Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = excess VOC emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6834 KiB  
Article
Silver-Based Catalysts on Metal Oxides for Diesel Particulate Matter Oxidation: Insights from In Situ DRIFTS
by Punya Promhuad, Boonlue Sawatmongkhon, Thawatchai Wongchang, Ekarong Sukjit, Nathinee Theinnoi and Kampanart Theinnoi
ChemEngineering 2025, 9(3), 42; https://doi.org/10.3390/chemengineering9030042 - 22 Apr 2025
Viewed by 582
Abstract
Diesel particulate matter (DPM) represents a deleterious environmental contaminant that necessitates the development of effective catalytic oxidation methodologies. This research delineates a comparative analysis of silver-supported metal oxide catalysts (Ag/Al2O3, Ag/TiO2, Ag/ZnO, and Ag/CeO2), with [...] Read more.
Diesel particulate matter (DPM) represents a deleterious environmental contaminant that necessitates the development of effective catalytic oxidation methodologies. This research delineates a comparative analysis of silver-supported metal oxide catalysts (Ag/Al2O3, Ag/TiO2, Ag/ZnO, and Ag/CeO2), with an emphasis on the effects of silver distribution and the metal-support interaction on the oxidation of DPM. An array of characterization techniques including XRD, HRTEM, XPS, H2-TPR, TEM, GC-MS, TGA, and in situ DRIFTS was employed. The novelty of this study resides in elucidating the oxidation mechanism through a tripartite pathway and recognizing Ag0 as the predominant active species involved in soot oxidation. The Ag/Al2O3 catalyst demonstrated superior catalytic performance, achieving a reduction in the ignition temperature by more than 50 °C, attributable to the optimal dispersion of Ag nanoparticles and a balanced metal-support interaction. Conversely, an excessive interaction observed in Ag/ZnO resulted in diminished catalytic activity. The oxidation of DPM transpires through the volatilization of VOCs (<300 °C), the oxidation by reactive oxygen species, and the combustion of soot (>300 °C). This investigation offers significant contributions to the formulation of highly efficient silver-based catalysts for emissions control, with a particular focus on optimizing Ag dispersion and support interactions to enhance catalytic efficacy. Full article
Show Figures

Graphical abstract

15 pages, 2223 KiB  
Article
Effects of Glyoxylic Acid on Metabolism and Ripening of ‘Rocha’ Pears Treated with 1-MCP
by Cindy Dias, Clara Sousa, Marta W. Vasconcelos, António Ferrante and Manuela Pintado
Horticulturae 2025, 11(3), 314; https://doi.org/10.3390/horticulturae11030314 - 13 Mar 2025
Viewed by 634
Abstract
The application of 1-methylcyclopropene (1-MCP) is widely used to extend the storage life of climacteric fruits, such as ‘Rocha’ pears. However, the suppression of ethylene’s action by 1-MCP often results in excessive ripening delay, compromising fruit quality and consumer acceptance. In this study, [...] Read more.
The application of 1-methylcyclopropene (1-MCP) is widely used to extend the storage life of climacteric fruits, such as ‘Rocha’ pears. However, the suppression of ethylene’s action by 1-MCP often results in excessive ripening delay, compromising fruit quality and consumer acceptance. In this study, we investigated the potential of glyoxylic acid (GLA) to counteract the effects of 1-MCP and promote ripening. To evaluate this, ‘Rocha’ pears treated with 1-MCP were exposed to 3% (m/v) GLA and stored at 20 ± 2 °C for 15 days. Typical ripening indicators, such as firmness, skin color, ethylene production, respiration rate, volatile organic compounds (VOCs), sugars, and the activity of ethylene biosynthetic enzymes, were measured. Our results indicate that GLA did not induce significant effects on the ripening response, as ethylene production remained comparable to that of the control. Consequently, no significant changes in firmness, skin yellowing, or sugar content were observed in the GLA-treated pears. However, GLA significantly increased respiration rates (approximately 57%) and induced higher emissions of stress-associated VOCs, including hexanal, (E)-2-hexenal, and ethanol. This suggests that GLA may influence metabolic pathways related to energy metabolism and redox homeostasis without necessarily triggering ethylene-induced ripening. This study provides new insights into the interactions between GLA, 1-MCP, and fruit development, contributing to the development of alternative strategies to manage the effects of 1-MCP in ‘Rocha’ pear storage. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

