Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = exfoliated clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1363 KiB  
Review
Bentonite-Based Composites in Medicine: Synthesis, Characterization, and Applications
by Sana K. Kabdrakhmanova, Aigul Z. Kerimkulova, Saule Z. Nauryzova, Kadiran Aryp, Esbol Shaimardan, Anastassiya D. Kukhareva, Nurgamit Kantay, Madiar M. Beisebekov and Sabu Thomas
J. Compos. Sci. 2025, 9(6), 310; https://doi.org/10.3390/jcs9060310 - 18 Jun 2025
Viewed by 1393
Abstract
One of the most interesting and poorly studied carriers of medicinal substances is the polymer clay composite material (PCCM). Bentonite clays are used in pharmacy for the manufacturing of various dosage forms, as well as in the adsorption of drugs to slow their [...] Read more.
One of the most interesting and poorly studied carriers of medicinal substances is the polymer clay composite material (PCCM). Bentonite clays are used in pharmacy for the manufacturing of various dosage forms, as well as in the adsorption of drugs to slow their release. Polymer–clay nanocomposites have demonstrated significantly improved properties compared to pure polymers. A review of recent scientific advances has shown promising results regarding the application of polymer–clay materials in medicine and bioengineering, particularly in the development of carrier sorbents with prolonged action for controlled drug release. As a result, interest in polymer–clay systems is steadily growing and gaining momentum. This paper focuses on the structure and properties of bentonite clays, including their sorption, ion exchange, binding, and rheological properties. The methods for preparing intercalated and exfoliated nanocomposites, such as radical intercalative polymerization in situ on clay surfaces, are reviewed. Furthermore, the improved efficacy and exposure times of PCCMs, combined with their enhanced bactericidal properties, are analyzed for the creation of universal and multifunctional preparations for medical use. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Graphical abstract

18 pages, 11929 KiB  
Article
Poly(3-hydroxybutyrate)/Clay/Essential Oils Bionanocomposites Incorporating Biochar: Thermo-Mechanical and Antioxidant Properties
by Karla A. Garrido-Miranda, María Eugenia Gonzalez, Jacobo Hernandez-Montelongo, Andrés Jaramillo, Angelo Oñate, César Burgos-Díaz and Miguel Manso-Silvan
Polymers 2025, 17(9), 1157; https://doi.org/10.3390/polym17091157 - 24 Apr 2025
Viewed by 562
Abstract
The use of biodegradable active materials is being explored as a strategy to reduce food loss and waste. The aim is to extend the shelf life of food and to ensure biodegradation when these materials are discarded. The utilization of biodegradable polymers remains [...] Read more.
The use of biodegradable active materials is being explored as a strategy to reduce food loss and waste. The aim is to extend the shelf life of food and to ensure biodegradation when these materials are discarded. The utilization of biodegradable polymers remains limited due to their inherent properties and cost-effectiveness. An alternative approach involves the fabrication of bionanocomposites, which offer a potential solution to address these challenges. Therefore, this study investigates the production of a polyhydroxybutyrate/biochar/clay/essential oil (Tepa:Eugenol) bionanocomposite with antioxidant and antimicrobial properties. The morphological, physicochemical, and antioxidant properties of the materials were evaluated in comparison to those of the original PHB. The materials obtained showed a porous surface with cavities, associated with the presence of biochar. It was also determined that it presented an intercalated–exfoliated morphology by XRD. Thermal properties showed minor improvements over those of PHB, indicating that the components did not substantially influence properties such as crystallization temperature, decomposition temperature, or degree of crystallinity; the melting temperature decreased up to 11%. In addition, the PHB/biochar_7/MMT-OM_3/EO_3 bionanocomposites showed a tendency toward hydrophobicity and the highest elastic modulus with respect to PHB. Finally, all essential-oil-loaded bionanocomposites exhibited excellent antioxidant properties against DPPH and ABTS radicals. The results highlight the potential of these bionanocomposites for the development of antioxidant active packaging. Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Nanocomposite)
Show Figures

