Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (50,452)

Search Parameters:
Keywords = experiment proposal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 804 KiB  
Article
Beyond Classical AI: Detecting Fake News with Hybrid Quantum Neural Networks
by Volkan Altıntaş
Appl. Sci. 2025, 15(15), 8300; https://doi.org/10.3390/app15158300 (registering DOI) - 25 Jul 2025
Abstract
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully [...] Read more.
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully connected neural layers with a parameterized quantum circuit, enabling the processing of textual data within both classical and quantum computational domains. To assess its effectiveness, we conducted experiments on the widely used LIAR dataset utilizing Term Frequency–Inverse Document Frequency (TF-IDF) features, as well as transformer-based DistilBERT embeddings. The experimental results demonstrate that the HQDNN achieves a superior recall performance—92.58% with TF-IDF and 94.40% with DistilBERT—surpassing traditional machine learning models such as Logistic Regression, Linear SVM, and Multilayer Perceptron. Additionally, we compare the HQDNN with SetFit, a recent CPU-efficient few-shot transformer model, and show that while SetFit achieves higher precision, the HQDNN significantly outperforms it in recall. Furthermore, an ablation experiment confirms the critical contribution of the quantum component, revealing a substantial drop in performance when the quantum layer is removed. These findings highlight the potential of hybrid quantum–classical models as effective and compact alternatives for high-sensitivity classification tasks, particularly in domains such as fake news detection. Full article
18 pages, 2134 KiB  
Article
Flow Field Reconstruction and Prediction of Powder Fuel Transport Based on Scattering Images and Deep Learning
by Hongyuan Du, Zhen Cao, Yingjie Song, Jiangbo Peng, Chaobo Yang and Xin Yu
Sensors 2025, 25(15), 4613; https://doi.org/10.3390/s25154613 - 25 Jul 2025
Abstract
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under [...] Read more.
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under various flow rate conditions. Based on the acquired scattering images, a prediction and reconstruction method was developed using a deep network framework composed of a Stacked Autoencoder (SAE), a Backpropagation Neural Network (BP), and a Long Short-Term Memory (LSTM) model. The proposed framework enables accurate classification and prediction of the dynamic evolution of flow structures based on learned representations from scattering images. Experimental results show that the feature vectors extracted by the SAE form clearly separable clusters in the latent space, leading to high classification accuracy under varying flow conditions. In the prediction task, the feature vectors predicted by the LSTM exhibit strong agreement with ground truth, with average mean square error, mean absolute error, and r-square values of 0.0027, 0.0398, and 0.9897, respectively. Furthermore, the reconstructed images offer a visual representation of the changing flow field, validating the model’s effectiveness in structure-level recovery. These results suggest that the proposed method provides reliable support for future real-time prediction of powder fuel mass flow rates based on optical sensing and imaging techniques. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2024–2025)
20 pages, 392 KiB  
Article
Digital Economy and Chinese-Style Modernization: Unveiling Nonlinear Threshold Effects and Inclusive Policy Frameworks for Global Sustainable Development
by Tao Qi, Wenhui Liu and Xiao Chang
Economies 2025, 13(8), 215; https://doi.org/10.3390/economies13080215 (registering DOI) - 25 Jul 2025
Abstract
This study focuses on the impact of China’s digital economy on sustainable modernization from 2011 to 2021, using provincial panel data for empirical analysis. By applying threshold and mediation models, we find that the digital economy promotes modernization through industrial upgrading (with a [...] Read more.
This study focuses on the impact of China’s digital economy on sustainable modernization from 2011 to 2021, using provincial panel data for empirical analysis. By applying threshold and mediation models, we find that the digital economy promotes modernization through industrial upgrading (with a mediating effect of 38%) and trade openness (coefficient = 0.234). The research reveals “U-shaped” nonlinear threshold effects at specific levels of digital development (2.218), market efficiency (9.212), and technological progress (12.224). Eastern provinces benefit significantly (coefficient ranging from 0.12 to 0.15 ***), while western regions initially experience some inhibition (coefficient = −0.08 *). Industrial digitalization (coefficient = 0.13 ***) and innovation ecosystems (coefficient = 0.09 ***) play crucial roles in driving eco-efficiency and equity, in line with Sustainable Development Goals 9 and 13. Meanwhile, the impacts of infrastructure (coefficient = 0.07) and industrialization (coefficient = 0.085) are delayed. Economic modernization improves (coefficient = 0.37 ***), yet social modernization declines (coefficient = −0.12 *). This study not only enriches economic theory but also extends the environmental Kuznets curve to the digital economy domain. We propose tiered policy recommendations, including the construction of green digital infrastructure, carbon pricing, and rural digital transformation, which are applicable to China and offer valuable references for emerging economies aiming to achieve inclusive low-carbon growth in the digital era. Future research could further explore the differentiated mechanisms of various digital technologies in the modernization process across different regions and how to optimize policy combinations to better balance digital innovation with sustainable development goals. Full article
Show Figures