30 pages, 11592 KiB  
Article
Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation
by Tianfeng Zhou, Cong Chen, Cong Dong and Qinghua Li
Sustainability 2024, 16(22), 9915; https://doi.org/10.3390/su16229915 - 14 Nov 2024
Viewed by 1149
Abstract
Inter-provincial trade is accompanied by the transfer of embodied pollution emissions, leading to emissions leakage, thereby hindering the sustainable development of society. Therefore, it is imperative to analyze the characteristics of embodied pollutant emission and spatial transfer driven by inter-provincial trade. In this [...] Read more.
Inter-provincial trade is accompanied by the transfer of embodied pollution emissions, leading to emissions leakage, thereby hindering the sustainable development of society. Therefore, it is imperative to analyze the characteristics of embodied pollutant emission and spatial transfer driven by inter-provincial trade. In this study, the quantitative and spatial characteristics of the six main embodied pollutants (i.e., SO2, NOX, CO, VOC, PM2.5, and PM10) were analyzed by a hypothetical extraction method (HEM) and complex network analysis (CNA) under an input–output analysis (IOA) framework. Then, the row arrange series (RAS) method was employed to simulate the impacts of varying levels of trade intensity, economic growth rate, and technological progress on embodied pollutants and spatial-transfer characteristics. The major findings are as follows: (i) the increase in inter-provincial trade led to a corresponding rise in embodied pollutant emissions due to the relocation of production activities towards provinces with higher emission intensity. Excessive responsibility was assumed by provinces such as Shanxi and Hebei, engaging in production outsourcing for reducing pollutants. (ii) The macro direction of pollutant transfer paths was from the resource-rich northern and central provinces towards the trade-developed southern provinces. Sectors in the transfer path, such as the industry sectors of Shanxi, Guangdong, Henan, and the transport sector of Henan, exhibited high centrality and dominated pollutant transfer activities in the network. (iii) The industry sector, characterized by substantial energy consumption, was the predominant emitter of all pollutant production-based emissions, accounting for more than 40% of total emissions. This study is conducive to analyzing the impacts of inter-provincial trade on embodied pollutant emissions and developing emissions reduction policies considering equitable allocation of emissions responsibilities from both production and consumption perspectives. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

17 pages, 7131 KiB  
Article
Analysis of the Causes of an O3 Pollution Event in Suqian on 18–21 June 2020 Based on the WRF-CMAQ Model
by Ju Wang, Wei Zhang, Weihao Shi, Xinlong Li and Chunsheng Fang
Atmosphere 2024, 15(7), 831; https://doi.org/10.3390/atmos15070831 - 11 Jul 2024
Viewed by 1196
Abstract
In recent years, O3 pollution events have occurred frequently in Chinese cities. Utilizing the WRF-CMAQ model, this study analyzed the causes of an O3 pollution event in Suqian on 18–21 June 2020, considering meteorological conditions, process analysis, and source analysis. It [...] Read more.
In recent years, O3 pollution events have occurred frequently in Chinese cities. Utilizing the WRF-CMAQ model, this study analyzed the causes of an O3 pollution event in Suqian on 18–21 June 2020, considering meteorological conditions, process analysis, and source analysis. It also designed 25 emission reduction scenarios to explore more effective O3 emission reduction strategies. The results show that meteorological conditions such as temperature and wind field play an important role in the formation and accumulation of O3. During the heavy pollution period, the contribution of vertical transport (VTRA) and horizontal transport (HTRA) to O3 concentration is significantly enhanced. The photochemical reactions of precursors, such as NOx and VOCs transported from long distances and O3 directly transported to Suqian from other regions, contribute greatly to O3 pollution in Suqian; local sources contribute very little, between 12.22% and 18.33%. Based on the simulation of 25 emission reduction scenarios, it was found that excessive emission reduction of NOx is not conducive to the reduction of O3 concentration, and it is best to control the emission reduction ratio at about 10%. Without affecting normal production and life, it is recommended to reduce VOCs as much as possible, particularly those generated by traffic sources. Full article
(This article belongs to the Special Issue Ozone Pollution and Effects in China)
Show Figures

