Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = facility use restriction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1291 KiB  
Article
Development and Validation of a Standardized Pseudotyped Virus-Based Neutralization Assay for Assessment of Anti-Nipah Virus Neutralizing Activity in Candidate Nipah Vaccines
by Muntasir Alam, Md Jowel Rana, Asma Salauddin, Emma Bentley, Gathoni Kamuyu, Dipok Kumer Shill, Shafina Jahan, Mohammad Mamun Alam, Md Abu Raihan, Mohammed Ziaur Rahman, Rubhana Raqib, Ali Azizi and Mustafizur Rahman
Vaccines 2025, 13(7), 753; https://doi.org/10.3390/vaccines13070753 - 15 Jul 2025
Viewed by 1242
Abstract
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting [...] Read more.
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting implementation in resource-limited settings. To address this, we standardized and validated a pseudotyped virus neutralization assay (PNA) for assessing NiV-neutralizing antibodies in BSL-2 laboratories. Methods: The NiV-PNA was validated following international regulatory standards, using a replication-defective recombinant Vesicular stomatitis virus (rVSV) backbone dependent pseudotyped virus. Assessments included sensitivity, specificity, dilutional linearity, relative accuracy, precision, and robustness. The assay was calibrated using the WHO International Standard for anti-NiV antibodies and characterized reference sera to ensure reliable performance. Findings: Preliminary evaluation of the developed NiV-PNA showed 100% sensitivity and specificity across 10 serum samples (5 positive, 5 negative), with a positive correlation to a calibrated reference assay (R2 = 0.8461). Dilutional linearity (R2 = 0.9940) and accuracy (98.18%) were confirmed across the analytical titer range of 11-1728 IU/mL. The assay also exhibited high precision, with intra-assay and intermediate precision geometric coefficients of variation of 6.66% and 15.63%, respectively. Robustness testing demonstrated minimal variation across different pseudotyped virus lots, incubation times, and cell counts. Conclusions: The validated NiV-PNA is a reproducible and scalable assay platform for quantifying NiV neutralizing antibodies, offering a safer alternative to virus culture. Its validation and integration into the CEPI Centralized Laboratory Network will enhance global capacity for vaccine evaluation and outbreak preparedness. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Graphical abstract

12 pages, 878 KiB  
Article
Estimation of the Energy Intake Required to Prevent Body-Weight Loss in Residents of Japanese Long-Term Care Facilities
by Yuka Tachibana, Momoko Kasuya, Yuriko Haito, Masami Maeno, Kihoko Banba, Takashi Miyawaki and Naoko Komenami
Nutrients 2025, 17(14), 2313; https://doi.org/10.3390/nu17142313 - 14 Jul 2025
Viewed by 261
Abstract
Background/Objectives: Proper management of food services aimed at preventing malnutrition and weight loss among residents of long-term care facilities is a critical priority. Accordingly, accurate prediction of energy intake requirements is necessary. This study aimed to estimate the energy intake required to prevent [...] Read more.
Background/Objectives: Proper management of food services aimed at preventing malnutrition and weight loss among residents of long-term care facilities is a critical priority. Accordingly, accurate prediction of energy intake requirements is necessary. This study aimed to estimate the energy intake required to prevent weight loss in residents of Japanese long-term care facilities. Methods: Body weight and 12-day dietary intake were measured from residents aged ≥75 years with a body mass index (BMI) < 25.0 kg/m2 who were consuming a regular or chopped diet. In the survey, individuals with oral intake were included, while those with swallowing problems, serious illnesses, dietary restrictions, or medications causing appetite loss were excluded. The rate of body-weight loss and the energy intake per kilogram of body weight (kcal/kg BW) during each 6-month period were calculated. The energy intake per kilogram of body weight corresponding to the rate of body-weight loss of 0% was estimated from the regression line between the rate of body-weight loss and energy intake per kilogram of body weight. Results: The data was analyzed for 99 residents (15 men and 84 women, age 89.3 ± 5.0 years, BMI 20.3 ± 2.6 kg/m2). From the regression results in all participants, the energy intake per kilogram of body weight corresponding to the rate of body-weight loss of 0% was 31.4 kcal/kg BW overall and 33.4 kcal/kg BW for those with a BMI < 18.5 kg/m2. Conclusions: The calculation of energy intake using a regression line may be able to predict the energy intake required for weight maintenance without using instrumental measurements or estimation equations, especially in the case of underweight individuals. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