Graphical abstract

18 pages, 4791 KiB  
Article
Evaluation of Thermal Stability and Thermal Transitions of Hydroxyl-Terminated Polysiloxane/Montmorillonite Nanocomposites
by Sozon P. Vasilakos and Petroula A. Tarantili
Materials 2025, 18(6), 1226; https://doi.org/10.3390/ma18061226 - 10 Mar 2025
Viewed by 714
Abstract
Condensation-type polysiloxane composites with montmorillonite (MMT) of different organic modifications were prepared in this study. X-ray diffraction (XRD) characterization revealed that the higher degree of organic modification in Cloisite 20A, compared to that in Cloisite 30B, resulted in a larger interlayer spacing between [...] Read more.
Condensation-type polysiloxane composites with montmorillonite (MMT) of different organic modifications were prepared in this study. X-ray diffraction (XRD) characterization revealed that the higher degree of organic modification in Cloisite 20A, compared to that in Cloisite 30B, resulted in a larger interlayer spacing between the clay platelets. This facilitates the insertion of elastomer chains between the layers, enabling easier exfoliation and dispersion in the elastomeric matrix. Differential scanning calorimetry (DSC) showed that the reinforcing agents used reduced the cold crystallization temperature of the condensation-type polysiloxane while leaving the glass transition and melting temperatures nearly unaffected. Additionally, the nanocomposites exhibited slightly lower crystallization and melting enthalpies compared to pure silicone. Thermogravimetric analysis (TGA) showed that incorporating the two organically modified clays (Cloisite 20A and Cloisite 30B) into the condensation-type polysiloxane significantly improved the thermal stability of the resulting nanocomposites. This improvement was reflected in the significant increase in the onset and maximum degradation rate temperatures across all examined reinforcement ratios. It was observed that a higher degree of organic modification in MMT (Cloisite 20A) resulted in a more efficient dispersion in the PDMS matrix and enhanced the thermal stability of the composites. These PDMS nanocomposites could be suitable as protective coatings for devices exposed to elevated temperatures. Full article
Show Figures

Figure 1

15 pages, 9544 KiB  
Article
Preparation and Characterization of Melamine Aniline Formaldehyde-Organo Clay Nanocomposite Foams (MAFOCF) as a Novel Thermal Insulation Material
by Ahmet Gürses and Elif Şahin
Polymers 2024, 16(24), 3578; https://doi.org/10.3390/polym16243578 - 21 Dec 2024
Cited by 1 | Viewed by 894
Abstract
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay [...] Read more.
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated. Virgin melamine formaldehyde foam, MFF, melamine aniline formaldehyde foam, MAFFF, and melamine aniline formaldehyde–organoclay nanocomposite foams prepared with various organoclay contents, MAFOCFs, were characterized by HRTEM, FTIR, SEM, and XRD techniques. From spectroscopic and microscopic analyses, it was observed that organoclay flakes could be exfoliated without much change in the resin matrix with increasing clay content. In addition, it was determined that aniline formaldehyde, which is thought to enter the main polymer network as a bridge, caused textural changes in the polymeric matrix, and organoclay reinforcement also affected these changes. Although the highest compressive strength was obtained in MAFOCF5 foam with high organoclay content (0.40 MPa), it was determined that the compressive strengths in the nanocomposites were generally quite high despite their low bulk densities. In the prepared nanocomposite with 0.30% organoclay content (MAFOCF2), 0.33 MPa compressive strength and 0.051 thermal conductivity coefficient were measured. For virgin polymers and composites, bulk density, thermal conductivity, and compressive strength values were determined in the order of magnitude as MFF > MAFOCF1 > MAFOCF5 > MAFOCF6 > MAFF > MAFOCF3 > MAFOCF2 > MAFOCF4; MFF > MAFF > MAFOCF6 > MAFOCF5 > MAFOCF1 > MAFOCF4 > MAFOCF3 > MAFOCF2 and MAFOCF5 > MAFOCF4 > MAFOCF2 > MAFF > MAFOCF6 > MFF > MAFOCF1 > MAFOCF3. As a result, both compressive strength and thermal conductivity values indicate that nanocomposite foam with 0.20 wt% organoclay content can be a promising new insulation material. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Figure 1

18 pages, 4159 KiB  
Article
Ultrasonic Molding of Poly(3-hydroxybutyrate) and Its Clay Nanocomposites: Efficient Microspecimens Production with Minimal Material Loss and Degradation
by Germán Pérez, Anyi Jin, Luis J. del Valle, Enric Fontdecaba and Jordi Puiggalí
Appl. Sci. 2024, 14(24), 11959; https://doi.org/10.3390/app142411959 - 20 Dec 2024
Cited by 1 | Viewed by 807
Abstract
Ultrasound micromolding (USM) is an emerging processing technology that offers advantages with regard to spatial resolution, material savings, minimum time residence, minimum exposure to high temperatures, and low cost. Recent advances have been focused on nodal point technology, which improves the homogeneity of [...] Read more.
Ultrasound micromolding (USM) is an emerging processing technology that offers advantages with regard to spatial resolution, material savings, minimum time residence, minimum exposure to high temperatures, and low cost. Recent advances have been focused on nodal point technology, which improves the homogeneity of the molded samples and the repeatability of the properties of processed specimens. The present work demonstrates the suitability of a modified USM technology to process the biodegradable poly(3-hydroxybutyrate) (P3HB), which is a polymer that has well-reported difficulties when processed by conventional methods. Specifically, conventional injection, microinjection, and USM technologies with and without nodal point configurations have been compared. Degradation studies and the evaluation of thermal and mechanical properties confirmed the successful preparation of P3HB microspecimens, maintaining their functional integrity with minimal molecular weight loss. Exfoliated clay structures were observed for P3HB nanocomposites incorporating the C20 and C166 clays and processed by USM. The results highlight the advantages of the modified USM technology, as conventional microinjection failed to produce nanocomposites of P3HB/C116 due to the enhanced degradation caused by C116. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

20 pages, 13856 KiB  
Article
Clay Minerals/TiO2 Composites—Characterization and Application in Photocatalytic Degradation of Water Pollutants
by Bogna D. Napruszewska, Dorota Duraczyńska, Joanna Kryściak-Czerwenka, Paweł Nowak and Ewa M. Serwicka
Molecules 2024, 29(20), 4852; https://doi.org/10.3390/molecules29204852 - 13 Oct 2024
Cited by 3 | Viewed by 1254
Abstract
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by [...] Read more.
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO2 NPs on the surface of exfoliated clay minerals. A series of TiO2/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap). The TiO2 component was prepared using the inverse microemulsion method. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, FTIR spectroscopy, thermal analysis, and N2 adsorption–desorption isotherms. It was shown that upon composite synthesis, the Mt interlayer became filled by a mixture of CTA+ and hydronium ions, regardless of the nature of the parent clay, while the structure of Lap underwent partial destruction. The composites displayed high specific surface area and uniform mesoporosity determined by the size of the TiO2 nanoparticles. The best textural parameters were shown by composites containing clay components whose structure was partially destroyed; for instance, Ti/CTA-Lap had a specific surface area of 420 m2g−1 and a pore volume of 0.653 cm3g−1. The materials were tested in the photodegradation of methyl orange and humic acid upon UV irradiation. The photocatalytic activity could be correlated with the development of textural properties. In both reactions, the performance of the most photoactive composites surpassed that of the reference commercial P25 titania. Full article
Show Figures

Figure 1

9 pages, 2396 KiB  
Article
Effects of Clay Nanosheets on the Photostability of Cationic Porphyrin
by Yoshinori Tahara, Yugo Hirade, Kyosuke Arakawa, Tetsuya Shimada, Tamao Ishida, Hiroshi Tachibana and Shinsuke Takagi
Molecules 2024, 29(16), 3738; https://doi.org/10.3390/molecules29163738 - 7 Aug 2024
Cited by 1 | Viewed by 1124
Abstract
The photodecomposition behavior of cationic porphyrin ZnTMAP4+ (zinc tetrakis-(N,N,N-trimethylanilinium-4-yl) porphyrin) in water and complexed with clay nanosheets was investigated by light irradiation to the Soret band of ZnTMAP4+. The decomposition of ZnTMAP4+ was [...] Read more.
The photodecomposition behavior of cationic porphyrin ZnTMAP4+ (zinc tetrakis-(N,N,N-trimethylanilinium-4-yl) porphyrin) in water and complexed with clay nanosheets was investigated by light irradiation to the Soret band of ZnTMAP4+. The decomposition of ZnTMAP4+ was observed by UV–visible absorption spectroscopy. While the decomposition quantum yield (ϕdec) was 3.4 × 10−4 in water, that was 9.4 × 10−7 on the exfoliated clay nanosheets. It was revealed that the photostability of ZnTMAP4+ was stabilized by the complex formation with clay. When ZnTMAP4+ was intercalated between the stacked clay nanosheets, ϕdec was further decreased to 4.9 × 10−7. The photostability increased by 361 times and 693 times for the exfoliated and stacked state, respectively. These results indicate that the flat clay surface has the potential to control intra- and intermolecular photochemical reactions. Full article
Show Figures

Graphical abstract

11 pages, 1813 KiB  
Article
Enhanced Thermal and Mechanical Properties of Cardanol Epoxy/Clay-Based Nanocomposite through Girard’s Reagent
by Ji Xu, Lingxiao Jia, Qixin Lan and Daheng Wu
Polymers 2024, 16(11), 1528; https://doi.org/10.3390/polym16111528 - 29 May 2024
Viewed by 1334
Abstract
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility [...] Read more.
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility of nanoclay in epoxy resin remain to be solved. In this work, active Girard’s reagent clay (PG-clay) and non-active Girard’s reagent clay (NG-clay) were prepared by using acethydrazide trimethylammonium chloride (Girard’s reagent) as the modifier, and cardanol epoxy resin/G-clay nanocomposites were synthesized by the “clay slurry composite method”. The results showed that both PG-clay and NG-clay were dispersed in the epoxy matrix in the form of random exfoliation/intercalation, which effectively improved the thermal/mechanical properties of the composites. Tg of the cardanol epoxy resin has raised from 19.8 °C to 38.1 °C (4 wt.% PG-clay). When the mass fraction of clay is 4%, the tensile strength of the non-reactive NG-clay increases by 128%, and the elongation at break also increases by 101%. Simultaneously, the active PG-clay can participate in the curing reaction of epoxy resin due to the amino group, forming a chemical bond between the clay layer and the resin matrix and establishing a strong interfacial force. The tensile strength of the composite is increased by 970%, and the elongation at break is also increased by 428%. This research demonstrates that the cardanol epoxy resin/G-clay nanocomposite stands as a highly promising candidate for bio-based epoxy resin materials. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

13 pages, 5376 KiB  
Article
Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance
by Mohammed Arif Poothanari and Yves Leterrier
Surfaces 2024, 7(2), 283-295; https://doi.org/10.3390/surfaces7020019 - 1 May 2024
Cited by 2 | Viewed by 2690
Abstract
Diffusion barrier composite films based on microfibrillated cellulose (MFC) and clay were developed with attention paid to the influence of thermal annealing and a fluorine-free surface silylation on their microstructure, water contact angle (WCA), mechanical properties, oxygen transmission rate (OTR), and water vapor [...] Read more.
Diffusion barrier composite films based on microfibrillated cellulose (MFC) and clay were developed with attention paid to the influence of thermal annealing and a fluorine-free surface silylation on their microstructure, water contact angle (WCA), mechanical properties, oxygen transmission rate (OTR), and water vapor transmission rate (WVTR). The OTR of MFC at 23 °C increased from 1.2 to 25.3 cm3/m2/day/bar as relative humidity increased from 50% to 80%. Annealing increased the film’s crystallinity, surface roughness, and hydrophobicity, while decreasing its OTR by 20% at 80%RH. The addition of clay led to a 30% decrease of OTR at 80%RH due to partial exfoliation and to a 50% decrease when combined with annealing. Silylation increased the hydrophobicity of surface of the film and its combination with clay and annealing led to a WCA of 146.5°. The combination of clay, annealing, and silylation considerably reduced the OTR at 80%RH to a value of 8 cm3/m2/day/bar, and the WVTR at 23 °C and 50%RH from 49 g/m2/day for MFC to 22 g/m2/day. The reduction of OTR and WVTR was found to correlate with the increase in surface hydrophobicity of the film, which was attributed to the reduced access of water molecules within the MFC network. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

16 pages, 3253 KiB  
Article
Polymer-Clay Nanocomposites for the Uptake of Hazardous Anions
by Huaibin Zhang, Wenyan Huang and Sridhar Komarneni
Nanomaterials 2024, 14(5), 467; https://doi.org/10.3390/nano14050467 - 4 Mar 2024
Cited by 2 | Viewed by 1833
Abstract
Polymer intercalated clay nanocomposites were prepared from various montmorillonites (Mt) and a polymer, polydiallyldimethylammonim (PDDA) chloride. X-ray diffraction (XRD) analysis of the above polymer intercalated nanocomposites showed either no crystalline peaks or very broad peaks with the intercalation of PDDA polymer in the [...] Read more.
Polymer intercalated clay nanocomposites were prepared from various montmorillonites (Mt) and a polymer, polydiallyldimethylammonim (PDDA) chloride. X-ray diffraction (XRD) analysis of the above polymer intercalated nanocomposites showed either no crystalline peaks or very broad peaks with the intercalation of PDDA polymer in the interlayers, probably as a result of exfoliation of the clay layers. Infrared spectroscopy revealed the presence of PDDA in all the clay nanocomposite materials. The maximum adsorption capacities of nitrate, perchlorate, and chromate by one of the polymer intercalated nanocomposite materials prepared from montmorillonite, Kunipea were 0.40 mmol·g1, 0.44 mmol·g1 and 0.299 mmol·g1, respectively. The other two polymer intercalated nanocomposites prepared with montmorillonites from Wyoming and China showed very good adsorption capacities for perchlorate but somewhat lower uptake capacities for chromate and nitrate compared to the nanocomposite prepared from montmorillonite from Kunipea. The uptake of nitrate, perchlorate and chromate by the polymer intercalated nanocomposites could be well described using the Freundlich isotherm while their uptake kinetics fitted well to the pseudo-second-order model. The uptake kinetics of nitrate, perchlorate, and chromate were found to be fast as equilibrium was reached within 4 h. Moreover, the uptakes of chromate by polymer intercalated nanocomposites were found to be highly selective in the presence of Cl, SO42 and CO32, the most abundant naturally occurring anions. Full article
Show Figures

Figure 1

22 pages, 5110 KiB  
Article
Synthesis and Characterization of Methoxy-Exfoliated Montmorillonite Nanosheets as Potential Carriers of 5-Fluorouracil Drug with Enhanced Loading, Release, and Cytotoxicity Properties
by Mashael D. Alqahtani, May N. Bin Jumah, Abdulrahman Al-Hashimi, Ahmed A. Allam, Mostafa R. Abukhadra and Stefano Bellucci
Molecules 2023, 28(15), 5895; https://doi.org/10.3390/molecules28155895 - 5 Aug 2023
Cited by 4 | Viewed by 2149
Abstract
Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared [...] Read more.
Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability). Full article
Show Figures

Figure 1

21 pages, 7490 KiB  
Article
Advanced Plastic Waste Recycling—The Effect of Clay on the Morphological and Thermal Behavior of Recycled PET/PLA Sustainable Blends
by Maria-Paraskevi Belioka, Georgia Markozanne, Kiriaki Chrissopoulou and Dimitrios S. Achilias
Polymers 2023, 15(14), 3145; https://doi.org/10.3390/polym15143145 - 24 Jul 2023
Cited by 15 | Viewed by 3003
Abstract
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained [...] Read more.
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained from recycled plastics. Several blends were prepared, containing 50 to 90% PET. Moreover, multiscale nanocomposite blends were formed via melt mixing using different amounts and types of nanoclay in order to study their effect on the morphology, surface properties, and thermal stability of the blends. The materials were characterized by X-ray diffraction analysis (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The nanoclay was found to exhibit a uniform dispersion in the polymer matrix, presenting mainly intercalated structures with some exfoliated at low loading and some agglomerates at high loading (i.e., 10%). The addition of nanoclay to PET/PLA matrices increased the roughness of the blends and improved their thermal stability. Thermal degradation of the blends occurs in two steps following those of the individual polymers. Contamination of rPET with rPLA results in materials having poor thermal stability relative to rPET, presenting the onset of thermal degradation at nearly 100 °C lower. Therefore, important information was obtained concerning the recyclability of mixed PET and PLA waste. The perspective is to study the properties and find potential applications of sustainable blends of recycled PET and PLA by also examining the effect of different clays in different loadings. Therefore, useful products could be produced from blends of waste polyester. Full article
Show Figures

Figure 1

12 pages, 3122 KiB  
Article
Antibacterial and Biocompatible Polyethylene Composites with Hybrid Clay Nanofillers
by Lenka Klecandová, Damian S. Nakonieczny, Magda Reli and Gražyna Simha Martynková
Materials 2023, 16(14), 5179; https://doi.org/10.3390/ma16145179 - 23 Jul 2023
Cited by 3 | Viewed by 2451
Abstract
Low-density polyethylene is one of the basic polymers used in medicine for a variety of purposes; so, the relevant improvements in functional properties are discussed here, making it safer to use as devices or implants during surgery or injury. The objective of the [...] Read more.
Low-density polyethylene is one of the basic polymers used in medicine for a variety of purposes; so, the relevant improvements in functional properties are discussed here, making it safer to use as devices or implants during surgery or injury. The objective of the laboratory-prepared material was to study the antimicrobial and biocompatible properties of low-density polyethylene composites with 3 wt. % hybrid nanoclay filler. We found that the antimicrobial activity was mainly related to the filler, i.e., the hybrid type, where inorganic clay minerals, vermiculite or montmorillonite, were intercalated with organic chlorhexidine diacetate and subsequently decorated with Ca-deficient hydroxyapatite. After fusion of the hybrid nanofiller with polyethylene, intense exfoliation of the clay layers occurred. This phenomenon was confirmed by the analysis of the X-ray diffraction patterns of the composite, where the original basal peak of the clays decreased or completely disappeared, and the optimal distribution of the filler was observed using the transmission mode of light microscopy. Functional property testing showed that the composites have good antibacterial activity against Staphylococcus aureus, and the biocompatibility prediction demonstrated the formation of Ca- and P-containing particles through an in vitro experiment, thus applicable for medical use. Full article
(This article belongs to the Special Issue Antimicrobial Nanocomposites for Biomedical Applications)
Show Figures

Figure 1

23 pages, 5178 KiB  
Article
Nanofluids of Amphiphilic Kaolinite-Based Janus Nanosheets for Enhanced Oil Recovery: The Importance of Stable Emulsion
by Yixuan Mao, Alain Luigi Lanzon, Botuo Zheng, Zhengxiao Xu, Jiatong Jiang, David Harbottle, Kai Yu, Mingfeng Chen, Yu Sheng and Huagui Zhang
Polymers 2023, 15(11), 2515; https://doi.org/10.3390/polym15112515 - 30 May 2023
Cited by 5 | Viewed by 2059
Abstract
To meet the increasing global demand for energy, better recovery of crude oil from reservoirs must be achieved using methods that are economical and environmentally benign. Here, we have developed a nanofluid of amphiphilic clay-based Janus nanosheets via a facile and scalable method [...] Read more.
To meet the increasing global demand for energy, better recovery of crude oil from reservoirs must be achieved using methods that are economical and environmentally benign. Here, we have developed a nanofluid of amphiphilic clay-based Janus nanosheets via a facile and scalable method that provides potential to enhance oil recovery. With the aid of dimethyl sulfoxide (DMSO) intercalation and ultrasonication, kaolinite was exfoliated into nanosheets (KaolNS) before being grafted with 3-methacryloxypropyl-triemethoxysilane (KH570) on the Alumina Octahedral Sheet at 40 and 70 °C to form amphiphilic Janus nanosheets (i.e., KaolKH@40 and KaolKH@70). The amphiphilicity and Janus nature of the KaolKH nanosheets have been well demonstrated, with distinct wettability obtained on two sides of the nanosheets, and the KaolKH@70 was more amphiphilic than the KaolKH@40. Upon preparing Pickering emulsion in a hydrophilic glass tube, the KaolKH@40 preferentially stabilized emulsions, while the KaolNS and KaolKH@70 tended to form an observable and high-strength elastic planar interfacial film at the oil–water interface as well as films climbing along the tube’s surface, which were supposed to be the result of emulsion instability and the strong adherence of Janus nanosheets towards tube’s surface. Subsequently, the KaolKH was grafted with poly(N-Isopropylacrylamide) (PNIPAAm), and the prepared thermo-responsive Janus nanosheets demonstrated a reversible transformation between stable emulsion and the observable interfacial films. Finally, when the samples were subjected to core flooding tests, the nanofluid containing 0.01 wt% KaolKH@40 that formed stable emulsions showed an enhanced oil recovery (EOR) rate of 22.37%, outperforming the other nanofluids that formed observable films (an EOR rate ~13%), showcasing the superiority of Pickering emulsions from interfacial films. This work demonstrates that KH-570-modified amphiphilic clay-based Janus nanosheets have the potential to be used to improve oil recovery, especially when it is able to form stable Pickering emulsions. Full article
(This article belongs to the Special Issue Polymer/Particle Composites: New Advances and Applications)
Show Figures

Graphical abstract

16 pages, 4332 KiB  
Article
Preparation, Structural Characterization and Evaluation of Some Dynamic and Rheological Properties of a New Type of Clay Containing Mastic Material, Clay-Mastic
by Ahmet Gürses and Tahsin Barkın Barın
Minerals 2023, 13(5), 705; https://doi.org/10.3390/min13050705 - 22 May 2023
Cited by 3 | Viewed by 1466
Abstract
This study focused on the preparation, structural characterization and evaluation of some dynamic and rheological properties of a new type of mastic material, clay-mastic, which consists of bituminous binders mixed with mineral fillers. For this purpose, mastic samples were prepared by mixing conventional [...] Read more.
This study focused on the preparation, structural characterization and evaluation of some dynamic and rheological properties of a new type of mastic material, clay-mastic, which consists of bituminous binders mixed with mineral fillers. For this purpose, mastic samples were prepared by mixing conventional bitumen (50/70) with organo-montmorillonite (OMMT) in various proportions. X-ray powder diffraction (XRD) spectra and scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) images of raw clay (MMT), organo-clay (OMMT) and raw bitumen with the prepared mastics were taken, and the changes in the crystallographic properties of the clay and its dispersion characteristics in the bitumen matrix as well as the changes in the morphological properties of the mastic samples were investigated comparatively. In addition, penetration, softening point, flash point, dynamic viscosity, dynamic shear rheometer (DSR) and Fraass breaking point tests were carried out together with those of base bitumen in order to evaluate the properties of the prepared mastic samples in terms of dynamics and rheology. A comparison of the images of raw clay and organo-clay indicated delamination based on surface modification in clay layers in those belonging to organo-clay, and diffractograms of prepared mastic samples showed that the characteristic smectite peak of Montmorillonite shifted to the left gradually with an increasing clay ratio. This shows that due to the successful lyophilic modification on the clay surface, the effective intercalated and even exfoliated dispersion of the clay layers in the bitumen matrix can occur. The penetration viscosity number (PVN) values, defined as a function of penetration and dynamic viscosity, and the penetration index (PI) values, defined as a function of penetration and softening point, were found to be within a well-accepted thermal stability range for all of the prepared mastic samples. For this reason, it was concluded that the sensitivity of the samples to temperature decreased with the addition of organo-clay, thus providing applicability in a wider temperature range. The Fraass breaking point and dynamic viscosity values of the prepared mastic samples decreased and increased, respectively, with an increasing clay ratio, meaning that the addition of organo-clay lead to an increase in the crack resistance of the samples at low temperatures and a decrease in their permeability. Full article
Show Figures

Figure 1

Back to TopTop