Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = extended-spectrum resistant (ESC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 275
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

25 pages, 3717 KiB  
Article
Genotypic Characterisation and Risk Assessment of Virulent ESBL-Producing E. coli in Chicken Meat in Tunisia: Insights from Multi-Omics Machine Learning Perspective
by Khaled Abdallah, Ghassan Tayh, Elaa Maamar, Amine Mosbah, Omar Abbes, Ismail Fliss and Lilia Messadi
Microbiol. Res. 2025, 16(6), 131; https://doi.org/10.3390/microbiolres16060131 - 18 Jun 2025
Viewed by 792
Abstract
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of [...] Read more.
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of chicken meat with Escherichia coli, assess the prevalence of strains resistant to extended-spectrum cephalosporins (ESC), and characterise the genes associated with resistance and virulence. A standardised procedure involving enrichment in buffered peptone water and isolation of E. coli on MacConkey agar was carried out on 100 chicken carcasses. Subsequently, the sensitivity of the strains was tested against 21 antibiotic discs. Additionally, ESBL production was detected using a double synergy test. Specific PCRs were employed to identify resistance to critical antibiotics in human medicine (such as cephalosporins, carbapenems, fluoroquinolones, and colistin), as well as the presence of virulence genes. The contamination rate of chicken meat with E. coli was 82%. The prevalence of ESC-resistant isolates was 91.2%. Furthermore, 76.5% of the isolates exhibited ESBL production, with the different beta-lactamase genes (blaCTXM, blaTEM, and blaSHV). The mcr-1 gene, associated with colistin resistance, was detected in four strains (5.9%). Some isolates also carried resistance genes such as sul1, sul2, sul3, tetA, tetB, qnrB, and qnrS. In addition, several virulence genes were detected. In our study, we were able to link the expression of AMR to the iron metabolic regulatory elements using a multimodal machine learning approach; this mechanism could be targeted to mitigate the bacteria virulence and resistance. The high prevalence of ESBL-producing and multi-resistant E. coli strains in poultry presents significant human health risks, with the focus on antibiotic-resistant uropathogenic strains since poultry meat could be an important source of uropathogenic strains, underscoring the danger of hard-to-treat urinary tract infections, stressing the need for controlled antibiotic use and thorough monitoring. Full article
Show Figures

Figure 1

25 pages, 1360 KiB  
Article
Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria
by Hajer Ziadi, Fadela Chougrani, Abderrahim Cheriguene, Leticia Carballeira, Vanesa García and Azucena Mora
Antibiotics 2025, 14(5), 485; https://doi.org/10.3390/antibiotics14050485 - 9 May 2025
Viewed by 1267
Abstract
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal [...] Read more.
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal diversity, and antibiotic resistance profiles of extended-spectrum cephalosporin (ESC)-E. coli and K. pneumoniae causing UTIs in humans in the Tebessa region of Algeria. Methods: Forty E. coli and 17 K. pneumoniae isolates exhibiting ESC-resistance were recovered (July 2022–January 2024) from urine samples of patients at three healthcare facilities to be phenotypically and genotypically characterized. Whole genome sequencing (WGS) was performed on the ST1193 clone. Results: Among K. pneumoniae isolates, all except one harbored CTX-M-15, with a single isolate carrying blaCTX-M-194. Additionally, two K. pneumoniae isolates co-harboring blaCTX-M-15 and blaNDM exhibited phenotypic and genotypic hypervirulence traits. Fluoroquinolone resistance (FQR) was detected in 94.1% of K. pneumoniae isolates. The E. coli isolates carried diverse ESC-resistance genes, including CTX-M-15 (87.5%), CTX-M-27 (5%), CTX-M-1, CMY-59, and CMY-166 (2.5% each). Co-carriage of blaESC and blaOXA-48 was identified in three E. coli isolates, while 62.5% exhibited FQR. Phylogenetic analysis revealed that 52.5% of E. coli belonged to phylogroup B2, including the high-risk clonal complex (CC)131 CH40-30 (17 isolates) and ST1193 (one isolate). In silico analysis of the ST1193 genome determined O75:H5-B2 (CH14-64), and the carriage of IncI1-I(Alpha) and IncF [F-:A1:B10] plasmids. Notably, core genome single-nucleotide polymorphism (SNP) analysis demonstrated high similarity between the Algerian ST1193 isolate and a previously annotated genome from a hospital in Northwest Spain. Conclusions: This study highlights the spread and genetic diversity of E. coli CC131 CH40-30 and hypervirulent K. pneumoniae clones in Algeria. It represents the first report of a CTX-M-15-carrying E. coli ST1193 in the region. The findings emphasize the urgent need for antibiotic optimization programs and enhanced surveillance to curb the dissemination of high-risk clones that pose an increasing public health threat in Algeria. A simplified method based on virulence traits for E. coli and K. pneumoniae is proposed here for antimicrobial resistance (AMR) monitoring. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