22 pages, 1733 KiB  
Article
A Compensation Strategy for the Negative Impacts of Infrastructure Facilities on Land Use
by Elena Bykowa and Vera Voronetskaya
Sci 2025, 7(3), 95; https://doi.org/10.3390/sci7030095 - 2 Jul 2025
Viewed by 307
Abstract
Infrastructure facility development and modernization highly contribute to national economic growth, but at the same time, such development also causes local negative impacts on the use of specific land plots, creating losses for their right holders. In Russia, some prerequisites have already been [...] Read more.
Infrastructure facility development and modernization highly contribute to national economic growth, but at the same time, such development also causes local negative impacts on the use of specific land plots, creating losses for their right holders. In Russia, some prerequisites have already been laid down on the issue of compensation for the losses associated with restrictions on the rights and prohibitions of economic activity within zones with special territory use conditions (ZSTUCs). However, the impacts of such facilities lead to environmental pollution and land use disadvantages, such as irregular parcels. The aim of this work is to substantiate a set of approaches to compensating for the cumulative negative impact of infrastructure facilities. The factors causing the negative impacts of infrastructure facilities are grouped into three areas: rights restrictions, territorial deficiencies and environmental pollution. This work uses the SWOT analysis method with the possibility of element-by-element analysis, as a result of which the approaches to the compensation for negative impacts under different external and internal conditions are determined. As a result of this study, a justification for a set of approaches to compensating for the negative impacts of infrastructure facilities on land use was executed, and a new algorithm to compensate the right holders of the land, industry sector or state for such negative impacts was developed. The following approaches to compensating for negative impacts were identified: loss assessment; the establishment of environmental payments; cadastral value adjustment; compensation for industry sector losses; and the use of state regulation tools. The first two approaches were identified as the main ones. The proposed algorithm can be realized only with the help of the abovementioned methodological approaches, which form a basis for further research. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2025)
Show Figures

Figure 1

21 pages, 5776 KiB  
Article
Thermal Effects on Fines Migration: Insights from Sand Pack Experiments
by Fernando Rengifo Barbosa, Rahman Miri, Mahmood Salimi and Alireza Nouri
Energies 2025, 18(13), 3471; https://doi.org/10.3390/en18133471 - 1 Jul 2025
Viewed by 257
Abstract
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity [...] Read more.
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity and temperature, trigger the detachment, transport, and redeposition of fines within porous media. This study introduces a novel high-pressure high-temperature (HP-HT) sand retention testing (SRT) facility designed for evaluating formation damage by fines migration in SAGD producer wells, under salinity change and elevated temperature conditions. Such an integrated approach accounting for conditions closer to near-wellbore SAGD producers has not been explored in previous SRT methodologies. Laboratory tests were conducted on synthetic sand mixtures replicating the particle size distribution (PSD) and sand composition of the McMurray Formation, packed over a slotted liner coupon as a common sand control device used in SAGD producer wells. Produced fines concentration analysis, permeability measurements, and post-mortem retention profile analysis were employed to explain the fines transport mechanisms. The results highlighted the influence of repulsive electrostatic forces in mobilising, transport mechanisms and retention of fine particles at elevated temperature and low salinity conditions. The findings of this paper provide a deeper understanding of fines migration in SAGD reservoirs, delivering insights for optimising field strategies to mitigate fines-related flow restrictions and enhance bitumen recovery efficiency. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