Figure 1

23 pages, 6089 KiB  
Article
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
by Antonella Macagnano, Fabricio Nicolas Molinari, Paolo Papa, Tiziana Mancini, Stefano Lupi, Annalisa D’Arco, Anna Rita Taddei, Simone Serrecchia and Fabrizio De Cesare
Nanomaterials 2024, 14(13), 1123; https://doi.org/10.3390/nano14131123 - 29 Jun 2024
Cited by 3 | Viewed by 2114
Abstract
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods [...] Read more.
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 7339 KiB  
Article
Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport?
by Baolin Wang, Yuchun Sun, Lei Sun, Zhenguo Liu, Chen Wang, Rui Zhang, Chuanyong Zhu, Na Yang, Guolan Fan, Xiaoyan Sun, Zhiyong Xia, Hongyu Xu, Guang Pan, Zhanchao Zhang, Guihuan Yan and Chongqing Xu
Atmosphere 2024, 15(2), 232; https://doi.org/10.3390/atmos15020232 - 15 Feb 2024
Cited by 3 | Viewed by 1792
Abstract
Simultaneous measurements of atmospheric volatile organic compounds (VOCs), conventional gases and meteorological parameters were performed at an urban site in Jinan, East China, in June 2021 to explore the formation and evolution mechanisms of summertime ozone (O3) pollution events. O3 [...] Read more.
Simultaneous measurements of atmospheric volatile organic compounds (VOCs), conventional gases and meteorological parameters were performed at an urban site in Jinan, East China, in June 2021 to explore the formation and evolution mechanisms of summertime ozone (O3) pollution events. O3 Episode Ⅰ, O3 Episode II, and non-O3 episodes were identified based on the China Ambient Air Quality Standards and the differences in precursor concentrations. The O3 concentrations in Episode I and Episode II were 145.4 μg/m3 and 166.4 μg/m3, respectively, which were significantly higher than that in non-O3 episode (90 μg/m3). For O3 precursors, VOCs and NOx concentrations increased by 48% and 34% in Episode I, and decreased by 21% and 27% in Episode II compared to non-O3 episode days. The analysis of the m,p-xylene to ethylbenzene ratio (X/E) and OH exposure demonstrated that the aging of the air masses in Episode II was significantly higher than the other two episodes, and the differences could not be explained by localized photochemical consumption. Therefore, we speculate that the high O3 concentrations in Episode II were driven by the regional transport of O3 and its precursors. Backward trajectory simulations indicated that the air masses during Episode II were concentrated from the south. In contrast, the combination of high precursor concentrations and favorable meteorological conditions (high temperatures and low humidity) led to an excess of O3 in Episode I. Positive matrix factorization (PMF) model results indicated that increased emissions from combustion and gasoline vehicle exhausts contributed to the elevated concentrations of VOCs in Episode I, and solvent usage may be an important contributor to O3 formation. The results of this study emphasize the importance of strengthening regional joint control of O3 and its precursors with neighboring cities, especially in the south, which is crucial for Jinan to mitigate O3 pollution. Full article
(This article belongs to the Special Issue Ozone Pollution and Effects in China)
Show Figures

