to the Section Healthcare Quality and Patient Safety)
Show Figures

Figure 1

13 pages, 306 KiB  
Article
FADS1 Genetic Variant and Omega-3 Supplementation Are Associated with Changes in Fatty Acid Composition in Red Blood Cells of Subjects with Obesity
by Samantha Desireé Reyes-Pérez, Karina González-Becerra, Elisa Barrón-Cabrera, José Francisco Muñoz-Valle, Juan Armendáriz-Borunda and Erika Martínez-López
Nutrients 2024, 16(20), 3522; https://doi.org/10.3390/nu16203522 - 17 Oct 2024
Cited by 1 | Viewed by 3497
Abstract
Introduction: Obesity is characterized by low-grade chronic inflammation, which can be modulated by lipid mediators derived from omega-3 (n-3) polyunsaturated fatty acids (PUFA). Obesity is a multifactorial disease, where genetic and environmental factors strongly interact to increase its development. In this [...] Read more.
Introduction: Obesity is characterized by low-grade chronic inflammation, which can be modulated by lipid mediators derived from omega-3 (n-3) polyunsaturated fatty acids (PUFA). Obesity is a multifactorial disease, where genetic and environmental factors strongly interact to increase its development. In this context, the FADS1 gene encodes the delta-5 desaturase protein, which catalyzes the desaturation of PUFA. The rs174547 genetic variant of FADS1 has been associated with alterations in lipid metabolism, particularly with decreases in eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations. Objective: To analyze the effect of an n-3-supplemented diet on the fatty acid profile and composition in red blood cells (RBCs) of obese subjects carrying the rs174547 variant of the FADS1 gene. Methodology: Seventy-six subjects with obesity were divided into two groups: omega-3 (1.5 g of n-3/day) and placebo (1.5 g of sunflower oil/day). The dietary intervention consisted of a four-month follow-up. Anthropometric, biochemical, and dietary variables were evaluated monthly. The total fatty acid profile in RBC was determined using gas chromatography. The rs174547 variant was analyzed through allelic discrimination. Results: The n-3 index (O3I) increased at the end of the intervention in both groups. Subjects carrying the CC genotype showed significant differences (minor increase) in n-6, n-3, total PUFA, EPA, DHA, and the O3I in RBCs compared to TT genotype carriers in the n-3 group. Conclusions: The diet supplemented with EPA and DHA is ideal for providing the direct products that bypass the synthesis step affected by the FADS1 rs174547 variant in subjects carrying the CC genotype. The O3I confirmed an increase in n-3 fatty acids in RBCs at the end of the intervention. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Graphical abstract

11 pages, 2994 KiB  
Article
Effects of Soybean Isoflavones on the Growth Performance and Lipid Metabolism of the Juvenile Chinese Mitten Crab Eriocheir sinensis
by Mengyu Shi, Yisong He, Jiajun Zheng, Yang Xu, Yue Tan, Li Jia, Liqiao Chen, Jinyun Ye and Changle Qi
Fishes 2024, 9(9), 335; https://doi.org/10.3390/fishes9090335 - 26 Aug 2024
Viewed by 1173
Abstract
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and [...] Read more.
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and 15%). The groups were named as follows: NF-0 group (10% fat and 0% SIFs), NF-0.004 group (10% fat and 0.004% SIFs), NF-0.008 group (10% fat and 0.008% SIFs), HF-0 group (15% fat and 0% SIFs), HF-0.004 group (15% fat and 0.004% SIFs) and HF-0.008 group (15% fat and 0.008% SIFs). All crabs with an initial weight of 0.4 ± 0.03 g were fed for 8 weeks. The results showed that dietary supplementation with 0.004% or 0.008% SIFs significantly increased the weight gain and specific growth rate of crabs. Diets supplemented with 0.004% or 0.008% SIFs significantly reduced the content of non-esterified free fatty acids and triglycerides in the hepatopancreas of crabs at the 10% dietary lipid level. Dietary SIFs significantly decreased the relative mRNA expressions of elongase of very-long-chain fatty acids 6 (elovl6), triglyceride lipase (tgl), sterol regulatory element-binding protein 1 (srebp-1), carnitine palmitoyltransferase-1a (cpt-1a), fatty acid transporter protein 4 (fatp4), carnitine palmitoyltransferase-2 (cpt-2), Δ9 fatty acyl desaturase (Δ9 fad), carnitine palmitoyltransferase-1b (cpt-1b), fatty acid-binding protein 10 (fabp10) and microsomal triglyceride transfer protein (mttp) in the hepatopancreas of crabs. At the 15% dietary lipid level, 0.008% SIFs significantly increased the relative mRNA expressions of fatty acid-binding protein 3 (fabp3), carnitine acetyltransferase (caat), fatp4, fabp10, tgl, cpt-1a, cpt-1b and cpt-2 and significantly down-regulated the relative mRNA expressions of Δ9 fad and srebp-1. In conclusion, SIFs can improve the growth and utilization of a high-fat diet by inhibiting genes related to lipid synthesis and promoting lipid decomposition in juvenile Chinese mitten crabs. Full article
Show Figures