6 pages, 1672 KiB  
Interesting Images
New Insular Record of the Giant Water Bug, Lethocerus patruelis (Hemiptera: Belostomatidae), from the Northeastern Aegean
by Giorgos Stavrianakis, Asimina Koukoura, Apostolos Christopoulos and Yiannis G. Zevgolis
Diversity 2025, 17(6), 433; https://doi.org/10.3390/d17060433 - 19 Jun 2025
Viewed by 683
Abstract
Lethocerus patruelis (Stål, 1854) is a large aquatic hemipteran and the only European representative of the family Belostomatidae. Commonly known as the giant water bug, this species was historically restricted to the Balkans, Anatolia, and parts of the Middle East, but has exhibited [...] Read more.
Lethocerus patruelis (Stål, 1854) is a large aquatic hemipteran and the only European representative of the family Belostomatidae. Commonly known as the giant water bug, this species was historically restricted to the Balkans, Anatolia, and parts of the Middle East, but has exhibited a marked westward and northward range expansion in recent decades. In this study, we report the first confirmed occurrence of L. patruelis on Lesvos Island, in the northeastern Aegean Sea, based on a direct observation made within a wastewater treatment facility. The individual was identified in situ using diagnostic morphological traits and photographed without disturbance. This finding extends the known insular distribution of the species and underscores its capacity to exploit anthropogenically modified aquatic systems. Given the island’s rich mosaic of natural and artificial wetland habitats—including over 200 mapped sites—Lesvos may offer suitable conditions for the establishment of local populations. This record highlights the need for targeted surveys and long-term monitoring across under-sampled insular landscapes. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 4003 KiB  
Article
The Risk to the Undersea Engineering Ecosystem of Systems: Understanding Implosion in Confined Environments
by Craig Tilton and Arun Shukla
J. Mar. Sci. Eng. 2025, 13(6), 1180; https://doi.org/10.3390/jmse13061180 - 17 Jun 2025
Viewed by 602
Abstract
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, [...] Read more.
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, known as an implosion. This collapse can be caused by hydrostatic pressure or any combination of external loadings from natural disasters to pressure waves imparted by other implosion or explosion events. During an implosion, high-magnitude pressure waves can be emitted, which can cause adverse effects on surrounding structures, marine life, or even people. The imploding structure, known as an implodable volume, can be in a free-field or confined environment. Confined implosion is characterized by a surrounding structure that significantly affects the flow of fluid around the implodable volume. Often, the confining structure is cylindrical, with one closed end and one open end. This work seeks to understand the effect of fluid flow restriction on the physics of implosion inside a confining tube. To do so, a comprehensive experimental study is conducted using a unique experimental facility. Thin-walled aluminum cylinders are collapsed inside a confining tube within a large pressure vessel. High-speed photography and 3D Digital Image Correlation are used to gather structural displacement and velocities during the event while an array of dynamic pressure sensors capture the pressure data inside the confining tube. The results of this work show that by changing the size of the open end, referred to as the flow area ratio, there can be a significant effect on the structural deformations and implosion severity. It also reveals that only certain configurations of holes at the open end of the tube play a role in the dynamic pressure pulse measured at the closed end of the tube. By understanding the consequences of an implosion, designers can make decisions about where these pressure vessels should be in relation to other pressure vessels, critical infrastructure, marine life, or people. In the same way that engineers design for earthquakes and analyze the impact their structures have on the environment around them, contributors to the undersea engineering ecosystem should design with implosion in mind. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 6610 KiB  
Article
Research on Location Planning of Battery Swap Stations for Operating Electric Vehicles
by Pengcheng Ma, Shuai Zhang, Bin Zhou, Wenqi Shao, Haowen Li, Tengfei Ma and Dong Guo
World Electr. Veh. J. 2025, 16(6), 332; https://doi.org/10.3390/wevj16060332 - 16 Jun 2025
Viewed by 550
Abstract
Currently, the layout planning of power exchange facilities in urban areas is not perfect, which cannot effectively meet the power exchange demand of urban operating vehicles and restricts the operation of urban operating vehicles. The article proposes a vehicle power exchange demand-oriented power [...] Read more.
Currently, the layout planning of power exchange facilities in urban areas is not perfect, which cannot effectively meet the power exchange demand of urban operating vehicles and restricts the operation of urban operating vehicles. The article proposes a vehicle power exchange demand-oriented power exchange station siting planning scheme to meet the rapid replenishment demand of operating vehicles in urban areas. The spatial and temporal distribution of power exchange demand is predicted by considering the operation law, driving law, and charging decision of drivers; the candidate sites of power exchange stations are determined based on the data of power exchange demand; the optimization model of the site selection of power exchange stations with the lowest loss time of vehicle power exchange and the lowest cost of the planning and construction of power exchange stations is established and solved by using the joint algorithm of MLP-NSGA-II; and the optimization model is compared with the traditional genetic algorithm (GA) and the Density Peak. The results show that the MLP-NSGA-II joint algorithm has the lowest cost of optimizing the location of switching stations. The results show that the MLP-NSGA-II algorithm improves the convergence efficiency by about 30.23%, and the service coverage of the optimal solution reaches 94.30%; the service utilization rate is 85.35%, which is 6.25% and 19.69% higher than that of the GA and DPC, respectively. The research content of the article can provide a design basis for the future configuration of the number and location of power exchange stations in urban areas. Full article
Show Figures