Figure 1

28 pages, 3832 KiB  
Article
Design of Message Formatting and Utilization Strategies for UAV-Based Pseudolite Systems Compatible with GNSS Receivers
by Guanbing Zhang, Yang Zhang, Hong Yuan, Yi Lu and Ruocheng Guo
Drones 2025, 9(8), 526; https://doi.org/10.3390/drones9080526 - 25 Jul 2025
Abstract
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation [...] Read more.
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation messages by establishing a correspondence between ephemeris parameters and platform positions through coordinate transformation and Taylor series expansion. To address modeling inaccuracies, the approach incorporates truncation error analysis and motion-assumption compensation via parameter optimization. This design enables UAV-mounted pseudolite systems to broadcast GNSS-compatible signals without modifying existing receivers, significantly enhancing rapid deployment capabilities in complex or degraded environments. Simulation results confirm precise positional representation in static scenarios and robust error control under dynamic motion through higher-order modeling and optimized broadcast strategies. UAV flight tests demonstrated a theoretical maximum error of 0.4262 m and an actual maximum error of 3.1878 m under real-world disturbances, which is within operational limits. Additional experiments confirmed successful message parsing with standard GNSS receivers. The proposed method offers a lightweight, interoperable solution for integrating UAV platforms into GNSS-enhanced positioning systems, supporting timely and accurate navigation services in emergency and disaster relief operations. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

33 pages, 4841 KiB  
Article
Research on Task Allocation in Four-Way Shuttle Storage and Retrieval Systems Based on Deep Reinforcement Learning
by Zhongwei Zhang, Jingrui Wang, Jie Jin, Zhaoyun Wu, Lihui Wu, Tao Peng and Peng Li
Sustainability 2025, 17(15), 6772; https://doi.org/10.3390/su17156772 - 25 Jul 2025
Abstract
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in [...] Read more.
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in the single-operation mode that handles inbound or outbound tasks individually, with limited attention paid to the more prevalent composite operation mode where inbound and outbound tasks coexist. To bridge this gap, this study investigates the task allocation problem in an FWSS/RS under the composite operation mode, and deep reinforcement learning (DRL) is introduced to solve it. Initially, the FWSS/RS operational workflows and equipment motion characteristics are analyzed, and a task allocation model with the total task completion time as the optimization objective is established. Furthermore, the task allocation problem is transformed into a partially observable Markov decision process corresponding to reinforcement learning. Each shuttle is regarded as an independent agent that receives localized observations, including shuttle position information and task completion status, as inputs, and a deep neural network is employed to fit value functions to output action selections. Correspondingly, all agents are trained within an independent deep Q-network (IDQN) framework that facilitates collaborative learning through experience sharing while maintaining decentralized decision-making based on individual observations. Moreover, to validate the efficiency and effectiveness of the proposed model and method, experiments were conducted across various problem scales and transport resource configurations. The experimental results demonstrate that the DRL-based approach outperforms conventional task allocation methods, including the auction algorithm and the genetic algorithm. Specifically, the proposed IDQN-based method reduces the task completion time by up to 12.88% compared to the auction algorithm, and up to 8.64% compared to the genetic algorithm across multiple scenarios. Moreover, task-related factors are found to have a more significant impact on the optimization objectives of task allocation than transport resource-related factors. Full article
Show Figures