Figure 1

22 pages, 4036 KiB  
Article
Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment
by Marcel Rusca, Tiberiu Rusu, Simona Elena Avram, Doina Prodan, Gertrud Alexandra Paltinean, Miuta Rafila Filip, Irina Ciotlaus, Petru Pascuta, Tudor Andrei Rusu and Ioan Petean
Atmosphere 2023, 14(5), 862; https://doi.org/10.3390/atmos14050862 - 11 May 2023
Cited by 16 | Viewed by 3357
Abstract
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for [...] Read more.
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for all measuring points and PM10 for the most circulated points during May, along with significant VOC and CO2 emissions. September measurements reveal threshold excess for all PM along with increased values for VOC and CO2 emissions. These are the consequences of the complex environmental interaction of the traffic. Street dust and air-suspended particle samples were collected and analyzed to evidence the PM2.5 and PM10 sources. Physicochemical investigation reveals highly mineralized particulate matter: PM2.5 fractions within air-suspended particle samples predominantly contain Muscovite, Kaolinite, and traces of Quartz and Calcite, while PM10 fractions within air-suspended particle samples predominantly contain Quartz and Calcite. These mineral fractions originate in street dust and are suspended in the atmosphere due to the vehicles’ circulation. A significant amount of soot was found as small micro-sized clusters in PM2.5 and fine micro-spots attached over PM10 particles, as observed by Mineralogical Optical Microscopy (MOM) and Fourier Transformed Infrared Spectroscopy (FTIR). GC-MS analysis found over 53 volatile compounds on the investigated floating particles that are related to the combustion gases, such as saturated alkanes, cycloalkanes, esters, and aromatic hydrocarbons. It proves a VOC contamination of the measured particulate matters that make them more hazardous for the health. Viable strategies for vehicle traffic-related pollutants mitigation would be reducing the street dust occurrence and usage of modern catalyst filters of the combustion gas exhausting system. Full article
(This article belongs to the Special Issue Road Emission: Recent Trends, Current Progress and Future Direction)
Show Figures

Figure 1

14 pages, 2853 KiB  
Article
VOC Emission Characteristics of the Glass Deep-Processing Industry in China
by Fan Zhang, Mingya Wang, Mingshi Wang, Chun Chen, Xiyue Wang, Xiaojun Nie, Wenju Wang, Qinqing Xiong, Chunhui Zhang, Penghao Li, Yidong Wang and Xuechun Zhang
Atmosphere 2023, 14(1), 179; https://doi.org/10.3390/atmos14010179 - 13 Jan 2023
Cited by 2 | Viewed by 3026
Abstract
To understand the pollution characteristics of volatile organic compounds (VOCs) in the glass deep-processing industry, samples were collected using polyvinyl fluoride bags and quickly transferred to summa tanks for GC/MS/FID analysis. The emission characteristics of VOCs, the ozone formation potential and the secondary [...] Read more.
To understand the pollution characteristics of volatile organic compounds (VOCs) in the glass deep-processing industry, samples were collected using polyvinyl fluoride bags and quickly transferred to summa tanks for GC/MS/FID analysis. The emission characteristics of VOCs, the ozone formation potential and the secondary aerosol formation potential were studied. The results showed that the VOCs emitted by the six enterprises were mainly aromatics and OVOCs, accounting for 35% to 97% of the emissions, with high emission loads of alkanes and halocarbons from individual enterprises. The stack emissions from Enterprise 2 were as high as 38 mg/m3, while the emissions from the remaining five enterprises were all in the range of 1.7~4.1 mg/m3, probably because the terminal treatment facilities were not updated in a timely manner, resulting in excessive stack emissions from Enterprise 2. The characteristic pollutants, including OVOCs, aromatics and alkanes, which are mainly derived from spray painting and gluing, were screened in the six enterprises. Aromatics and OVOCs contributed the most to the ozone formation potential in the six enterprises, with some enterprises having a high contribution from alkanes and alkenes. On the basis of the secondary aerosol formation potential, toluene, benzene, ethylbenzene, o-xylene and m/p-xylene account for 98% of the six enterprises’ emissions. Glass enterprises should prioritise the control of benzene and OVOCs emissions. The glass processing industry mainly emits aromatics, OVOCs and alkanes. Through a preliminary study on the emission characteristics of VOCs in the glass deep-processing industry, we provided basic data for the reduction and control of VOCs in the glass deep-processing industry in China. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