Figure 1

23 pages, 1202 KiB  
Article
Harnessing Pyrolysis for Industrial Energy Autonomy and Sustainable Waste Management
by Dimitrios-Aristotelis Koumpakis, Alexandra V. Michailidou and Christos Vlachokostas
Energies 2025, 18(12), 3041; https://doi.org/10.3390/en18123041 - 8 Jun 2025
Viewed by 1085
Abstract
This study describes the step-by-step development of a simplified system which can be implemented in industrial facilities with the help of their own surplus of plastic waste, mainly packaging waste, to reach a level of energy autonomy or semi-autonomy. This waste is converted [...] Read more.
This study describes the step-by-step development of a simplified system which can be implemented in industrial facilities with the help of their own surplus of plastic waste, mainly packaging waste, to reach a level of energy autonomy or semi-autonomy. This waste is converted to about 57,500 L of synthetic pyrolysis oil, which can then be used to power industries, being fed into a Combined Heat and Power system. To achieve this goal, the design has hydrocarbon stability at elevated temperature and restricted oxygen exposure, so that they can be converted to new products. Pyrolysis is a key process which causes thermo-chemical changes—ignition and vaporization. The research outlines the complete process of creating a basic small-scale pyrolysis system which industrial facilities can use to generate energy from their plastic waste. The proposed unit processes 360 tons of plastic waste yearly to produce 160 tons of synthetic pyrolysis oil which enables the generation of 500 MWh of electricity and 60 MWh of heat. The total investment cost is estimated at EUR 41,000, with potential annual revenue of up to EUR 45,000 via net metering. The conceptual design proves both environmental and economic viability by providing a workable method for decentralized waste-to-energy solutions for Small and Medium-sized Enterprises. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 4730 KiB  
Article
Enhancing Facility Management with a BIM and IoT Integration Tool and Framework in an Open Standard Environment
by Mayurachat Chatsuwan, Masayuki Ichinose and Haitham Alkhalaf
Buildings 2025, 15(11), 1928; https://doi.org/10.3390/buildings15111928 - 2 Jun 2025
Viewed by 1083
Abstract
Integrating building information modeling (BIM) with Internet of things (IoT) technologies significantly enhances facility management (FM) by enabling advanced real-time monitoring of indoor environmental quality (IEQ). However, technical complexity, proprietary limitations, high software costs, and unclear long-term benefits hinder practical adoption. This study [...] Read more.
Integrating building information modeling (BIM) with Internet of things (IoT) technologies significantly enhances facility management (FM) by enabling advanced real-time monitoring of indoor environmental quality (IEQ). However, technical complexity, proprietary limitations, high software costs, and unclear long-term benefits hinder practical adoption. This study suggests a way to combine BIM and IoT using open standards like IFC and JSON, simple programming tools like Node-RED, and secure cloud services. A case study of a six-story office building showed that real-time IEQ sensor data can be combined with organized BIM information, helping to make better decisions about maintaining, replacing, or upgrading heating, ventilation, and air conditioning (HVAC) systems. This integration offers essential data needed for using advanced analysis techniques, specifically tackling issues with compatibility, ease of use, and organizational challenges, which is especially advantageous for small-to-medium-sized office buildings. Nevertheless, this study faced limitations due to restricted real-time data access from existing building management systems and preliminary predictive analytic capabilities, highlighting a need for improved direct data integration and robust analytical methods in future implementations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 667 KiB  
Article
The Effects of Intensive Residential Treatment for Feeding and Eating Disorders (FEDs) in Adolescence: The Case of an Italian Facility
by Valentina Lorenzoni, Francesca Casti, Gianluca D’Arcangelo, Linda Balluchi, Fabrizio Minichilli, Olivia Curzio and Sandra Maestro
Nutrients 2025, 17(11), 1904; https://doi.org/10.3390/nu17111904 - 1 Jun 2025
Viewed by 562
Abstract
Background: Feeding and eating disorders (FEDs) represent a global health problem with an increasing incidence and a progressively earlier onset. Residential treatment is notable for its intensity and ability to provide multidisciplinary support to both patients and families. The objective of this study [...] Read more.
Background: Feeding and eating disorders (FEDs) represent a global health problem with an increasing incidence and a progressively earlier onset. Residential treatment is notable for its intensity and ability to provide multidisciplinary support to both patients and families. The objective of this study was to clinically characterize patients and to evaluate the impact of treatment at the “Orti di Ada” facility on the evolution of FEDs in adolescent patients. Methods: A cohort of 47 minors, treated in 2019–2024, was studied through longitudinal observation. Data were collected from medical records, and standardized questionnaires were administered at baseline (T0) and at the conclusion of treatment (T1). Comparisons between scores on the scales were made using paired t-tests for within-group changes from T0 to T1 or using Mann–Whitney tests for between-group comparisons. Spearman’s correlation coefficient was used to assess the relationship between pairs of variables. Results: The sample consisted of female patients (mean age: 15 years). The mean body mass index (BMI) at T1 was 16.6 kg/m2. The majority of patients (74.5%) had been undergoing treatment for less than one year. Most patients had been diagnosed with restrictive-type anorexia nervosa (74.5%), while 53.2% had multiple concomitant psychiatric comorbidities. The mean BMI increased to 18.7 kg/m2, suggesting biological recovery, along with the restoration of the menstrual cycle. Conclusions: Psychological measures showed significant improvements in subjects with exclusive depressive comorbidity. The correlations of age and disease duration with changes in questionnaire scores suggest that earlier treatment leads to more favorable outcomes. The results provided insights into the appropriateness of intensive treatment that, when targeting specific psychological factors, improves biological and psychological recovery. Full article
(This article belongs to the Special Issue Advances in Eating Disorders in Children and Adolescents)
Show Figures

