Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = faceted titania

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2424 KB  
Article
Enhanced Photocatalysis of Electrically Polarized Titania Nanosheets
by Tomoyuki Mihara, Kosuke Nozaki, Yasuyuki Kowaka, Mengtian Jiang, Kimihiro Yamashita, Hiroyuki Miura and Satoshi Ohara
Nanomaterials 2024, 14(2), 171; https://doi.org/10.3390/nano14020171 - 12 Jan 2024
Cited by 4 | Viewed by 1884
Abstract
Titania (TiO2) nanosheets are crystals with controlled, highly ordered structures that improve the functionality of conventional TiO2 nanoparticles. Various surface modification methods have been studied to enhance the effectiveness of these materials as photocatalysts. Surface modifications using electrical polarization have [...] Read more.
Titania (TiO2) nanosheets are crystals with controlled, highly ordered structures that improve the functionality of conventional TiO2 nanoparticles. Various surface modification methods have been studied to enhance the effectiveness of these materials as photocatalysts. Surface modifications using electrical polarization have attracted considerable attention in recent years because they can improve the function of titania without changing its composition. However, the combination of facet engineering and electrical polarization has not been shown to improve the functionality of TiO2 nanosheets. In the present study, the dye-degradation performance of polarized TiO2 nanosheets was evaluated. TiO2 nanosheets with a F/Ti ratio of 0.3 were synthesized via a hydrothermal method. The crystal morphology and structure were evaluated using transmission electron microscopy and X-ray diffraction. Then, electrical polarization was performed under a DC electric field of 300 V at 300 °C. The polarized material was evaluated using thermally stimulated current measurements. A dye-degradation assay was performed using a methylene blue solution under ultraviolet irradiation. The polarized TiO2 nanosheets exhibited a dense surface charge and accelerated decolorization. These results indicate that electrical polarization can be used to enhance the photocatalytic activity of TiO2. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 3886 KB  
Article
On the Origin of Raman Activity in Anatase TiO2 (Nano)Materials: An Ab Initio Investigation of Surface and Size Effects
by Beata Taudul, Frederik Tielens and Monica Calatayud
Nanomaterials 2023, 13(12), 1856; https://doi.org/10.3390/nano13121856 - 14 Jun 2023
Cited by 42 | Viewed by 7216
Abstract
Titania-based materials are abundant in technological applications, as well as everyday products; however, many of its structure–property relationships are still unclear. In particular, its surface reactivity on the nanoscale has important consequences for fields such as nanotoxicity or (photo)catalysis. Raman spectroscopy has been [...] Read more.
Titania-based materials are abundant in technological applications, as well as everyday products; however, many of its structure–property relationships are still unclear. In particular, its surface reactivity on the nanoscale has important consequences for fields such as nanotoxicity or (photo)catalysis. Raman spectroscopy has been used to characterize titania-based (nano)material surfaces, mainly based on empirical peak assignments. In the present work, we address the structural features responsible for the Raman spectra of pure, stoichiometric TiO2 materials from a theoretical characterization. We determine a computational protocol to obtain accurate Raman response in a series of anatase TiO2 models, namely, the bulk and three low-index terminations by periodic ab initio approaches. The origin of the Raman peaks is thoroughly analyzed and the structure–Raman mapping is performed to account for structural distortions, laser and temperature effects, surface orientation, and size. We address the appropriateness of previous experimental use of Raman to quantify the presence of distinct TiO2 terminations, and provide guidelines to exploit the Raman spectrum based on accurate rooted calculations that could be used to characterize a variety of titania systems (e.g., single crystals, commercial catalysts, thin layered materials, facetted nanoparticles, etc.). Full article
(This article belongs to the Special Issue Theoretical Calculation and Molecular Modeling of Nanomaterials)
Show Figures