13 pages, 2231 KiB  
Article
Analysis of VOCs Emitted from Small Laundry Facilities: Contributions to Ozone and Secondary Aerosol Formation and Human Risk Assessment
by Da-Mee Eun, Yun-Sung Han, Soo-Hyun Park, Hwa-Seong Yoo, Yen Thi-Hoang Le, Sangmin Jeong, Ki-Joon Jeon and Jong-Sang Youn
Int. J. Environ. Res. Public Health 2022, 19(22), 15130; https://doi.org/10.3390/ijerph192215130 - 16 Nov 2022
Cited by 5 | Viewed by 2622
Abstract
Volatile organic compounds (VOCs) emitted to the atmosphere form ozone and secondary organic aerosols (SOA) by photochemical reactions. As they contain numerous harmful compounds such as carcinogens, it is necessary to analyze them from a health perspective. Given the petroleum-based organic solvents used [...] Read more.
Volatile organic compounds (VOCs) emitted to the atmosphere form ozone and secondary organic aerosols (SOA) by photochemical reactions. As they contain numerous harmful compounds such as carcinogens, it is necessary to analyze them from a health perspective. Given the petroleum-based organic solvents used during the drying process, large amounts of VOCs are emitted from small laundry facilities. In this study, a laundry facility located in a residential area was selected, while VOCs data emitted during the drying process were collected and analyzed using a thermal desorption-gas chromatography/mass spectrometer (TD-GC/MS). We compared the results of the solvent composition, human risk assessment, contribution of photochemical ozone creation potential (POCP), and secondary organic aerosol formation potential (SOAP) to evaluate the chemical species. Alkane-based compounds; the main components of petroleum organic solvents, were dominant. The differences in evaporation with respect to the boiling point were also discerned. The POCP contribution exhibited the same trend as the emission concentration ratios for nonane (41%), decane (34%), and undecane (14%). However, the SOAP contribution accounted for o-xylene (28%), decane (27%), undecane (25%), and nonane (9%), thus confirming the high contribution of o-xylene to SOA formation. The risk assessment showed that acrylonitrile, carbon tetrachloride, nitrobenzene, bromodichloromethane, and chloromethane among carcinogenic compounds, and bromomethane, chlorobenzene, o-xylene, and hexachloro-1, 3-butadiene were found to be hazardous, thereby excessing the standard value. Overall these results facilitate the selection and control of highly reactive and harmful VOCs emitted from the dry-cleaning process. Full article
(This article belongs to the Special Issue Risk Analysis Method and Model of Pollutants)
Show Figures