Figure 1

16 pages, 4866 KiB  
Article
Centrifugation-Induced Stable Colloidal Silver Nanoparticle Aggregates for Reproducible Surface-Enhanced Raman Scattering Detection
by Tianyu Zhou and Zhiyang Zhang
Biosensors 2025, 15(5), 298; https://doi.org/10.3390/bios15050298 - 8 May 2025
Viewed by 683
Abstract
Colloidal noble metal nanoparticle aggregates have demonstrated significant advantages in surface-enhanced Raman scattering (SERS) analysis, particularly for online detection, due to their excellent optical properties, spatial homogeneity, and fluidic compatibility. However, conventional chemically induced aggregation methods (such as salt-induced nanoparticle aggregation) suffer from [...] Read more.
Colloidal noble metal nanoparticle aggregates have demonstrated significant advantages in surface-enhanced Raman scattering (SERS) analysis, particularly for online detection, due to their excellent optical properties, spatial homogeneity, and fluidic compatibility. However, conventional chemically induced aggregation methods (such as salt-induced nanoparticle aggregation) suffer from uncontrolled aggregation, limited stability, and narrow detection windows, which restrict their quantitative and long-term applications. In this study, we developed a non-chemical method for fabricating stable colloidal aggregates from uniform β-cyclodextrin-stabilized silver nanoparticles (β-CD@AgNPs) via centrifugation. By precisely controlling the addition rate of silver nitrate, we synthesized β-cyclodextrin-stabilized silver nanoparticles with a uniform size. Surprisingly, these nanoparticles can form highly dispersed and homogeneous colloidal aggregates simply via centrifugation, which is completely different from the behavior of traditional ligand-modified nanoparticles. Notably, the resulting aggregates exhibit excellent SERS enhancement, enabling the sensitive detection of various dyes at nanomolar levels. Furthermore, they maintain a stable SERS signal (RSD = 6.99%) over a detection window exceeding 1 h, markedly improving signal stability and reproducibility compared with salt-induced aggregates. Additionally, using pyocyanin as a model analyte, we evaluated the quantitative performance of these aggregates (LOD = 0.2 nM), achieving satisfactory recovery (82–117%) in spiked samples of drinking water, lake water, and tap water. This study provides a facile strategy for fabricating stable colloidal SERS substrates and paves the way for the advancement of SERS applications in analytical sciences. Full article
Show Figures