Figure 1

18 pages, 5758 KB  
Article
Is Black Titania a Promising Photocatalyst?
by Marcin Janczarek, Maya Endo-Kimura, Kunlei Wang, Zhishun Wei, Md Mahbub A. Akanda, Agata Markowska-Szczupak, Bunsho Ohtani and Ewa Kowalska
Catalysts 2022, 12(11), 1320; https://doi.org/10.3390/catal12111320 - 27 Oct 2022
Cited by 8 | Viewed by 4777
Abstract
Five different (commercial and self-synthesized) titania samples were mixed with NaBH4 and then heated to obtain black titania samples. The change in synthesis conditions resulted in the preparation of nine different photocatalysts, most of which were black in color. The photocatalysts were [...] Read more.
Five different (commercial and self-synthesized) titania samples were mixed with NaBH4 and then heated to obtain black titania samples. The change in synthesis conditions resulted in the preparation of nine different photocatalysts, most of which were black in color. The photocatalysts were characterized by various methods, including X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), photoacoustic and reverse-double beam photoacoustic spectroscopy (PAS/RDB-PAS). The photocatalytic activity was tested for oxidative decomposition of acetic acid, methanol dehydrogenation, phenol degradation and bacteria inactivation (Escherichia coli) under different conditions, i.e., irradiation with UV, vis, and NIR, and in the dark. It was found that the properties of the obtained samples depended on the features of the original titania materials. A shift in XRD peaks was observed only in the case of the commercial titania samples, indicating self-doping, whereas faceted anatase samples (self-synthesized) showed high resistance towards bulk modification. Independent of the type and degree of modification, all modified samples exhibited much worse activity under UV irradiation than original titania photocatalysts both under aerobic and anaerobic conditions. It is proposed that the strong reduction conditions during the samples’ preparation resulted in the partial destruction of the titania surface, as evidenced by both microscopic observation and crystallographic data (an increase in amorphous content), and thus the formation of deep electron traps (bulk defects as oxygen vacancies) increasing the charge carriers’ recombination. Under vis irradiation, a slight increase in photocatalytic performance (phenol degradation) was obtained for only four samples, while two samples also exhibited slight activity under NIR. In the case of bacteria inactivation, some modified samples exhibited higher activity under both vis and NIR than respective pristine titania, which could be useful for disinfection, cancer treatment and other purposes. However, considering the overall performance of the black titania samples in this study, it is difficult to recommend them for broad environmental applications. Full article
(This article belongs to the Special Issue Role of Defects and Disorder in Catalysis)
Show Figures

Graphical abstract

45 pages, 12738 KB  
Review
Recent Advances in Photocatalytic Oxidation of Methane to Methanol
by Gita Yuniar, Wibawa Hendra Saputera, Dwiwahju Sasongko, Rino R. Mukti, Jenny Rizkiana and Hary Devianto
Molecules 2022, 27(17), 5496; https://doi.org/10.3390/molecules27175496 - 26 Aug 2022
Cited by 26 | Viewed by 8091
Abstract
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of [...] Read more.
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a “holy grail” reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Green Chemistry)
Show Figures

Graphical abstract

9 pages, 1625 KB  
Communication
Development of Monodisperse Mesoporous Microballs Composed of Decahedral Anatase Nanocrystals
by Ying Chang, Jiayi Jiang, Zhishun Wei and Ewa Kowalska
Catalysts 2022, 12(4), 408; https://doi.org/10.3390/catal12040408 - 7 Apr 2022
Viewed by 2197
Abstract
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process [...] Read more.
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process to synthesize monodisperse mesoporous microballs built of decahedral anatase nanocrystals. FE-SEM observation and XRD analysis have confirmed that the formed decahedral anatase-rich powder retained the original spherical morphology of the precursor. Importantly, a hierarchical structure composed of faceted anatase has been achieved under “green” conditions, i.e., fluorine-free. Additionally, the hysteresis loops (BET results) have confirmed the existence of mesopores. Interestingly, faceted microballs show noticeable photocatalytic activity under UV/vis irradiation for hydrogen generation without any co-catalyst use, reaching almost forty times higher activity than that by famous commercial titania photocatalyst—P25. It has been proposed that enhanced photocatalytic performance is caused by mesoporous structure and co-existence of two kinds of facets, i.e., {001} and {101}, and thus hindered charge carriers’ recombination. Full article
(This article belongs to the Special Issue Structured Materials for Catalytic Applications)
Show Figures