Figure 1

19 pages, 3133 KiB  
Article
Prediction of Residual NPK Levels in Crop Fruits by Electronic-Nose VOC Analysis following Application of Multiple Fertilizer Rates
by Sana Tatli, Esmaeil Mirzaee-Ghaleh, Hekmat Rabbani, Hamed Karami and Alphus Dan Wilson
Appl. Sci. 2022, 12(21), 11263; https://doi.org/10.3390/app122111263 - 7 Nov 2022
Cited by 13 | Viewed by 3214
Abstract
The excessive application of nitrogen in cucumber cultivation may lead to nitrate accumulation in fruits with potential toxicity to humans. Harvested fruits of agricultural crops should be evaluated for residual nitrogen, phosphorus, and potassium (NPK) nutrient levels. This is necessary to avoid nutrient [...] Read more.
The excessive application of nitrogen in cucumber cultivation may lead to nitrate accumulation in fruits with potential toxicity to humans. Harvested fruits of agricultural crops should be evaluated for residual nitrogen, phosphorus, and potassium (NPK) nutrient levels. This is necessary to avoid nutrient toxicity from the consumption of fresh produce with excessive nutrient levels. Electronic noses are instruments well-suited for the nondestructive detection of fruit and vegetable quality based on volatile organic compound (VOC) emissions. This proof-of-concept study was designed to test the efficacy of using an electronic nose with statistical regression models to indirectly predict excessive fertilizer application based on VOC emissions from cucumber fruits grown under controlled greenhouse conditions to simulate field conditions but eliminate most environmental variables affecting plant volatile emissions. To identify excess nitrogen in cucumber plants, five different levels of urea fertilizer application rates were tested on cucumbers (control without fertilizer, 100, 200, 300, and 400 kg/ha). Chemometric methods, such as the partial least squares regression (PLSR) method, the principal component regression (PCR) method, and the multiple linear regression (MLR) method, were used to create separate regression models to predict nitrogen (N), phosphorus (P), and potassium (K) levels in cucumber fruits following application of different fertilizer rates to greenhouse soils. The correlation coefficients for the MLR model (based on the optimal parameters of PCR and PLSR) were 0.905 and 0.905 for the calibration sets and 0.900 and 0.900 for the validation sets, respectively. The nitrogen prediction model for fruit nitrates was more accurate than other nutrient models. The proposed method could potentially be used to indirectly detect excessive use of fertilizers in cucumber field crops. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

20 pages, 2480 KiB  
Article
Rapid Detection of Urea Fertilizer Effects on VOC Emissions from Cucumber Fruits Using a MOS E-Nose Sensor Array
by Sana Tatli, Esmaeil Mirzaee-Ghaleh, Hekmat Rabbani, Hamed Karami and Alphus Dan Wilson
Agronomy 2022, 12(1), 35; https://doi.org/10.3390/agronomy12010035 - 24 Dec 2021
Cited by 41 | Viewed by 5455
Abstract
The widespread use of nitrogen chemical fertilizers in modern agricultural practices has raised concerns over hazardous accumulations of nitrogen-based compounds in crop foods and in agricultural soils due to nitrogen overfertilization. Many vegetables accumulate and retain large amounts of nitrites and nitrates due [...] Read more.
The widespread use of nitrogen chemical fertilizers in modern agricultural practices has raised concerns over hazardous accumulations of nitrogen-based compounds in crop foods and in agricultural soils due to nitrogen overfertilization. Many vegetables accumulate and retain large amounts of nitrites and nitrates due to repeated nitrogen applications or excess use of nitrogen fertilizers. Consequently, the consumption of high-nitrate crop foods may cause health risks to humans. The effects of varying urea–nitrogen fertilizer application rates on VOC emissions from cucumber fruits were investigated using an experimental MOS electronic-nose (e-nose) device based on differences in sensor-array responses to volatile emissions from fruits, recorded following different urea fertilizer treatments. Urea fertilizer was applied to cucumber plants at treatment rates equivalent to 0, 100, 200, 300, and 400 kg/ha. Cucumber fruits were then harvested twice, 4 and 5 months after seed planting, and evaluated for VOC emissions using an e-nose technology to assess differences in smellprint signatures associated with different urea application rates. The electrical signals from the e-nose sensor array data outputs were subjected to four aroma classification methods, including: linear and quadratic discriminant analysis (LDA-QDA), support vector machines (SVM), and artificial neural networks (ANN). The results suggest that combining the MOS e-nose technology with QDA is a promising method for rapidly monitoring urea fertilizer application rates applied to cucumber plants based on changes in VOC emissions from cucumber fruits. This new monitoring tool could be useful in adjusting future urea fertilizer application rates to help prevent nitrogen overfertilization. Full article
Show Figures