Figure 1

22 pages, 2705 KiB  
Article
Diff-Pre: A Diffusion Framework for Trajectory Prediction
by Yijie Liu, Chengjie Zhu, Xin Chang, Xinyu Xi, Che Liu and Yanli Xu
Sensors 2025, 25(15), 4603; https://doi.org/10.3390/s25154603 - 25 Jul 2025
Abstract
With the rapid development of intelligent transportation, accurately predicting vehicle trajectories is crucial for ensuring road safety and enhancing traffic efficiency. This paper proposes a trajectory prediction model that integrates a diffusion model framework with trajectory features of target and neighboring vehicles, as [...] Read more.
With the rapid development of intelligent transportation, accurately predicting vehicle trajectories is crucial for ensuring road safety and enhancing traffic efficiency. This paper proposes a trajectory prediction model that integrates a diffusion model framework with trajectory features of target and neighboring vehicles, as well as driving intentions. The model uses historical trajectories of the target and adjacent vehicles as input, employs Long Short-Term Memory (LSTM) networks to extract temporal features, and dynamically captures the interaction between the target and neighboring vehicles through a multi-head attention mechanism. An intention module regulates lateral offsets, and the diffusion framework selects the most probable trajectory from various possible predictions, thereby improving the model’s ability to handle complex scenarios. Experiments conducted on real traffic data demonstrate that the proposed method outperforms several representative models in terms of Average Displacement Error (ADE) and Final Displacement Error (FDE), without sacrificing efficiency. Notably, it exhibits higher robustness and predictive accuracy in high-interaction and uncertain scenarios, such as lane changes and overtaking. To the best of our knowledge, this is the first application of the diffusion framework in vehicle trajectory prediction. This study provides an efficient solution for vehicle trajectory prediction tasks. The average ADE within 1 to 5 s reached 0.199 m, while the average FDE within 1 to 5 s reached 0.437 m. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

27 pages, 6456 KiB  
Article
An Open Multifunctional FPGA-Based Pulser/Receiver System for Intravascular Ultrasound (IVUS) Imaging and Therapy
by Amauri A. Assef, Paula L. S. de Moura, Joaquim M. Maia, Phuong Vu, Adeoye O. Olomodosi, Stephan Strassle Rojas and Brooks D. Lindsey
Sensors 2025, 25(15), 4599; https://doi.org/10.3390/s25154599 - 25 Jul 2025
Abstract
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems [...] Read more.
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems (e.g., for pulse sequences for imaging or thrombolysis), which are not currently available. This paper presents the development of a novel multifunctional FPGA-based pulser/receiver system for intravascular ultrasound imaging and therapy research. The open platform consists of a host PC with a Matlab-based software interface, an FPGA board, and a proprietary analog front-end board with state-of-the-art electronics for highly flexible transmission and reception schemes. The main features of the system include the capability to convert arbitrary waveforms into tristate bipolar pulses by using the PWM technique and by the direct acquisition of raw radiofrequency (RF) echo data. The results of a multicycle excitation pulse applied to a custom 550 kHz therapy transducer for acoustic characterization and a pulse-echo experiment conducted with a high-voltage, short-pulse excitation for a 19.48 MHz transducer are reported. Testing results show that the proposed system can be easily controlled to match the frequency and bandwidth required for different IVUS transducers across a broad class of applications. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

21 pages, 4388 KiB  
Article
An Omni-Dimensional Dynamic Convolutional Network for Single-Image Super-Resolution Tasks
by Xi Chen, Ziang Wu, Weiping Zhang, Tingting Bi and Chunwei Tian
Mathematics 2025, 13(15), 2388; https://doi.org/10.3390/math13152388 - 25 Jul 2025
Abstract
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of [...] Read more.
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of high-frequency details, high computational complexity, and insufficient adaptability to complex scenes. To address these challenges, we propose an Omni-dimensional Dynamic Convolutional Network (ODConvNet) tailored for SISR tasks. Specifically, ODConvNet comprises four key components: a Feature Extraction Block (FEB) that captures low-level spatial features; an Omni-dimensional Dynamic Convolution Block (DCB), which utilizes a multidimensional attention mechanism to dynamically reweight convolution kernels across spatial, channel, and kernel dimensions, thereby enhancing feature expressiveness and context modeling; a Deep Feature Extraction Block (DFEB) that stacks multiple convolutional layers with residual connections to progressively extract and fuse high-level features; and a Reconstruction Block (RB) that employs subpixel convolution to upscale features and refine the final HR output. This mechanism significantly enhances feature extraction and effectively captures rich contextual information. Additionally, we employ an improved residual network structure combined with a refined Charbonnier loss function to alleviate gradient vanishing and exploding to enhance the robustness of model training. Extensive experiments conducted on widely used benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100, demonstrate that, compared with existing deep learning-based SR methods, our ODConvNet method improves Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the visual quality of SR images is also improved. Ablation studies further validate the effectiveness and contribution of each component in our network. The proposed ODConvNet offers an effective, flexible, and efficient solution for the SISR task and provides promising directions for future research. Full article
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

30 pages, 3451 KiB  
Article
Integrating Google Maps and Smooth Street View Videos for Route Planning
by Federica Massimi, Antonio Tedeschi, Kalapraveen Bagadi and Francesco Benedetto
J. Imaging 2025, 11(8), 251; https://doi.org/10.3390/jimaging11080251 - 25 Jul 2025
Abstract
This research addresses the long-standing dependence on printed maps for navigation and highlights the limitations of existing digital services like Google Street View and Google Street View Player in providing comprehensive solutions for route analysis and understanding. The absence of a systematic approach [...] Read more.
This research addresses the long-standing dependence on printed maps for navigation and highlights the limitations of existing digital services like Google Street View and Google Street View Player in providing comprehensive solutions for route analysis and understanding. The absence of a systematic approach to route analysis, issues related to insufficient street view images, and the lack of proper image mapping for desired roads remain unaddressed by current applications, which are predominantly client-based. In response, we propose an innovative automatic system designed to generate videos depicting road routes between two geographic locations. The system calculates and presents the route conventionally, emphasizing the path on a two-dimensional representation, and in a multimedia format. A prototype is developed based on a cloud-based client–server architecture, featuring three core modules: frames acquisition, frames analysis and elaboration, and the persistence of metadata information and computed videos. The tests, encompassing both real-world and synthetic scenarios, have produced promising results, showcasing the efficiency of our system. By providing users with a real and immersive understanding of requested routes, our approach fills a crucial gap in existing navigation solutions. This research contributes to the advancement of route planning technologies, offering a comprehensive and user-friendly system that leverages cloud computing and multimedia visualization for an enhanced navigation experience. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

22 pages, 2974 KiB  
Article
An Enhanced Grasshopper Optimization Algorithm with Outpost and Multi-Population Mechanisms for Dolomite Lithology Prediction
by Xinya Yu and Parhat Zunu
Biomimetics 2025, 10(8), 494; https://doi.org/10.3390/biomimetics10080494 - 25 Jul 2025
Abstract
The Grasshopper Optimization Algorithm (GOA) has attracted significant attention due to its simplicity and effective search capabilities. However, its performance deteriorates when dealing with high-dimensional or complex optimization tasks. To address these limitations, this study proposes an improved variant of GOA, named Outpost [...] Read more.
The Grasshopper Optimization Algorithm (GOA) has attracted significant attention due to its simplicity and effective search capabilities. However, its performance deteriorates when dealing with high-dimensional or complex optimization tasks. To address these limitations, this study proposes an improved variant of GOA, named Outpost Multi-population GOA (OMGOA). OMGOA integrates two novel mechanisms: the Outpost mechanism, which enhances local exploitation by guiding agents towards high-potential regions, and the multi-population enhanced mechanism, which promotes global exploration and maintains population diversity through parallel evolution and controlled information exchange. Comprehensive experiments were conducted to evaluate the effectiveness of OMGOA. Ablation studies were performed to assess the individual contributions of each mechanism, while multi-dimensional testing was used to verify robustness and scalability. Comparative experiments show that OMGOA has better optimization performance compared to other similar algorithms. In addition, OMGOA was successfully applied to a real-world engineering problem—lithology prediction from petrophysical logs—where it achieved competitive classification performance. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

25 pages, 51196 KiB  
Article
Research on Robot Obstacle Avoidance and Generalization Methods Based on Fusion Policy Transfer Learning
by Suyu Wang, Zhenlei Xu, Peihong Qiao, Quan Yue, Ya Ke and Feng Gao
Biomimetics 2025, 10(8), 493; https://doi.org/10.3390/biomimetics10080493 - 25 Jul 2025
Abstract
In nature, organisms often rely on the integration of local sensory information and prior experience to flexibly adapt to complex and dynamic environments, enabling efficient path selection. This bio-inspired mechanism of perception and behavioral adjustment provides important insights for path planning in mobile [...] Read more.
In nature, organisms often rely on the integration of local sensory information and prior experience to flexibly adapt to complex and dynamic environments, enabling efficient path selection. This bio-inspired mechanism of perception and behavioral adjustment provides important insights for path planning in mobile robots operating under uncertainty. In recent years, the introduction of deep reinforcement learning (DRL) has empowered mobile robots to autonomously learn navigation strategies through interaction with the environment, allowing them to identify obstacle distributions and perform path planning even in unknown scenarios. To further enhance the adaptability and path planning performance of robots in complex environments, this paper develops a deep reinforcement learning framework based on the Soft Actor–Critic (SAC) algorithm. First, to address the limited adaptability of existing transfer learning methods, we propose an action-level fusion mechanism that dynamically integrates prior and current policies during inference, enabling more flexible knowledge transfer. Second, a bio-inspired radar perception optimization method is introduced, which mimics the biological mechanism of focusing on key regions while ignoring redundant information, thereby enhancing the expressiveness of sensory inputs. Finally, a reward function based on ineffective behavior recognition is designed to reduce unnecessary exploration during training. The proposed method is validated in both the Gazebo simulation environment and real-world scenarios. Experimental results demonstrate that the approach achieves faster convergence and superior obstacle avoidance performance in path planning tasks, exhibiting strong transferability and generalization across various obstacle configurations. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

20 pages, 9891 KiB  
Article
3D-Printed Poly (l-lactic acid) Scaffolds for Bone Repair with Oriented Hierarchical Microcellular Foam Structure and Biocompatibility
by Cenyi Luo, Juan Xue, Qingyi Huang, Yuxiang Deng, Zhixin Zhao, Jiafeng Li, Xiaoyan Gao and Zhengqiu Li
Biomolecules 2025, 15(8), 1075; https://doi.org/10.3390/biom15081075 - 25 Jul 2025
Abstract
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a [...] Read more.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO2) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized. The combination of FDM and SC-CO2 foaming technology enables a continuous extrusion foaming process for preparing oriented multi-stage microporous scaffolds. The mechanical strength of the scaffold reached 15.27 MPa, meeting the requirements for bone repair in a low-load environment. Notably, the formation of open pores on the surface of the oriented multi-stage microporous scaffold positively affected cell proliferation, differentiation, and activity, as well as the expression of anti-inflammatory and pro-inflammatory factors. In vitro cell experiments (such as CCK-8) showed that the cell proliferation rate in the oriented multi-stage microporous scaffold reached 100–300% after many days of cultivation. This work provides a strategy for the design and manufacture of PLLA scaffolds with hierarchical microcellular structures and biocompatibility for bone repair. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

31 pages, 2271 KiB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring
by Rajni Goel, Mahmoud M. Abdelwahab and Mustafa M. Hasaballah
Axioms 2025, 14(8), 573; https://doi.org/10.3390/axioms14080573 - 25 Jul 2025
Abstract
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows [...] Read more.
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows for the planned removal of surviving units at specific stages of an experiment, accounting for both deliberate and random censoring events. It is assumed that survival and censoring times each follow a Maxwell distribution, though with distinct parameters. Both frequentist and Bayesian approaches are employed to estimate the model parameters. In the frequentist approach, maximum likelihood estimators and their corresponding confidence intervals are derived. In the Bayesian approach, Bayes estimators are obtained using an inverse gamma prior and evaluated through a Markov Chain Monte Carlo (MCMC) method under the squared error loss function (SELF). A Monte Carlo simulation study evaluates the performance of the proposed estimators. The practical relevance of the methodology is demonstrated using a real data set. Full article
Show Figures

Figure 1

Back to TopTop