Figure 1

14 pages, 264 KiB  
Article
Exploring the Determinants of Treatment Completion Among Youth Who Received Medication-Assisted Treatment in the United States
by Esther A. Adeniran, Megan Quinn, Ying Liu, Billy Brooks and Robert P. Pack
Healthcare 2025, 13(7), 798; https://doi.org/10.3390/healthcare13070798 - 2 Apr 2025
Cited by 1 | Viewed by 584
Abstract
Background: An effective treatment for Opioid Use Disorder is Medication-Assisted Treatment (MAT). However, in the United States (US), this is still being underutilized by youth. Research indicates the need to develop strategies to reduce treatment barriers among these youth. Thus, we explored the [...] Read more.
Background: An effective treatment for Opioid Use Disorder is Medication-Assisted Treatment (MAT). However, in the United States (US), this is still being underutilized by youth. Research indicates the need to develop strategies to reduce treatment barriers among these youth. Thus, we explored the rates of treatment completion and dropout among youth receiving MAT in US substance use treatment facilities and examined factors associated with treatment completion and dropout. Methods: This study used the 2019 Treatment Episode Data Set—Discharges. Our analysis was restricted to youth (12–24 years) who primarily used heroin at admission. Log-binomial regression was used to examine various determinants of treatment completion and dropout, guided by Andersen’s Behavioral Model. Results: The final sample size was 4917. Among youth reporting heroin use with receipt of MAT, those showing a higher likelihood of treatment completion than dropout were males [ARR: 1.23; 95% CI: 1.088–1.381; p = 0.0008], had 1–7 times [ARR: 1.33; 95% CI: 1.115–1.584; p = 0.0015] and 8–30 times self-help group participation [ARR: 1.50; 95% CI: 1.246–1.803; p < 0.0001], had co-occurring mental and substance use disorders [ARR: 1.28; 95% CI: 1.133–1.448, p < 0.0001], were admitted to detoxification [ARR: 2.80; 95% CI: 2.408–3.255; p < 0.0001] and residential/rehabilitation settings [ARR: 2.05; 95% CI: 1.749–2.400; p < 0.0001], and were located in the Midwest/West [ARR: 1.18; 95% CI: 1.030–1.358; p = 0.0173]. Conversely, other races (excluding Whites and Blacks/African Americans) [ARR: 0.75; 95% CI: 0.609–0.916; p = 0.0051], those who used MAT [ARR: 0.81; 95% CI: 0.694–0.946; p = 0.0077], and youth in the South [ARR: 0.45; 95% CI: 0.369–0.549; p < 0.0001] were less likely to report treatment completion than dropout. Conclusions: The majority of youth receiving MAT dropped out of treatment. We identified various factors that should be prioritized to address youth underutilization of MAT in the US. Full article
(This article belongs to the Special Issue Adolescent Substance Use: Prevention and Intervention Strategies)
18 pages, 8929 KiB  
Article
Concept of Adapting the Liquidated Underground Mine Workings into High-Temperature Sand Thermal Energy Storage
by Kamil Szewerda, Dariusz Michalak, Piotr Matusiak and Daniel Kowol
Appl. Sci. 2025, 15(7), 3868; https://doi.org/10.3390/app15073868 - 1 Apr 2025
Viewed by 480
Abstract
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate [...] Read more.
In Europe, renewable energy sources such as photovoltaic panels and wind power plants are developing dynamically. The growth of renewable energy is driven by rising energy prices, greenhouse gas emission restrictions, the European Union’s Green Deal policy, and decarbonization efforts. Photovoltaic farms generate energy intermittently, depending on weather conditions. Given the increasing number of new installations, ensuring the power balance and transmission capacity of the electrical grid has become a major challenge. To address this issue, the authors propose a technical solution that allows the energy generated by photovoltaic systems to be stored in the form of heat. Thermal energy from solar power and wind energy offers significant potential for energy storage. It can be accumulated during summer in specially designed sand-based heat storage systems and then used for heating purposes in winter. This approach not only reduces heating costs but also decreases greenhouse gas emissions and helps balance the power grid during sunny periods. Post-industrial areas, often located near city centers, are suitable locations for large-scale heat storage facilities supplying, among others, public utility buildings. Therefore, this article presents a concept for utilizing high-temperature sand-based heat storage systems built in decommissioned underground mining excavations. Full article
(This article belongs to the Special Issue Surface and Underground Mining Technology and Sustainability)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Environmental Life Cycle Assessment of Class A Biosolids Production Using Conventional and Low-Cost, Low-Tech Processes at Small Water Resource Recovery Facilities
by Janna L. Brown, Robert M. Handler, Jennifer G. Becker and Eric A. Seagren
Appl. Sci. 2025, 15(7), 3482; https://doi.org/10.3390/app15073482 - 22 Mar 2025
Viewed by 561
Abstract
Producing Class A biosolids that can be distributed or land-applied without restriction is a beneficial way to reuse wastewater treatment solids. For small water resource recovery facilities (WRRFs) in particular, low-cost, low-tech (LCLT) processes may be an appealing alternative to conventional technologies for [...] Read more.
Producing Class A biosolids that can be distributed or land-applied without restriction is a beneficial way to reuse wastewater treatment solids. For small water resource recovery facilities (WRRFs) in particular, low-cost, low-tech (LCLT) processes may be an appealing alternative to conventional technologies for producing Class A biosolids, such as processes to further reduce pathogens (PFRPs). Conventional Class A biosolids treatment processes tend to be energy-intensive and involve complex equipment and operations. However, a systematic comparison of the overall sustainability of conventional processes and LCLT alternatives for producing Class A biosolids to aid decision makers in selecting treatment processes is not readily available. Therefore, this study used life cycle assessments to compare five Class A biosolids treatment processes, including three conventional processes—Composting, Direct Heat Drying, and temperature-phased anaerobic digestion (TPAD)—and two LCLT processes—Air Drying, and long-term Lagoon Storage followed by Air Drying—on the basis of their environmental impacts. The environmental impacts were normalized to facilitate a comparison of the processes. The results indicate that Composting and Direct Heat Drying had the most significant environmental impacts, primarily from the biogenic emissions during Composting and the natural gas requirements for Direct Heat Drying. In comparison, TPAD and Air Drying had the lowest environmental impacts, and Lagoon Storage had intermediate impacts. Thus, LCLT processes may be more sustainable than some, but not all, conventional PFRPs. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

21 pages, 4692 KiB  
Article
Research on the Allocation Level of Land for Agricultural Facilities Based on Green and High-Quality Development: A Case Study of Zhejiang Province
by Zhifeng Wang, Keyun Wei, Bolan Wen, Kaijiang You, Huilin Wang, Chengxuan Ye and Fulong Ren
Land 2025, 14(4), 672; https://doi.org/10.3390/land14040672 - 22 Mar 2025
Cited by 1 | Viewed by 580
Abstract
Facility agriculture is essential for diversifying food supply and advancing agricultural modernization. Guided by the concept of new quality productive forces, this study establishes a comprehensive framework to analyze the optimization of facility agricultural land allocation in Zhejiang Province. The findings indicate a [...] Read more.
Facility agriculture is essential for diversifying food supply and advancing agricultural modernization. Guided by the concept of new quality productive forces, this study establishes a comprehensive framework to analyze the optimization of facility agricultural land allocation in Zhejiang Province. The findings indicate a relatively low overall allocation level, with higher intensity in the breeding industry compared to crop cultivation. Facility agricultural land is predominantly located in areas with lower elevations, gentler slopes, proximity to roads and rivers, and moderate distances from urban centers. Service areas vary significantly, with grain cultivation having the largest impact, followed by other crop cultivation, fruit and vegetable cultivation, aquaculture, other livestock breeding, and pig farming. As agriculture transitions from small-scale to large-scale and facility-based production, service areas exhibit an inverted U-shaped trend, initially increasing before declining. To optimize decision-making, this study proposes a classification system (shared, modern, safeguard), an entry list (encouraged, restricted, prohibited), and strategies for spatial layout, flexible control, and intensive land use. Guided by green and high-quality development goals, this research establishes a contemporary standard system and optimization strategies, offering scientific and practical guidance for sustainable facility agricultural land development and supporting land resource allocation and industry upgrading. Full article
Show Figures

Figure 1

Back to TopTop