Graphical abstract

27 pages, 4683 KB  
Review
Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures
by Jose I. Garcia-Peiro, Javier Bonet-Aleta, Carlos J. Bueno-Alejo and Jose L. Hueso
Catalysts 2020, 10(12), 1459; https://doi.org/10.3390/catal10121459 - 14 Dec 2020
Cited by 21 | Viewed by 6787
Abstract
Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts (TiO2 or ZnO). The strong size [...] Read more.
Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts (TiO2 or ZnO). The strong size and morphology dependence of metallic nanostructures to tune their visible to near-infrared (vis-NIR) light harvesting capabilities has been combined with the design of a wide variety of architectures for the semiconductor supports to promote the selective activity of specific crystallographic facets. The search for efficient heterojunctions has been subjected to numerous studies, especially those involving gold nanostructures and titania semiconductors. In the present review, we paid special attention to the most recent advances in the design of gold-semiconductor hetero-nanostructures including emerging metal oxides such as cerium oxide or copper oxide (CeO2 or Cu2O) or metal chalcogenides such as copper sulfide or cadmium sulfides (CuS or CdS). These alternative hybrid materials were thoroughly built in past years to target research fields of strong impact, such as solar energy conversion, water splitting, environmental chemistry, or nanomedicine. Herein, we evaluate the influence of tuning the morphologies of the plasmonic gold nanostructures or the semiconductor interacting structures, and how these variations in geometry, either individual or combined, have a significant influence on the final photocatalytic performance. Full article
(This article belongs to the Special Issue Plasmonic Photocatalysts)
Show Figures

Figure 1

12 pages, 3853 KB  
Article
Co-Catalytic Action of Faceted Non-Noble Metal Deposits on Titania Photocatalyst for Multielectron Oxygen Reduction
by Peng Wang and Bunsho Ohtani
Catalysts 2020, 10(10), 1145; https://doi.org/10.3390/catal10101145 - 3 Oct 2020
Viewed by 2608
Abstract
In order to clarify the reason of often reported low photocatalytic activity of rutile titania compared to that of anatase titania and the sluggish kinetics for oxygen reduction of rutile titania, in this study, faceted copper(I) oxide (Cu2O) particles (FCPs), i.e., [...] Read more.
In order to clarify the reason of often reported low photocatalytic activity of rutile titania compared to that of anatase titania and the sluggish kinetics for oxygen reduction of rutile titania, in this study, faceted copper(I) oxide (Cu2O) particles (FCPs), i.e., cube, cuboctahedron and octahedron, were deposited onto rutile particles by an in-situ wet chemical method, and the co-catalytic action of FCPs was studied in the oxidative decomposition of acetic acid. The oxygen reduction reaction kinetics of bare and FCP-loaded titania samples in photodecomposition of organic compounds were investigated by light-intensity dependence measurement. FCPs serve as the specific sites (sink) which accumulate excited electrons to drive multielectron oxygen reduction reactions, as the counter reaction in photodecomposition of organic compounds by positive holes, which significantly improves the photocatalytic activity of rutile titania particles. Full article
(This article belongs to the Special Issue TiO2 for Photocatalytic Applications)
Show Figures

Figure 1

16 pages, 3744 KB  
Article
Structure, Morphology, and Faceting of TiO2 Photocatalysts by the Debye Scattering Equation Method. The P25 and P90 Cases of Study
by Federica Bertolotti, Anna Vivani, Daniele Moscheni, Fabio Ferri, Antonio Cervellino, Norberto Masciocchi and Antonietta Guagliardi
Nanomaterials 2020, 10(4), 743; https://doi.org/10.3390/nano10040743 - 13 Apr 2020
Cited by 20 | Viewed by 5800
Abstract
Characterization of functional nanocrystalline materials in terms of quantitative determination of size, size dispersion, type, and extension of exposed facets still remains a challenging task. This is particularly the case of anisotropically shaped nanocrystals (NCs) like the TiO2 photocatalysts. Here, commercially available [...] Read more.
Characterization of functional nanocrystalline materials in terms of quantitative determination of size, size dispersion, type, and extension of exposed facets still remains a challenging task. This is particularly the case of anisotropically shaped nanocrystals (NCs) like the TiO2 photocatalysts. Here, commercially available P25 and P90 titania nanopowders have been characterized by wide-angle X-ray total scattering techniques. Synchrotron data were modelled by the reciprocal space-based Debye scattering equation (DSE) method using atomistic models of NC populations (simultaneously carrying atomic and nanoscale structural features) for both anatase and rutile phases. Statistically robust descriptors are provided of size, morphology, and {101} vs. {001} facet area of truncated tetragonal bipyramids for anatase, jointly to polymorph quantification. The effects of using the proper NC shape on the X-ray diffraction pattern are analyzed in depth through DSE simulations by considering variable bipyramid aspect ratios (resulting in different {101} vs. {001} surface) and relative dispersion in a bivariate manner. We demonstrate that using prismatic NCs having equal volume and aspect ratio as bipyramids provides reasonably accurate sizes and {101} and {001} surface areas of the parent morphology. Full article
Show Figures