17 pages, 958 KiB  
Article
First Report of CTX-M-32 and CTX-M-101 in Proteus mirabilis from Zagreb, Croatia
by Branka Bedenić, Josefa Luxner, Gernot Zarfel, Andrea Grisold, Mirela Dobrić, Branka Đuras-Cuculić, Mislav Kasalo, Vesna Bratić, Verena Dobretzberger and Ivan Barišić
Antibiotics 2025, 14(5), 462; https://doi.org/10.3390/antibiotics14050462 - 30 Apr 2025
Viewed by 560
Abstract
Background/Objectives: Proteus mirabilis is a frequent causative agent of urinary tract and wound infections in community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESC) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpC). Here, we report the [...] Read more.
Background/Objectives: Proteus mirabilis is a frequent causative agent of urinary tract and wound infections in community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESC) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpC). Here, we report the characteristics of ESBLs and p-AmpC β-lactamases encountered among hospital and community isolates of P. mirabilis in two hospitals and the community settings in Zagreb, Croatia. Methods: Antibiotic susceptibility testing was performed using disk-diffusion and broth dilution methods. The double-disk-synergy test (DDST) and inhibitor-based test with clavulanic and cloxacillin were applied to screen for ESBLs and p-AmpC, respectively. PCR investigated the nature of ESBL, carbapenemases, and fluoroquinolone resistance determinants. Selected strains were subjected to molecular analysis of resistance traits by the Inter-Array CarbaResist Kit and whole-genome sequencing (WGS). Results: In total, 39 isolates were analyzed. Twenty-two isolates phenotypically tested positive for p-AmpC and seventeen for ESBLs. AmpC-producing organisms exhibited uniform resistance to amoxicillin-clavulanate, ESC, ciprofloxacin, and sulphamethoxazole-trimethoprim, and uniform susceptibility to carbapenems and piperacillin-tazobactam and all harbored blaCMY-16 genes. ESBL-positive isolates demonstrated resistance to amoxicillin-clavulanate, cefuroxime, cefotaxime, ceftriaxone, and ciprofloxacin but variable susceptibility to cefepime and aminoglycosides. They possessed blaCTX-M genes that belong to cluster 1 (n = 5) or 9 (n = 12), with CTX-M-14 and CTX-M-65 as the dominant allelic variants. Conclusions: The study demonstrated the presence of CTX-M ESBL and CMY-16 p-AmpC among hospital and community-acquired isolates. AmpC-producing isolates showed uniform resistance patterns, whereas ESBL-positive strains had variable degrees of susceptibility/resistance to non-β-lactam antibiotics, resulting in more diverse susceptibility patterns. The study found an accumulation of various resistance determinants among hospital and outpatient isolates, mandating improvement in detecting β-lactamases during routine laboratory work. Full article
(This article belongs to the Special Issue Progress and Challenges in the Antibiotic Treatment of Infections)
Show Figures

Figure 1

15 pages, 1700 KiB  
Article
Modeling the Transmission of ESBL and AmpC-Producing Escherichia coli in Denmark: A Compartmental and Source Attribution Approach
by Maja Lykke Brinch, Ana Sofia Ribeiro Duarte, Ofosuhene O. Apenteng and Tine Hald
Zoonotic Dis. 2025, 5(1), 7; https://doi.org/10.3390/zoonoticdis5010007 - 18 Mar 2025
Viewed by 891
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a [...] Read more.
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a range of food and animal sources. We developed a compartmental model encompassing farmers, pet owners, and the general population. Additionally, we applied an established source attribution model to estimate the contributions to the transmission of different sources using Danish surveillance data on the distribution of resistance genes in E. coli. Our findings highlight the central role of human-to-human transmission while also showing the significant contributions of food and animal sources to the spread of ESC-EC in sporadic human infections. Imported food, pets, and livestock were estimated to contribute importantly to human infections. The results emphasize the complexity of ESC-EC transmission dynamics and the critical value of employing a One Health approach in modeling disease transmission and in the development of targeted intervention strategies. Full article
Show Figures

Figure 1

20 pages, 2236 KiB  
Review
Evolution of β-Lactam Antibiotic Resistance in Proteus Species: From Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases to Carbapenemases
by Branka Bedenić, Mladen Pospišil, Marina Nađ and Daniela Bandić Pavlović
Microorganisms 2025, 13(3), 508; https://doi.org/10.3390/microorganisms13030508 - 25 Feb 2025
Cited by 2 | Viewed by 1693
Abstract
The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. [...] Read more.
The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria, Proteus mirabilis, an important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review’s aim was to collate and examine recent studies investigating β-lactam resistance phenotypes and mechanisms of Proteus species and the global significance of its β-lactam resistance evolution. Moreover, the genetic background of resistance traits and the role of mobile genetic elements in the dissemination of resistance genes were evaluated. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales, including Proteus spp., is mostly due to expression of carbapenemases of class A (KPC); class B (metallo-β-lactamases or MBLs of IMP, VIM, or NDM series); or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52; yet, lately, it has been replaced by CTX-M variants, particularly CTX-M-14. ESC resistance can also be mediated by p-AmpC, with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHDL spreads rapidly undetected, due to its low-level resistance to carbapenems. The amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits is leading to multidrug or extensively drug-resistant phenotypes. Full article
(This article belongs to the Special Issue Antimicrobial Resistance: Challenges and Innovative Solutions)
Show Figures

Figure 1

13 pages, 1762 KiB  
Article
Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population
by Ahlem Mahjoub Khachroub, Meriem Souguir, Pierre Châtre, Nour Elhouda Bouhlel, Nadia Jaidane, Antoine Drapeau, Marah El Kantaoui, Sana Azaiez, Jean-Yves Madec, Wejdene Mansour and Marisa Haenni
Pathogens 2024, 13(8), 624; https://doi.org/10.3390/pathogens13080624 - 26 Jul 2024
Viewed by 1367
Abstract
Enterobacterales resistant to extended-spectrum cephalosporins (ESC) are a marker of the antimicrobial resistance (AMR) burden. They are infecting humans, but the intestinal microbiota can also be transiently colonized without developing symptoms. Healthy carriage can promote silent dissemination of resistant bacteria, and data on [...] Read more.
Enterobacterales resistant to extended-spectrum cephalosporins (ESC) are a marker of the antimicrobial resistance (AMR) burden. They are infecting humans, but the intestinal microbiota can also be transiently colonized without developing symptoms. Healthy carriage can promote silent dissemination of resistant bacteria, and data on this colonization are often lacking. Between 2021 and 2023, a sampling of healthy Tunisian people was carried out. Fecal samples (n = 256) were plated on selective agar, and all collected isolates were characterized by phenotypic (antibiograms) and genomic (whole-genome sequencing) methods. A total of 26 (26/256, 10.2%) isolates were collected, including 24 Escherichia coli and 2 Klebsiella pneumoniae. In total, 17 isolates (15 E. coli and 2 K. pneumoniae) presented an ESBL phenotype conferred by the blaCTX-M-15 gene, and 9 E. coli isolates presented an AmpC phenotype conferred by the blaDHA-1 gene. K. pneumoniae belonged to ST1564 and ST313, while E. coli belonged to diverse STs including the pandemic ST131 clone. Clonally related ST349 E. coli isolates carrying the blaDHA-1 gene were found in nine individuals. In parallel, four blaCTX-M-15 -positive E. coli isolates carried this ESC-resistance gene on an epidemic plasmid IncF/F-:A-:B53 previously identified in Tunisian pigeons and fish. These findings highlight the spread of genetically diverse ESC-resistant Enterobacterales as well as an epidemic plasmid in Tunisia, emphasizing the need for antimicrobial stewardship to limit the transmission of these resistances in the Tunisian population. Full article
(This article belongs to the Special Issue Molecular Epidemiology of Multidrug-Resistant Bacteria)
Show Figures

Figure 1

23 pages, 6380 KiB  
Article
Comparison of IncK-blaCMY-2 Plasmids in Extended-Spectrum Cephalosporin-Resistant Escherichia coli Isolated from Poultry and Humans in Denmark, Finland, and Germany
by Meiyao Che, Ana Herrero Fresno, Cristina Calvo-Fernandez, Henrik Hasman, Paula E. Kurittu, Annamari Heikinheimo and Lisbeth Truelstrup Hansen
Antibiotics 2024, 13(4), 349; https://doi.org/10.3390/antibiotics13040349 - 10 Apr 2024
Cited by 1 | Viewed by 2762
Abstract
Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, [...] Read more.
Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0–60 and 13–90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed further characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2 plasmids harbor resistance factors to drugs used in veterinary medicine. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

17 pages, 1376 KiB  
Article
Genotypic Characterization of Uropathogenic Escherichia coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats
by Sophie Aurich, Silver Anthony Wolf, Ellen Prenger-Berninghoff, Lakshmipriya Thrukonda, Torsten Semmler and Christa Ewers
Antibiotics 2024, 13(1), 38; https://doi.org/10.3390/antibiotics13010038 - 30 Dec 2023
Cited by 10 | Viewed by 2524
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. [...] Read more.
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. coli lineages among UTI isolates from dogs and cats and to assess their overlaps with human UPEC lineages. We analysed 315 non-duplicate E. coli isolates from the UT of dogs (198) and cats (117) collected in central Germany in 2019 and 2020 utilizing whole genome sequencing and in silico methods. Phylogroup B2 (77.8%), dog-associated sequence type (ST) 372 (18.1%), and human-associated ST73 (16.6%), were predominant. Other STs included ST12 (8.6%), ST141 (5.1%), ST127 (4.8%), and ST131 (3.5%). Among these, 58.4% were assigned to the ExPEC group and 51.1% to the UPEC group based on their virulence associated gene (VAG) profile (ExPEC, presence of ≥VAGs: papAH and/or papC, sfa/focG, afaD/draBC, kpsMTII, and iutA; UPEC, additionally cnf1 or hlyD). Extended-spectrum cephalosporin (ESC) resistance mediated by extended-spectrum β-lactamases (ESBL) and AmpC-β-lactamase was identified in 1.9% of the isolates, along with one carbapenemase-producing isolate and one isolate carrying a mcr gene. Low occurrence of ESC-resistant or multidrug-resistant (MDR) isolates (2.9%) in the two most frequently detected STs implies that E. coli isolated from UTIs of companion animals are to a lesser extent associated with resistance, but possess virulence-associated genes enabling efficient UT colonization and carriage. Detection of human-related pandemic lineages suggests interspecies transmission and underscores the importance of monitoring companion animals. Full article
Show Figures

Figure 1

16 pages, 1431 KiB  
Article
Prevalence and Transmission of Extended-Spectrum Cephalosporin (ESC) Resistance Genes in Escherichia coli Isolated from Poultry Production Systems and Slaughterhouses in Denmark
by Meiyao Che, Tina Birk and Lisbeth Truelstrup Hansen
Antibiotics 2023, 12(11), 1602; https://doi.org/10.3390/antibiotics12111602 - 8 Nov 2023
Cited by 7 | Viewed by 1659
Abstract
The emergence of extended-spectrum cephalosporin (ESC)-resistant Escherichia coli is a global concern. This study aimed to assess the prevalence and transmission of ESC-resistant E. coli in the Danish broiler production system. Samples from two vertically integrated Production Systems (1 and 2) and two [...] Read more.
The emergence of extended-spectrum cephalosporin (ESC)-resistant Escherichia coli is a global concern. This study aimed to assess the prevalence and transmission of ESC-resistant E. coli in the Danish broiler production system. Samples from two vertically integrated Production Systems (1 and 2) and two slaughterhouses (A and B) were analyzed (n = 943) for the occurrence of ESC-resistant E. coli from 2015 to 2018. ESC-resistant E. coli isolates were whole-genome sequenced (WGS) for characterization of the multi-locus sequence type (MLST), antibiotic resistance genes, virulence genes, and plasmid replicon types. An ad hoc core genome (cg) MLST based on 2513 alleles was used to examine the genetic relatedness among isolates. The prevalence of ESC-resistant E. coli in the conventional Production System 1 was 2.7%, while in Production System 2 the prevalence was 26.7% and 56.5% for samples from the conventional and organic production, respectively. The overall prevalence of ESC-resistant E. coli in broiler thigh and fecal samples ranged from 19.3% in Slaughterhouse A to 22.4% in Slaughterhouse B. In total, 162 ESC-resistant E. coli were isolated and shown to belong to 16 different sequence types (STs). The most prevalent STs were ST2040 (n = 85) and ST429 (n = 22). Seven ESC resistance genes were detected: blaCMY-2 (n = 119), blaTEM-52B (n = 16), blaCTX-M-1 (n = 5), blaTEM-52C (n = 3), blaCTX-M-14 (n = 1), blaSHV-12 (n = 1), and up-regulation of ampC (n = 16), with an unknown resistance gene in one isolate (n = 1). The carriage of blaCMY-2 in 119 isolates was primarily associated with IncI1 (n = 87), and IncK plasmids (n = 31). Highly similar blaCMY-2 carrying E. coli isolates from ST429 were found in production systems as well as in slaughterhouses. In conclusion, findings from this study indicate that ESC-resistant E. coli are transferred vertically from farms in the production systems to slaughterhouses with the potential to enter the food supply. Full article
Show Figures

Figure 1

12 pages, 7417 KiB  
Article
Clonal, Plasmidic and Genetic Diversity of Multi-Drug-Resistant Enterobacterales from Hospitalized Patients in Tripoli, Libya
by Nada Elgriw, Véronique Métayer, Antoine Drapeau, Pauline François, Sana Azaiez, Maha Mastouri, Hajer Rhim, Adam Elzagheid, Najeeb Soufiyah, Jean-Yves Madec, Cherifa Chaouch, Wejdene Mansour and Marisa Haenni
Antibiotics 2023, 12(9), 1430; https://doi.org/10.3390/antibiotics12091430 - 10 Sep 2023
Cited by 1 | Viewed by 2093
Abstract
Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Enterobacterales is a major issue in public health. Carbapenem resistance in particular is associated with increased morbidity and mortality. Moreover, such resistance is often co-harbored with resistance to non-beta-lactam antibiotics, and pathogens quickly become multi-drug-resistant [...] Read more.
Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Enterobacterales is a major issue in public health. Carbapenem resistance in particular is associated with increased morbidity and mortality. Moreover, such resistance is often co-harbored with resistance to non-beta-lactam antibiotics, and pathogens quickly become multi-drug-resistant (MDR). Only a few studies have been published on AMR in Libyan hospitals, but all reported worrisome results. Here, we studied 54 MDR isolates that were collected from 49 patients at the Tripoli University Hospital between 2019 and 2021. They were characterized using phenotypic methods, PCR and PFGE, and a sub-set of isolates were short- and long-read whole-genome sequenced. The results showed the frequent occurrence of Klebsiella pneumoniae (49/54), among which several high-risk clones were responsible for the spread of resistance, namely, ST11, ST17, ST101 and ST147. ESC and carbapenem resistance was due to a wide variety of enzymes (CTX-M, OXA-48, NDM, KPC), with their corresponding genes carried by different plasmids, including IncF-IncHI2 and IncF-IncR hybrids. This study highlights that implementation of infection prevention, control and surveillance measures are needed in Libya to fight against AMR. Full article
Show Figures

Figure 1

10 pages, 2323 KiB  
Article
Occurrence of ESBL- and AmpC-Producing E. coli in French Griffon Vultures Feeding on Extensive Livestock Carcasses
by Marisa Haenni, Laetitia Du Fraysseix, Pauline François, Antoine Drapeau, Tristan Bralet, Jean-Yves Madec, Thierry Boulinier and Olivier Duriez
Antibiotics 2023, 12(7), 1160; https://doi.org/10.3390/antibiotics12071160 - 7 Jul 2023
Cited by 1 | Viewed by 1807
Abstract
Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and [...] Read more.
Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and multi-drug-resistant (MDR) bacteria, partially due to feeding stations that are provisioned with livestock carcasses from intensive farming. Here we investigated whether griffon vultures (Gyps fulvus) from two populations located in the French Alps, which feed on livestock carcasses from extensive farms, may carry such resistant bacteria. Phenotypic and genotypic characterization showed an 11.8% proportion of ESC-resistant bacteria, including five extended-spectrum beta-lactamase (ESBL)-producing and one AmpC-producing E. coli. The five ESBL-positive E. coli were clonal and all came from the same vulture population, proving their spread between animals. The ESBL phenotype was due to a blaCTX-M-15 gene located on the chromosome. Both ESBL- and AmpC-positive E. coli belonged to minor STs (ST212 and ST3274, respectively); interestingly, ST212 has already been identified in wild birds around the world, including vultures. These results suggest that actions are needed to mitigate the spread of MDR bacteria through wild birds, particularly in commensal species. Full article
(This article belongs to the Special Issue Wildlife Sentinels of Antimicrobial Resistance)
Show Figures

Figure 1

18 pages, 351 KiB  
Article
Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL—AmpC Producing E. coli as An Example—Challenges and Perspectives
by Sara Perestrelo, Ana Amaro, Michael S. M. Brouwer, Lurdes Clemente, Ana Sofia Ribeiro Duarte, Annemarie Kaesbohrer, Renata Karpíšková, Vicente Lopez-Chavarrias, Dearbháile Morris, Deirdre Prendergast, Angela Pista, Leonor Silveira, Magdalena Skarżyńska, Rosemarie Slowey, Kees T. Veldman, Magdalena Zając, Catherine Burgess and Julio Alvarez
Antibiotics 2023, 12(3), 552; https://doi.org/10.3390/antibiotics12030552 - 10 Mar 2023
Cited by 16 | Viewed by 4859
Abstract
Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, [...] Read more.
Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC β-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here. Full article
(This article belongs to the Special Issue Epidemiology of ESBL-Producing Enterobacteriaceae)
12 pages, 2348 KiB  
Article
Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions
by Tanya Laird, David Jordan, John Pluske, Josie Mansfield, Stuart Wilkinson, David Cadogan, Sam Abraham and Mark O’Dea
Animals 2023, 13(6), 959; https://doi.org/10.3390/ani13060959 - 7 Mar 2023
Viewed by 1716
Abstract
Current interventions targeting antimicrobial resistance (AMR), a major impact on commercial pork production, focus on reducing the emergence of AMR by minimising antimicrobial usage through antimicrobial stewardship and a range of alternative control methods. Although these strategies require continued advancement, strategies that directly [...] Read more.
Current interventions targeting antimicrobial resistance (AMR), a major impact on commercial pork production, focus on reducing the emergence of AMR by minimising antimicrobial usage through antimicrobial stewardship and a range of alternative control methods. Although these strategies require continued advancement, strategies that directly aim to reduce or eliminate existing antimicrobial resistant bacteria, specifically bacteria resistant to critically important antimicrobials (CIAs), need to be investigated and established. This study established an in vivo model for examining the effects of postbiotics, in the form of Lactobacillus acidophilus fermentation products (LFP) and Saccharomyces cerevisiae fermentation products (SFP), on the shedding of extended-spectrum cephalosporin (ESC)-resistant E. coli. The model was successful in demonstrating the presence of ESC-resistant E. coli as evidenced by its detection in 62 of 64 pigs. There was a strong trend (p = 0.065) for the SFP postbiotics to reduce the shedding of ESC-resistant E. coli, indicating positive impacts of this additive on reducing the carriage of bacteria resistant to CIAs. Overall, this in vivo model enables future evaluation of strategies targeting ESC-resistant E. coli while increasing our knowledge on the carriage of ESC-resistant E. coli in pigs. Full article
Show Figures

Figure 1

18 pages, 991 KiB  
Article
Clonal Dissemination of Extended-Spectrum Cephalosporin-Resistant Enterobacterales between Dogs and Humans in Households and Animal Shelters of Romania
by Andreea Paula Cozma, Cristina Mihaela Rimbu, Flavia Zendri, Iuliana Elena Maciuca and Dorina Timofte
Antibiotics 2022, 11(9), 1242; https://doi.org/10.3390/antibiotics11091242 - 13 Sep 2022
Cited by 12 | Viewed by 2817
Abstract
Faecal carriage of extended-spectrum cephalosporin-resistant (ESC-R) Enterobacterales in healthy pets is a concerning issue. This study aimed to determine the prevalence, genetic background, and potential for interspecies transmission of these bacteria between dogs and humans within the same household (HH) or shelter environment [...] Read more.
Faecal carriage of extended-spectrum cephalosporin-resistant (ESC-R) Enterobacterales in healthy pets is a concerning issue. This study aimed to determine the prevalence, genetic background, and potential for interspecies transmission of these bacteria between dogs and humans within the same household (HH) or shelter environment in Romania. Faecal samples (n = 263) collected from healthy dogs (n = 102), their owners (n = 32), as well as dogs (n = 110) and staff (n = 19) from dog shelters, were screened for ESC-R carriage. Clonal relatedness of canine and human Escherichia coli isolates was established using Fourier Transform Infrared Spectroscopy (FTIR), followed by Illumina WGS of selected isolates. The highest prevalence of ESC-R Enterobacterales faecal carriage was identified in staff working at dog shelters (78.9%), followed by dogs from households (44.11%), dog owners (43.7%), and dogs from shelters (27%). FTIR identified 15 clusters of closely related E. coli isolates, including dog and human isolates from the same environment. Co-carriage of ESC-R isolates in both the dog and owner was identified in 12 HHs (37.5%), with two HHs (6%) having both the owner and dog carrying isolates with identical FTIR spectra, phylogroup, resistance genes, and Inc plasmids. Major ExPEC lineages such as ST127, ST10, ST155, and ST88 were detected in human and dog isolates. Our study revealed a high prevalence of faecal ESC-R E. coli carriage in both dogs and humans from Romanian households and shelters, where bidirectional clonal transmission between humans and dogs is likely. Furthermore, we identified ESC-R Enterobacterales co-carriage in people and dogs sharing the same environment using FTIR, demonstrating its value in AMR surveillance for humans and animals. Full article
(This article belongs to the Special Issue Epidemiology of ESBL-Producing Enterobacteriaceae)
Show Figures

Figure 1

Back to TopTop