Figure 1

12 pages, 4274 KiB  
Article
Development of Warm In-Place Recycling Technique as an Eco-Friendly Asphalt Rehabilitation Method
by Byungkyu Moon, Ashkan Bozorgzad, Hosin (David) Lee, Soo-Ahn Kwon, Kyu-Dong Jeong and Nam-Joon Cho
Infrastructures 2021, 6(7), 101; https://doi.org/10.3390/infrastructures6070101 - 8 Jul 2021
Cited by 3 | Viewed by 3677
Abstract
Cold In-place Recycling (CIR) has been widely used in the world since it is easy to apply it in the field at a low cost. However, it is not normally used as a surface layer as a result of its inconsistent quality due [...] Read more.
Cold In-place Recycling (CIR) has been widely used in the world since it is easy to apply it in the field at a low cost. However, it is not normally used as a surface layer as a result of its inconsistent quality due to an excessive amount of fine aggregates pulverized during the milling process. Hot In-place Recycling (HIR) can retain the original shape of the aggregates, but it often produces a large amount of Volatile Organic Compounds (VOCs). Therefore, a third in-place recycling technique is introduced in this paper: Warm In-place Recycling (WIR). The WIR technique overcomes the limitations of both CIR and HIR techniques by lowering a heating temperature while adding a Tetraethylenepentamine (TEPA)/Soybean/SBS additive. To identify the effect of the additive on the RTFO-aged binder, viscosity and dynamic modulus values were measured at different temperatures. Based on Hamburg Wheel Tracking (HWT) and Disc-Shaped Compact Tension (DCT) tests, the additive improved the moisture susceptibility and low temperature cracking resistance. The indirect infrared heating equipment reduced the emission by lowering the pavement surface heating temperature by 20 °C from 140 to 120 °C. Compared with the heating at 140 °C, the LPG usage for heating at 140 °C was lowered by 21%. The proposed WIR equipment with an additive would revolutionize the in-place recycling practices. Full article
(This article belongs to the Special Issue Pavement Sustainability)
Show Figures

Graphical abstract

15 pages, 2862 KiB  
Article
Volatile Organic Compounds in Underground Shopping Districts in Korea
by Soo Ran Won, Young Sung Ghim, Jeonghoon Kim, Jungmin Ryu, In-Keun Shim and Jongchun Lee
Int. J. Environ. Res. Public Health 2021, 18(11), 5508; https://doi.org/10.3390/ijerph18115508 - 21 May 2021
Cited by 14 | Viewed by 3019
Abstract
Underground shopping districts (USDs) are susceptible to severe indoor air pollution, which can adversely impact human health. We measured 24 volatile organic compounds (VOCs) in 13 USDs throughout South Korea from July to October 2017, and the human risk of inhaling hazardous substances [...] Read more.
Underground shopping districts (USDs) are susceptible to severe indoor air pollution, which can adversely impact human health. We measured 24 volatile organic compounds (VOCs) in 13 USDs throughout South Korea from July to October 2017, and the human risk of inhaling hazardous substances was evaluated. The sum of the concentrations of the 24 VOCs was much higher inside the USDs than in the open air. Based on factor analysis, six indoor air pollution sources were identified. Despite the expectation of a partial outdoor effect, the impacts of the indoor emissions were significant, resulting in an indoor/outdoor (I/O) ratio of 5.9 and indicating elevated indoor air pollution. However, the effects of indoor emissions decreased, and the contributions of the pollution sources reduced when the USD entrances were open and the stores were closed. Although benzene, formaldehyde, and acetaldehyde exhibited lower concentrations compared to previous studies, they still posed health risks in both indoor and outdoor settings. Particularly, while the indoor excess cancer risk (ECR) of formaldehyde was ~10 times higher than its outdoor ECR, benzene had a low I/O ratio (1.1) and a similar ECR value. Therefore, indoor VOC concentrations could be reduced by managing inputs of open air into USDs. Full article
Show Figures