Figure 1

13 pages, 4245 KB  
Article
Enhanced Antibacterial Property of Facet-Engineered TiO2 Nanosheet in Presence and Absence of Ultraviolet Irradiation
by Kenichiro Hayashi, Kosuke Nozaki, Zhenquan Tan, Kazuhisa Fujita, Reina Nemoto, Kimihiro Yamashita, Hiroyuki Miura, Keiji Itaka and Satoshi Ohara
Materials 2020, 13(1), 78; https://doi.org/10.3390/ma13010078 - 22 Dec 2019
Cited by 23 | Viewed by 4101
Abstract
Titania (TiO2) has attracted much attention recently for reducing bacterial diseases by the generation of reactive oxygen species (ROS) under UV irradiation. However, demand for higher photocatalytic activity due to higher recombination of electron and hole remains. The aims of this [...] Read more.
Titania (TiO2) has attracted much attention recently for reducing bacterial diseases by the generation of reactive oxygen species (ROS) under UV irradiation. However, demand for higher photocatalytic activity due to higher recombination of electron and hole remains. The aims of this study were to make titania with higher antibacterial property and show the mechanisms of the bactericidal effect. In this study, we hydrothermally synthesized TiO2 nanosheets (NS) with highly-oriented structures. Samples were divided into five groups, depending on the fluorine/titanium ratio in the raw material, namely NS1.0, NS1.2, NS1.5, NS1.8, and NS2.0. Facet ratio and nanosheet size increased with an increase of fluorine/titanium ratio. The photocatalytic activity of TiO2 nanosheet was assessed by the generation of ROS. Hydroxyl radicals and superoxides were generated efficiently by ultraviolet light irradiation on NS1.5 and NS1.0, respectively. Antibacterial activity against Streptococcus mutans was assessed in the presence and absence of UV irradiation; NS1.0 showed superior antibacterial properties compared to commercially available TiO2 nanoparticles, under both conditions, due to the oxidation of intracellular components and cell membrane. These results together suggested TiO2 nanosheet induced bacterial cell death by oxidation, and TiO2 facet engineering resulted in enhancement of both photocatalytic and antibacterial activities of TiO2. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

30 pages, 6096 KB  
Review
Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective
by Kunlei Wang, Marcin Janczarek, Zhishun Wei, Tharishinny Raja-Mogan, Maya Endo-Kimura, Tamer M. Khedr, Bunsho Ohtani and Ewa Kowalska
Catalysts 2019, 9(12), 1054; https://doi.org/10.3390/catal9121054 - 11 Dec 2019
Cited by 56 | Viewed by 7023
Abstract
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed [...] Read more.
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive, and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications, e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania (anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional properties, including easy separation in the magnetic field, high activity, and mechanism clarification, respectively. Although anatase has been usually thought as the most active phase of titania, the co-existence of other crystalline phases accelerates the photocatalytic activity significantly, and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation and reduction reactions. It is believed that this review might be useful for the architecture design of novel nanomaterials for broad and diverse applications, including environmental purification, energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging, and antiseptic properties. Full article
Show Figures

Graphical abstract

18 pages, 3109 KB  
Article
Influence of Semiconductor Morphology on Photocatalytic Activity of Plasmonic Photocatalysts: Titanate Nanowires and Octahedral Anatase Nanoparticles
by Zhishun Wei, Maya Endo-Kimura, Kunlei Wang, Christophe Colbeau-Justin and Ewa Kowalska
Nanomaterials 2019, 9(10), 1447; https://doi.org/10.3390/nano9101447 - 11 Oct 2019
Cited by 23 | Viewed by 3686
Abstract
Octahedral anatase particles (OAP) with eight exposed and thermodynamically most stable (101) facets were prepared by an ultrasonication-hydrothermal (US-HT) reaction from potassium titanate nanowires (TNW). The precursor (TNW) and the product (OAP) of US-HT reaction were modified with nanoparticles of noble metals (Au, [...] Read more.
Octahedral anatase particles (OAP) with eight exposed and thermodynamically most stable (101) facets were prepared by an ultrasonication-hydrothermal (US-HT) reaction from potassium titanate nanowires (TNW). The precursor (TNW) and the product (OAP) of US-HT reaction were modified with nanoparticles of noble metals (Au, Ag or Pt) by photodeposition. Samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), scanning transmission electron microscopy (STEM) and time-resolved microwave conductivity (TRMC). The photocatalytic activity was investigated in three reaction systems, i.e., anaerobic dehydrogenation of methanol and oxidative decomposition of acetic acid under UV/vis irradiation, and oxidation of 2-propanol under vis irradiation. It was found that hydrogen liberation correlated with work function of metals, and thus the most active were platinum-modified samples. Photocatalytic activities of bare and modified OAP samples were much higher than those of TNW samples, probably due to anatase presence, higher crystallinity and electron mobility in faceted NPs. Interestingly, noble metals showed different influence on the activity depending on the semiconductor support, i.e., gold-modified TNW and platinum-modified OAP exhibited the highest activity for acetic acid decomposition, whereas silver- and gold-modified samples were the most active under vis irradiation, respectively. It is proposed that the form of noble metal (metallic vs. oxidized) as well as the morphology (well-organized vs. uncontrolled) have a critical effect on the overall photocatalytic performance. TRMC analysis confirmed that fast electron transfer to noble metal is a key factor for UV activity. It is proposed that the efficiency of plasmonic photocatalysis (under vis irradiation) depends on the oxidation form of metal (zero-valent preferable), photoabsorption properties (broad localized surface plasmon resonance (LSPR)), kind of metal (silver) and counteraction of “hot” electrons back transfer to noble metal NPs (by controlled morphology and high crystallinity). Full article
(This article belongs to the Special Issue Nano‐Photocatalytic Materials: Possibilities and Challenges)
Show Figures

Graphical abstract

8 pages, 1926 KB  
Article
Hydrothermal Synthesis of Pseudocubic Rutile-Type Titania Particles
by Makoto Kobayashi, Hideki Kato, Takamichi Miyazaki and Masato Kakihana
Ceramics 2019, 2(1), 56-63; https://doi.org/10.3390/ceramics2010005 - 18 Jan 2019
Cited by 7 | Viewed by 4641
Abstract
The functional properties of materials depend strongly on their morphologies. Here, the hydrothermal synthesis of rutile-type titania crystals with pseudocubic shapes using a water-soluble titanium complex is reported. This approach does not require extra additives or doping. Transmission electron microscopy and selected-area electron [...] Read more.
The functional properties of materials depend strongly on their morphologies. Here, the hydrothermal synthesis of rutile-type titania crystals with pseudocubic shapes using a water-soluble titanium complex is reported. This approach does not require extra additives or doping. Transmission electron microscopy and selected-area electron diffraction analysis revealed that they exposed high-index facets, such as {121}, and high-energy facets, such as {001}, which do not usually appear in rutile crystal. In terms of the formation of steps and kinks on pseudocubic rutile and coexisting anatase and brookite nanoparticles, the adsorption of nanoparticles might inhibit crystal growth, resulting in the formation of crystals with uncommon shapes exposing high-index and high-energy facets. Full article
(This article belongs to the Special Issue Novel Processing Routes of Ceramics for Functional Applications)
Show Figures

Graphical abstract

15 pages, 3061 KB  
Article
Mechanistic Study on Facet-Dependent Deposition of Metal Nanoparticles on Decahedral-Shaped Anatase Titania Photocatalyst Particles
by Kenta Kobayashi, Mai Takashima, Mai Takase and Bunsho Ohtani
Catalysts 2018, 8(11), 542; https://doi.org/10.3390/catal8110542 - 13 Nov 2018
Cited by 12 | Viewed by 5220
Abstract
Facet-selective gold or platinum-nanoparticle deposition on decahedral-shaped anatase titania particles (DAPs) exposing {001} and {101} facets via photodeposition (PD) from metal-complex sources was reexamined using DAPs prepared with gas-phase reaction of titanium (IV) chloride and oxygen by quantitatively evaluating the area deposition density [...] Read more.
Facet-selective gold or platinum-nanoparticle deposition on decahedral-shaped anatase titania particles (DAPs) exposing {001} and {101} facets via photodeposition (PD) from metal-complex sources was reexamined using DAPs prepared with gas-phase reaction of titanium (IV) chloride and oxygen by quantitatively evaluating the area deposition density on {001} and {101} and comparing with the results of deposition from colloidal metal particles in the dark (CDD) or under photoirradiation (CDL). The observed facet selectivity, more or less {101} preferable, depended mainly on pH of the reaction suspensions and was almost non-selective at low pH regardless of the deposition method, PD or CDL, and the metal-source materials. Based on the results, the present authors propose that facet selectivity is attributable to surface charges (zeta potential) depending on the kind of facets, {001} and {101}, and pH of the reaction mixture and that this concept can explain the observed facet selectivity and possibly the reported facet selectivity without taking into account facet-selective reaction of photoexcited electrons and positive holes on {101} and {001} facets, respectively. Full article
(This article belongs to the Special Issue Emerging Trends in TiO2 Photocatalysis and Applications)
Show Figures

Figure 1

26 pages, 6451 KB  
Review
On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems
by Marcin Janczarek and Ewa Kowalska
Catalysts 2017, 7(11), 317; https://doi.org/10.3390/catal7110317 - 27 Oct 2017
Cited by 242 | Viewed by 14595
Abstract
Modification of titania with copper is a promising way to enhance the photocatalytic performance of TiO2. The enhancement means the significant retardation of charge carriers’ recombination ratio and the introduction of visible light activity. This review focuses on two main ways [...] Read more.
Modification of titania with copper is a promising way to enhance the photocatalytic performance of TiO2. The enhancement means the significant retardation of charge carriers’ recombination ratio and the introduction of visible light activity. This review focuses on two main ways of performance enhancement by copper species—i.e., originated from plasmonic properties of zero-valent copper (plasmonic photocatalysis) and heterojunctions between semiconductors (titania and copper oxides). The photocatalytic performance of copper-modified titania is discussed for oxidative reaction systems due to their importance for prospective applications in environmental purification. The review consists of the correlation between copper species and corresponding variants of photocatalytic mechanisms including novel systems of cascade heterojunctions. The problem of stability of copper species on titania, and the methods of its improvement are also discussed as important factors for future applications. As a new trend in the preparation of copper-modified titania photocatalyst, the role of particle morphology (faceted particles, core-shell structures) is also described. Finally, in the conclusion section, perspectives, challenges and recommendations for future research on copper-modified titania are formulated. Full article
(This article belongs to the Special Issue Titanium Dioxide Photocatalysis)
Show Figures

Figure 1

15 pages, 2758 KB  
Article
Influence of Post-Treatment Operations on Structural Properties and Photocatalytic Activity of Octahedral Anatase Titania Particles Prepared by an Ultrasonication-Hydrothermal Reaction
by Zhishun Wei, Ewa Kowalska and Bunsho Ohtani
Molecules 2014, 19(12), 19573-19587; https://doi.org/10.3390/molecules191219573 - 26 Nov 2014
Cited by 23 | Viewed by 6464
Abstract
The influence of changes in structural and physical properties on the photocatalytic activity of octahedral anatase particles (OAPs), exposing eight equivalent {101} facets, caused by calcination (2 h) in air or grinding (1 h) in an agate mortar was studied with samples prepared [...] Read more.
The influence of changes in structural and physical properties on the photocatalytic activity of octahedral anatase particles (OAPs), exposing eight equivalent {101} facets, caused by calcination (2 h) in air or grinding (1 h) in an agate mortar was studied with samples prepared by ultrasonication (US; 1 h)–hydrothermal reaction (HT; 24 h, 433 K). Calcination in air at temperatures up to 1173 K induced particle shape changes, evaluated by aspect ratio (AR; d001/d101 = depth vertical to anatase {001} and {101} facets estimated by the Scherrer equation with data obtained from X-ray diffraction (XRD) patterns) and content of OAP and semi-OAP particles, without transformation into rutile. AR and OAP content, as well as specific surface area (SSA), were almost unchanged by calcination at temperatures up to 673 K and were then decreased by elevating the calcination temperature, suggesting that calcination at a higher temperature caused dull-edging and particle sintering, the latter also being supported by the analysis of particle size using XRD patterns and scanning electron microscopic (SEM) images. Time-resolved microwave conductivity (TRMC) showed that the maximum signal intensity (Imax), corresponding to a product of charge-carrier density and mobility, and signal-decay rate, presumably corresponding to reactivity of charge carriers, were increased with increase in AR, suggesting higher photocatalytic activity of OAPs than that of dull-edged particles. Grinding also decreased the AR, indicating the formation of dull-edged particles. The original non-treated samples showed activities in the oxidative decomposition of acetic acid (CO2 system) and dehydrogenation of methanol (H2 system) comparable to and lower than those of a commercial anatase titania (Showa Denko Ceramics FP-6), respectively. The activities of calcined and ground samples for the CO2 system and H2 system showed almost linear relations with AR and Imax, respectively, suggesting that those activities may depend on different properties. Full article
(This article belongs to the Special Issue Photocatalysis)
Show Figures

Graphical abstract

Back to TopTop