Figure 1

13 pages, 645 KiB  
Review
Functional Abdominal Bloating and Gut Microbiota: An Update
by Salvatore Crucillà, Federico Caldart, Marco Michelon, Giovanni Marasco and Andrea Costantino
Microorganisms 2024, 12(8), 1669; https://doi.org/10.3390/microorganisms12081669 - 14 Aug 2024
Cited by 2 | Viewed by 9326
Abstract
(1) Background: Functional abdominal bloating and distension (FAB/FAD) are common disorders of the gut–brain interaction. Their physiopathology is complex and not completely clarified, although gut microbiota imbalances play a central role. The treatment of FAB/FAD still represents a clinical challenge for both patients [...] Read more.
(1) Background: Functional abdominal bloating and distension (FAB/FAD) are common disorders of the gut–brain interaction. Their physiopathology is complex and not completely clarified, although gut microbiota imbalances play a central role. The treatment of FAB/FAD still represents a clinical challenge for both patients and healthcare providers. Gut microbiota modulation strategies might play a crucial role in their management. The aim of this narrative review was to update the current evidence on FAB/FAD, with a focus on gut microbiota. (2) Methods: In October 2023, a review was conducted through the Medline, PubMed, and Embase databases. Selected literature included all available English-edited studies (randomized controlled trials and cross-sectional, cohort, and case-control studies). (3) Results: Twelve studies were selected, most of which investigated the relationship between IBS and microbiota, with bloating being one of its symptoms. The studies suggest that restoring a balanced microbiome appears to be the most promising solution for better management of FAB/FAD. Targeted approaches, such as the use of probiotics, prebiotics, antibiotics such as rifaximin or dietary modifications, may hold the key to alleviating symptoms. Other therapeutic options, such as diet, neuromodulators, and brain–gut behavioral therapies (i.e., cognitive-behavioral therapy) have shown promising outcomes, but strong data are still lacking. (4) Conclusions: Targeted approaches that focus on the gut microbiota, such as the use of probiotics, prebiotics, and antibiotics, are essential in managing FAB/FAD. Understanding the complex relationship between gut microbiota and FAB/FAD is crucial for developing effective treatments. Further studies are needed to explore the specific roles of different microbial populations in patients with FAB/FAD to enhance therapeutic strategies. Full article
Show Figures

Figure 1

20 pages, 14607 KiB  
Article
Multifactor Analyses of Frontal Cortex Lipids in the APP/PS1 Model of Familial Alzheimer’s Disease Reveal Anomalies in Responses to Dietary n-3 PUFA and Estrogenic Treatments
by Mario Díaz
Genes 2024, 15(6), 810; https://doi.org/10.3390/genes15060810 - 19 Jun 2024
Cited by 1 | Viewed by 1893
Abstract
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer’s disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered [...] Read more.
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer’s disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer’s disease neuropathology. Full article
Show Figures

Figure 1

21 pages, 853 KiB  
Article
Health Belief and Behavioral Analysis of Fad Diets: A Perspective from Younger Generations in a Developing Country
by Ray Ver V. Baldemor, Ardvin Kester S. Ong, Josephine D. German, Netanya S. Bautista, Marc Lenard V. Alonso and Oldrin John P. Alidio
Foods 2024, 13(12), 1858; https://doi.org/10.3390/foods13121858 - 13 Jun 2024
Cited by 1 | Viewed by 4643
Abstract
The surge in popularity of fad diets has raised concerns about compromised health among individuals due to their beliefs and intentions regarding consumption. The aim of this study was to examine the prevalence of fad dieting among persons who are dieting and to [...] Read more.
The surge in popularity of fad diets has raised concerns about compromised health among individuals due to their beliefs and intentions regarding consumption. The aim of this study was to examine the prevalence of fad dieting among persons who are dieting and to determine the different factors influencing the inclination to adopt fad diets. Specifically, this study explored the ways in which individual openness to following fad diets, participation in diet trends, and characteristics may influence attitudes towards fad diet adoption. Data from 407 participants aged 18–34, collected via Google Forms, were analyzed using a high-ordered construct approach between the theory of planned behavior (TPB) and health belief model (HBM). Employing partial least squares structural equation modeling, significant results were obtained. The key findings revealed that knowledge about dieting, perceived benefits, and health motivation significantly influenced individuals’ intentions to adopt fad diets. Additionally, the study demonstrated significant impacts of health motivation on attitude and perceived behavioral control, subsequently affecting individuals’ intention to adopt dietary practices. Practical implications include the development of tailored health communication strategies for government agencies and informed decision-making support for individuals considering adopting fad diets. This research contributes valuable insights into the perception and psychological and social factors shaping dietary decisions, laying the groundwork for enhanced health education and intervention strategies. Furthermore, the study’s theoretical framework offers potential for extension and application to health-related food consumption behaviors across diverse cultural contexts. Full article
Show Figures

Figure 1

21 pages, 3862 KiB  
Article
Identification and Evaluation of Olive Phenolics in the Context of Amine Oxidase Enzyme Inhibition and Depression: In Silico Modelling and In Vitro Validation
by Tom C. Karagiannis, Katherine Ververis, Julia J. Liang, Eleni Pitsillou, Siyao Liu, Sarah M. Bresnehan, Vivian Xu, Stevano J. Wijoyo, Xiaofei Duan, Ken Ng, Andrew Hung, Erik Goebel and Assam El-Osta
Molecules 2024, 29(11), 2446; https://doi.org/10.3390/molecules29112446 - 23 May 2024
Cited by 3 | Viewed by 2576
Abstract
The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea [...] Read more.
The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein–peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet. Full article
Show Figures

Figure 1

17 pages, 342 KiB  
Article
Dietary High Levels of Coconut Oil Replacing Fish Oil Did Not Affect Growth, but Promoted Liver Lipid Deposition of Orange-Spotted Groupers (Epinephelus coioides)
by Kun Wang, Tao Song, Liner Ke, Yunzhang Sun and Jidan Ye
Animals 2024, 14(11), 1534; https://doi.org/10.3390/ani14111534 - 22 May 2024
Cited by 3 | Viewed by 1569
Abstract
In this study, we conducted an 8-week feeding trial to investigate the effects of replacing fish oil (FO) with coconut oil (CO) on the growth performance, blood components, tissue fatty acid (FA) profile, and mRNA levels of genes related to lipid metabolism in [...] Read more.
In this study, we conducted an 8-week feeding trial to investigate the effects of replacing fish oil (FO) with coconut oil (CO) on the growth performance, blood components, tissue fatty acid (FA) profile, and mRNA levels of genes related to lipid metabolism in the liver of the orange-spotted grouper (Epinephelus coioides). Five isolipidic and isoproteic diets were formulated through increasing the CO levels (0, 25%, 50%, 75%, and 100%, respectively). Triplicate groups of twenty-five fish (initial wet weight of about 22.4 g/fish) were fed one of the diets twice daily to apparent satiety. The 25% CO diet had the highest growth rate and feed utilization, and the 100% CO diet exhibited a comparable growth and feed utilization with that of the control diet, indicating a suitable FO substitute. Moreover, the hepatosomatic index, intraperitoneal fat rate, liver lipid content, as well as the serum HDL-C content and ALT activity had positive linear and/or quadratic responses, but the serum TC and LDL-C contents exhibited the opposite trend, with an increasing CO inclusion level. The FA profile in the liver and muscle generally mirrored the FA profile in the feed. Furthermore, the mRNA levels of the fas, acc, g6pd, srebp-1c, and δ6fad genes in the liver had positive linear and/or quadratic responses, but the mRNA levels of elovl 4 and elovl 5 had the opposite trend, with increasing dietary CO inclusion levels. When compared with the control diet, 25% and 50% CO diets up-regulated the mRNA levels of cpt 1, while the 75% and 100% CO diets down-regulated its mRNA levels. The hsl and atgl were down-regulated through the addition of dietary CO. The mRNA level of lpl was not affected by dietary treatments. Results showed that CO could completely replace FO without affecting growth performance, but high CO will lead to the significant liver lipid deposition and lower LC-PUFAs contents of fish flesh. Full article
17 pages, 3520 KiB  
Article
Hepatocyte-Specific Fads1 Overexpression Attenuates Western Diet-Induced Metabolic Phenotypes in a Rat Model
by Dushan T. Ghooray, Manman Xu, Hongxue Shi, Craig J. McClain and Ming Song
Int. J. Mol. Sci. 2024, 25(9), 4836; https://doi.org/10.3390/ijms25094836 - 29 Apr 2024
Cited by 1 | Viewed by 1797
Abstract
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) [...] Read more.
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner. Full article
(This article belongs to the Special Issue Nutrition, Obesity and Metabolic Syndrome)
Show Figures

Figure 1

Back to TopTop