Figure 1

8 pages, 881 KiB  
Communication
Comparing Permitted Emissions to Atmospheric Observations of Hydrocarbons in the Eagle Ford Shale Suggests Permit Violations
by Joel Holliman and Gunnar W. Schade
Energies 2021, 14(3), 780; https://doi.org/10.3390/en14030780 - 2 Feb 2021
Cited by 2 | Viewed by 3651
Abstract
The recent decade’s rapid unconventional oil and gas development in the Eagle Ford of south-central Texas has caused increased hydrocarbon emissions, which we have previously analyzed using data from a Texas Commission on Environmental Quality air quality monitoring station located downwind of the [...] Read more.
The recent decade’s rapid unconventional oil and gas development in the Eagle Ford of south-central Texas has caused increased hydrocarbon emissions, which we have previously analyzed using data from a Texas Commission on Environmental Quality air quality monitoring station located downwind of the shale area. Here, we expand our previous top-down emissions estimate and compare it to an estimated regional emissions maximum based on (i) individual facility permits for volatile organic compound (VOC) emissions, (ii) reported point source emissions of VOCs, (iii) traffic-related emissions, and (iv) upset emissions. This largely permit-based emissions estimate accounted, on average, for 86% of the median calculated emissions of C3-C6-hydrocarbons at the monitor. Since the measurement-based emissions encompass a smaller section of the shale than the calculated maximum permitted emissions, this strongly suggests that the actual emissions from oil and gas operations in this part of the Eagle Ford exceeded their permitted allowance. Possible explanations for the discrepancy include emissions from abandoned wells and high volumes of venting versus flaring. Using other recent observations, such as large fractions of unlit flares in the Permian shale basin, we suggest that the excessive venting of raw gas is a likely explanation. States such as Texas with significant oil gas production will need to require better accounting of emissions if they are to move towards a more sustainable energy economy. Full article
Show Figures

Figure 1

13 pages, 1584 KiB  
Article
Source-Specific Volatile Organic Compounds and Emergency Hospital Admissions for Cardiorespiratory Diseases
by Jinjun Ran, Marianthi-Anna Kioumourtzoglou, Shengzhi Sun, Lefei Han, Shi Zhao, Wei Zhu, Jinhui Li and Linwei Tian
Int. J. Environ. Res. Public Health 2020, 17(17), 6210; https://doi.org/10.3390/ijerph17176210 - 27 Aug 2020
Cited by 20 | Viewed by 3300
Abstract
Knowledge gaps remain regarding the cardiorespiratory impacts of ambient volatile organic compounds (VOCs) for the general population. This study identified contributing sources to ambient VOCs and estimated the short-term effects of VOC apportioned sources on daily emergency hospital admissions for cardiorespiratory diseases in [...] Read more.
Knowledge gaps remain regarding the cardiorespiratory impacts of ambient volatile organic compounds (VOCs) for the general population. This study identified contributing sources to ambient VOCs and estimated the short-term effects of VOC apportioned sources on daily emergency hospital admissions for cardiorespiratory diseases in Hong Kong from 2011 to 2014. We estimated VOC source contributions using fourteen organic chemicals by positive matrix factorization. Then, we examined the associations between the short-term exposure to VOC apportioned sources and emergency hospital admissions for cause-specific cardiorespiratory diseases using generalized additive models with polynomial distributed lag models while controlling for meteorological and co-pollutant confounders. We identified six VOC sources: gasoline emissions, liquefied petroleum gas (LPG) usage, aged VOCs, architectural paints, household products, and biogenic emissions. We found that increased emergency hospital admissions for chronic obstructive pulmonary disease were positively linked to ambient VOCs from gasoline emissions (excess risk (ER%): 2.1%; 95% CI: 0.9% to 3.4%), architectural paints (ER%: 1.5%; 95% CI: 0.2% to 2.9%), and household products (ER%: 1.5%; 95% CI: 0.2% to 2.8%), but negatively associated with biogenic VOCs (ER%: −6.6%; 95% CI: −10.4% to −2.5%). Increased congestive heart failure admissions were positively related to VOCs from architectural paints and household products in cold seasons. This study suggested that source-specific VOCs might trigger the exacerbation of cardiorespiratory diseases. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop