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Abstract: Volatile organic compounds (VOCs) emitted to the atmosphere form ozone and secondary
organic aerosols (SOA) by photochemical reactions. As they contain numerous harmful compounds
such as carcinogens, it is necessary to analyze them from a health perspective. Given the petroleum-
based organic solvents used during the drying process, large amounts of VOCs are emitted from
small laundry facilities. In this study, a laundry facility located in a residential area was selected,
while VOCs data emitted during the drying process were collected and analyzed using a thermal
desorption-gas chromatography/mass spectrometer (TD-GC/MS). We compared the results of the
solvent composition, human risk assessment, contribution of photochemical ozone creation potential
(POCP), and secondary organic aerosol formation potential (SOAP) to evaluate the chemical species.
Alkane-based compounds; the main components of petroleum organic solvents, were dominant.
The differences in evaporation with respect to the boiling point were also discerned. The POCP
contribution exhibited the same trend as the emission concentration ratios for nonane (41%), de-
cane (34%), and undecane (14%). However, the SOAP contribution accounted for o-xylene (28%),
decane (27%), undecane (25%), and nonane (9%), thus confirming the high contribution of o-xylene
to SOA formation. The risk assessment showed that acrylonitrile, carbon tetrachloride, nitrobenzene,
bromodichloromethane, and chloromethane among carcinogenic compounds, and bromomethane,
chlorobenzene, o-xylene, and hexachloro-1, 3-butadiene were found to be hazardous, thereby excess-
ing the standard value. Overall these results facilitate the selection and control of highly reactive and
harmful VOCs emitted from the dry-cleaning process.

Keywords: volatile organic compound; risk assessment; laundry; indoor air quality; secondary
organic aerosol

1. Introduction

Volatile organic compounds (VOCs) are carbon-based chemicals that can easily evap-
orate into the atmosphere due to their high vapor pressure [1]. VOCs are originated
from natural or anthropogenic sources. The anthropogenic sources include motor vehi-
cle exhausts, combustion processes utilizing fossil fuels, energy storage and distribution,
petroleum solvent usage, and other industrial processes [2]. VOCs have the characteristic
that fugitive emissions are large and important among these anthropogenic sources [3].
Therefore, research to observe and analyze specific emission sources is particularly impor-
tant, and many related studies have been conducted [4–7]. Of them, the use of organic
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solvents accounted for >50% of Korea’s total VOC emissions in 2019 (CAPSS). In domestic
small laundry facilities, various VOC emissions from petroleum-based organic solvents
cause serious indoor pollution [8]. Consequently, several studies have focused on the risk
of VOCs emitted during the dry-cleaning process [8–15].

When VOCs are released into the atmosphere, ozone, and secondary organic aerosols
(SOA) are formed by photochemical reactions [13,16]. Ozone is produced by the atmo-
spheric oxidation of VOCs with nitrogen oxides when sunlight is present [17–20]. Likewise,
secondary organic aerosol formation occurs by the oxidation of VOCs, thereby becoming a
major factor behind fine PM2.5 pollution [21–24]. Lee et al., (2021) [25] investigated VOC
emissions during the dry-cleaning process, while also determining decane and undecane
as two chemical species with the strongest influence on ozone and SOA creation.

As indoor life accounted for the majority of daily routine during COVID-19 pandemic,
indoor pollution has received considerable attention in research [26,27]. Numerous previ-
ous studies have shown that indoor pollutant concentrations are more dominant than those
outdoors [28–30]. It has been estimated that 4.3 million people worldwide die prematurely
from diseases caused by indoor air pollution every year [31]. Inhalation is the main route
of VOC exposure to the human body [32]. In small laundry facilities, chemicals with
carcinogenic or other hazards can pose a significant threat to the workers and surrounding
residents, thereby putting them under a high risk of exposure. According to Çankaya et al.,
(2018) [10], dry cleaners exhibited the second highest hazard quotient among the handicraft
workplaces (restaurants, dry cleaners, photocopy centers, and auto paint shops), whereas
bromoform exhibited the highest carcinogenic risk (1.36 × 10−5) in dry cleaners. Niu
et al., (2021) [14] considered the chemical species of VOCs emitted from 13 various volatile
emission sources, and analyzed the temperature dependence of source profiles. To this end,
they compared how different VOC mass fractions in summer and winter were formed at
5 workplaces, including laundry. They found that halohydrocarbons were dominant in
winter while alkanes prevailed in summer.

However, these studies were limited because they analyzed ozone and SOA formation
and human risk for VOCs emitted during dry-cleaning process or were focused on the
concentration of indoor pollution concentration according to the temperature change. In
particular, the studies on risk assessment are extremely scantly over the past 15 years,
especially those specifically focused only on domestic laundry facilities. Independent
national-scale studies are needed because atmospheric environments, the dry-cleaning
solvents mainly used, and the composition of the workplace; all differ depending on
the country. In this study, a comprehensive assessment was conducted alongside the
analysis of the contribution to ozone and SOA formation. These results can be used as
the data in future for independent studies focused on Korea. The VOCs emitted during
dry-cleaning process in small laundry facilities were analyzed using thermal desorption-
gas chromatography/mass spectrometer (TD-GC/MS). Moreover, (1) the contribution to
ozone creation was determined according to the analysis results using photochemical ozone
creation potential (POCP) value; (2) the contribution to SOA generation using secondary
organic aerosols potential (SOAP) value was determined as well, (3) while deterministic
risk assessment was performed to reflect each VOCs species.

2. Materials and Methods
2.1. VOCs Sampling and Analysis

To date, domestic dry cleaners and small household laundry account for 98% of the
overall laundry industry [33]. Petroleum solvents and non-petroleum solvents such as
perchloroethylene and fluorine-based solvents are used as laundry solvents. It is known
that >95% of domestic laundry facilities use petroleum-based solvents (hydrocarbons) [34].
Petroleum distillates are composed of alkanes, cycloalkanes, and aromatic compounds [13].
Moreover, petroleum laundry solvents used in the dry-cleaning process are discharged
into the atmosphere during the washing process, solvent circulation filtration process, and
drying process [34]. In this study, a dry washing machine was used in a small laundry
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facility. Methodologically, 1 kg of cotton fiber was washed using a petroleum laundry
solvent. The dry-cleaning process lasted for 23 min: (1) main washing (10 min), (2) rinse
washing (5 min), (3) deoiling process (8 min).

To analyze the samples emitted from the dry-cleaning process, gas chromatography-
mass spectrometer (GC-MS) was used. For the reproducibility of the results, the same
experiment was performed 3 times. The gas was collected inside the laundry with flow
adjustable mini pump (Amos 100, YTK Co., Uiwang, Korea) and a solid sorbent tube
(3.5” x 1/4”, Markes, Llantrisant, UK) filled with triple adsorption trap (Carbopack C,
Carbopack B, Carbosieve SIII). The sorbent tube demonstrated excellent adsorption and
desorption capabilities for VOCs in a wide range from C2 to C20 among the adsorbents,
thereby implying that it can be efficiently collected (details are summarized in Table S1). The
samples collected in adsorption tubes were stored in a desiccator to maintain temperature
and humidity. The analysis was conducted as quickly as possible.

The collected sample was quantitatively and qualitatively analyzed using a thermal
desorption gas chromatography/mass spectrometer (GCMS: 5977B, Agilent Technologies,
Santa Clara, CA, USA). In the thermal desorption (TD: TD100xr, Markes, Llantrisant,
UK), the adsorbed sample was thermally desorbed (280 ◦C, 40 mL/min, 10 min). The
primary desorbed sample was moved to the cold trap through N2 gas (99.999%), and for
secondary desorption, the temperature was increased to 300 ◦C. The initial temperature
of the GC oven was 50 ◦C, held for 10 min and subsequently increased up to 220 ◦C, and
then, held for another 10 min. After passing He (99.999%) through the column at the flow
rate of 2.5 mL/min, it was analyzed by a quadrupole mass spectrometer. The sample was
qualitatively analyzed using the scan mode. The detailed operating conditions are shown in
Figure 1. A total of 77 species were used for qualitative and quantitative analysis (Table S2).
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2.2. Estimation of POCP and SOAP

Ground level ozone is a secondary pollutant produced by the reaction of volatile
organic compounds (VOCs) and nitrogen oxides (NOx) in the presence of sunlight in the
atmosphere [35]. VOCs species differ in their reactivity and structure, thus implying that
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the extent to which they contribute to ozone formation varies from species to species. Thus,
the emissions and photochemical reactivity should be both estimated [36].

The method, proposed by Derwent et al., (2007) [37] reflects the contribution to
photochemical ozone creation (POC) in a semi-quantitative way by considering the emission
and chemical reactivity of each VOCs. However, as the POCP value was determined by
a realistic air mass trajectory model across northeast Europe, it could emerge in different
ways depending on the weather and spatial characteristics of Korea [25]. The POCP value
was expressed by calculating the ozone increment of a particular hydrocarbon based on
the ozone increment of ethylene (POCP = 100). Equations (1) and (2) are applied for POCP
calculation.

POCPi =
Ozone increment with the ith hydrocarbon

Ozone increment with ethylene
× 100 (1)

The contribution of ozone creation by VOCs was calculated using the POCPi suggested
by Derwent et al., (2007) [37].

POCP = Ci × POCPi (2)

Ci is the concentration of VOCs emitted per dry-cleaning cycle, and POCP is the
contribution value of ozone creation expressed by multiplying the emission by the POCPi.

Secondary organic aerosols (SOA), which account for a significant fraction of PM2.5 in the
atmosphere, are formed through the oxidation of VOCs precursors [13]. Equations (3) and (4)
are applied for SOAP calculation.

SOAPi =
Increment in SOA mass concentration with species, i

Increment in SOA with toluene
× 100 (3)

The SOAPi reflects the extent to which the compound forms an SOA when an addi-
tional mass concentration is present, compared to the SOA formed when the same amount
of toluene is present [38]. SOAPs were expressed as an index relative to toluene = 100.

SOAP = Ci × SOAPi (4)

SOAP is the contribution value of secondary organic aerosols formed expressed by
multiplying the emission by the SOAPi.

2.3. Risk Assessment

Risk assessment is the scientific process for characterizing the nature and magnitude
of risks to human health, thereby elucidating the mechanisms of events behind the adverse
health effects, and deepening the knowledge about epidemiology [39,40]. Each factor
required for the exposure assessment can be calculated in a deterministic or probabilistic
manner depending on the purpose [41]. Since the deterministic model uses a single value
for the model parameters, it can advantageously estimate typical exposure differently from
the values of the probabilistic model, thus allowing an easy interpretation of results [39].
In the United States, the product inventory and related toxicity data have been previously
reviewed by DeLeo et al., (2018) [42] within the Cleaning Product Ingredient Safety Initiative
(CPISI). However, the deterministic risk assessment is still ambiguous for cleaning product
ingredients of all the products, including laundry care products, and safety data; established
for some products.

In this study, to elucidate the effects on the human body of inhaling VOCs emitted
during the dry-cleaning process, a human risk assessment was evaluated for VOCs with
toxic data. The applied procedures for risk assessment designed by the National Research
Council (NRC) included hazard identification, dose response assessment, exposure as-
sessment, and risk characterization. Carcinogenic and non-carcinogenic compounds were
analyzed using hazard identification and dose–response assessment. For carcinogenic
and non-carcinogenic substances, 11 and 8 VOCs were selected from the International
Agency for Research on Cancer (IARC) and the Integrated Risk Information System (IRIS),
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respectively. Inhalation slope factor (mg/kg·day)−1 for carcinogenic substances and the
reference concentration (mg/m3) for non-carcinogenic substances were obtained. The
inhalation slope coefficient generally represents the cancer risk per unit dose of a pollu-
tant and is defined as the value close to the 95% confidence level for an increased risk
of carcinogenesis through lifetime inhalation exposure [43]. 8 carcinogenic compounds
ranged from 3.50 × 10−5 (methylene chloride) to 2.38 × 10−1 (acrylonitrile); benzene was a
class 1 carcinogen, methylene chloride was class 2A, and acrylonitrile, carbon tetrachloride,
nitrobenzene, bromodichloromethane, and 4-methyl-2-pentanone were designated as the
class 2 B carcinogens by the IARC (Table 1). The reference concentration reflects an estimate
of a human continuous inhalation exposure [44], and the values for the 11 non-carcinogens
ranged from 3.50 × 10−3 (hexachloro-1,3-Butadiene) to 2.17 × 102 (ethanol) (Table 2).

Table 1. Dose–response data of toxic carcinogenic VOCs.

No. Compound CAS NO. IARC WOE * EPA
WOE **

Unit Risk
(µg/m3)−1

Inhalation Slope
Factor

(mg/kg·day)−1
Reference

1 Acrylonitrile 107-13-1 2B B1 6.80 × 10−5 2.38 × 10−1 EPA IRIS

2 Methylene
chloride 75-09-2 2A LH 1.00 × 10−8 3.50 × 10−5 EPA IRIS

3 Benzene 71-43-2 1 CH 7.80 × 10−6 2.73 × 10−2 EPA IRIS

4 Carbon
Tetrachloride 56-23-5 2B LH 1.50 × 10−5 1.30 × 10−1 EPA IRIS

5 Nitrobenzene 98-95-3 2B LH 4.00 × 10−5 1.40 × 10−1 EPA IRIS
6 Bromodichloromethane 75-27-4 2B - 1.77 × 10−5 6.20 × 10−2 MDEQ

7 4-Methyl-2-
pentanone 108-10-1 2B lnl 4.94 × 10−7 1.73 × 10−3 MDEQ

8 Chloromethane 74-87-3 3 lnl 1.80 × 10−6 6.30 × 10−3 HEAST, MDEQ

* IARC WOE (weight of evidence for carcinogenicity): 1—carcinogenic; 2A—probably carcinogenic; 2B—possibly
carcinogenic; 3—not classifiable; 4—probably not carcinogenic). ** EPA WOE: A—human carcinogen;
B1—probable carcinogen, limited human evidence; B2—probable carcinogen, sufficient evidence in animals;
C—possible human carcinogen; D—not classifiable; E—evidence of noncarcinogenicity; CH—carcinogenic to
humans; LH—likely to be carcinogenic; SE—suggestive evidence of carcinogenic potential; InI—inadequate
information to assess carcinogenic potential; NH—not likely to be carcinogenic).

Table 2. Dose–response data of toxic non-carcinogenic VOCs.

No. Compound CAS NO. RfD *
(mg/kg·day) RfC ** (mg/m3) Reference

1 Bromomethane 74-83-9 1.40 × 10−3 5.00 × 10−3 EPA IRIS
2 Toluene 108-88-3 8.00 × 10−2 5.00 × 100 EPA IRIS
3 Chlorobenzene 108-90-7 2.00 × 10−2 7.00 × 10−2 EPA IRIS
4 m&p-Xylene 1330-20-7 2.00 × 10−1 1.00 × 10−1 EPA IRIS
5 o-xylene 1330-20-7 2.00 × 10−1 1.00 × 10−1 EPA IRIS
6 1,3-Dichlorobenzene 541-73-1 2.00 × 10−3 7.00 × 10−3 ATSDR, MDEQ
7 1,2,4-Trichlorobenzene 120-82-1 1.00 × 10−2 3.50 × 10−2 EPA IRIS
8 Hexachloro-1,3-Butadiene 87-68-3 1.00 × 10−3 3.50 × 10−3 PPRTV
9 Ethanol 64-17-5 6.20 × 101 2.17 × 102 MDEQ
10 Hexane 110-54-3 - 7.00 × 10−1 EPA IRIS
11 Ethylbenzene 100-41-4 1.00 × 10−1 1.00 × 101 EPA IRIS

* RfD: Reference dose, ** RfC: Reference concentration.

Moreover, the dose-response data of carcinogenic and non-carcinogenic compounds
such as tumor type and test species of each substance were obtained (Tables S3 and S4).
If the evaluation is performed using animal experimental data due to a lack of data, the
interpretation of the analyzed data was scrupulous. The results could emerge as errors in
the process of converting the capacity to apply to the human body [45].

The exposure assessment is performed through the estimation of the exposure level
at which the chemicals enter the human body according to the analysis data of chemicals



Int. J. Environ. Res. Public Health 2022, 19, 15130 6 of 13

in the environment [45]. Life average daily dose (LADDs; mg/kg·day) can be calculated
according to Equation (5).

LADDs =
CA × IR × ED × EF × L

BW × ATL × NY
(5)

CA is the contaminant concentration (mg/m3); IR is the inhalation rate (m3/h); ED is
the exposure duration (h/week); EF is the exposure frequency (week/yr); L is the length of
exposure (yr); BW is the body weight (kg); ATL is the average time of lifetime (70 years);
NY is the number of days per year (365 days/year). For carcinogenic substances, LADDs
and an inhalation slope factor both could be used to quantify the cancer risk, while for
non-carcinogenic substances, the hazard quotient was determined using the reference
concentration. An acceptable limit was suggested at the risk level (1.00 × 10−6), at which
in one in a million, cancer would be developed (e.g., the naturally occurring probability
of cancer). Furthermore, the comparison between LADDs for the current atmospheric
level with the reference value was performed, thereby reflecting that the adverse effects of
non-carcinogens are likely to occur if the hazard quotient exceeds 1 [46].

3. Results and Discussion
3.1. Concentrations of VOCs during Dry Cleaning Process

Of the 77 analytes, 47 were detected during the dry-cleaning process, which accounted
for ~61% of the total. The quantitative results were calibrated using the laundry indoor
temperature and pressure (20 ◦C, 1 atm). The five substances emitted the most were deter-
mined: nonane (409.2 ppb), decane (319.9 ppb), undecane (127.4 ppb), nonanal (54.2 ppb),
and decanal (29.1 ppb), which accounted for about 85% of the total emission concentration
(Table S5).

For the dry-cleaning process, a petroleum-based organic solvent was used. Figure 2
shows the comparison of the organic solvent release test [47] with the results of this study (in
%). The emission concentrations of the alkane-based species from the dry-cleaning process
were determined as well: nonane (35%), decane (31%), undecane (13%), and dodecane
(1%); all accounted for 82% of the total emission concentration. In the composition of the
organic solvent, decane (34%), undecane (25%), dodecane (18%), and nonane (14%) were
confirmed to be dominant at 94% of the C9–C12 alkane based chemical species, as shown
in Figure 2. As seen, the VOCs emitted during the dry-cleaning process were strongly
affected by the organic solvent used. A previous study indicated that the solvent composed
of perchloroethylene (70%) and naphtha gas (30%) in Mexico, while halohydrocarbons
accounted for 96.2% of the total emission mass [48], and 100% in Chicago [49]. In line with
the findings from Lee et al., (2021) [25], we found that besides the type of organic solvent
used, the discharged concentration varied according to different operational conditions
like operating temperature, operating time, type of laundry, and weight of laundry.

Moreover, the comparison of dry-cleaning emissions with the organic solvent demon-
strated that nonane seemingly increased from 14% to 35%, while decane and undecane
seemingly decreased from 34% to 31% and from 25% to 13%. The compounds with low
boiling points are generally characterized by the ability to evaporate into the atmosphere,
mixing with air, and accumulation ability [50]. Besides that, Wang et al., (2013) [51] have
previously confirmed that the evaporation rate of the solvent varied according to the dif-
ference in its boiling point. In the nonane solvent, having a relatively higher boiling point
than the isooctane solvent, the evaporation was more strongly inhibited and the liquid state
was maintained. In the dry cleaning process of this study, where the internal temperature
of the device was maintained at 140–160 ◦C, the evaporation of nonane (B.P: 151 ◦C) in the
total evaporation would be higher than that for undecane (B.P: 196 ◦C) and dodecane (B.P:
216 ◦C).
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3.2. Photochemical Ozone Creation Potential (POCP) and Secondary Organic Aerosol Formation
Potential (SOAP) of VOCs

VOCs emitted from small-scale indoor emission sources infiltrate to ambient air and
have a great effect on ozone and SOA formation by photochemical reactions [52]. Among
the substances emitted from the dry-cleaning process, 19 chemical species to which the
POCP value can be applied were identified; they accounted for 40%. The total contribution
of 19 substances was found to be 33.7 ppm, and nonane (41.3%), decane (34.2%), undecane
(13.6%), and o-xylene (5.5%) accounted for ~95% of the contribution rate of ozone creation
(Figure 3). As nonane, decane, and undecane accounted for ~80% of the VOCs emitted
from the dry-cleaning process, the contribution rate to the ozone creation was estimated to
be high separately from the POCP value. Furthermore, o-xylene, which accounted for 3% of
the total emission concentration contributed 5.5% to the ozone creation. Lee et al. (2021) [25]
have previously reported that decane (32.4%), nonane (21.7%), undecane (18.3%), Hexane
(15.5%), and octane (4.6%) exhibited the highest contribution to the ozone formation. Lee
et al., (2021) [25] found the same top three compounds but their contribution rates differed.
Moreover, types and contribution rates of the remaining compounds were also different.
This difference was in turn driven by the difference in the chemical compositions of various
organic solvents, dry-cleaning equipment, weight, and type of laundry [25].

Of the substances emitted from the dry-cleaning process, 18 chemical species to which
SOAP value can be applied, were identified; they accounted for 38% of the total. The
total SOAP contribution of the substances was found to be 8.3 ppm. Unlike POCP, o-
xylene (27.5%) exhibited the highest contribution rate, while decane (27.2%) and undecane
(25.0%) exhibited similar but lower contribution rates. Next, nonane (9.4%) and toluene
(3.2%) exhibited high contribution, and the contribution rate of the five VOCs to SOA
formation accounted for ~92% of the total (Figure 4). O-xylene accounted for 3% of
the total dry-cleaning emissions. However, the driver behind their high contribution to
SOA formation was related to stronger exposure to the SOAP value of the compounds,
compared with the emission concentration. This indicates that their VOCs significantly
affected SOA formation. Lee et al., (2021) [25] have previously shown that undecane
(44.8%), decane (30.4%), dodecane (9.3%), toluene (5.5%), and nonane (5.5%) exhibited the
highest contribution to SOA formation. In turn, we revealed some differences because
o-xylene was not detected in previous study.
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3.3. Risk Assessment

Figure 5 shows the evaluation for the selected 8 carcinogens. As seen, the mean total
estimated cancer risk was 2.36 × 10−5. Of the 8 VOCs, nitrobenzene is the substance with
the highest cancer risk. Chemical species are considered to be hazardous because their
cancer risks exceed the carcinogenic standard (1.00 × 10−6) are acrylonitrile (3.26 × 10−5),
carbon tetrachloride (2.40 × 10−5), nitrobenzene (1.26 × 10−4), bromodichloromethane
(4.19 × 10−6), and chloromethane (1.25 × 10−6), which are classified as 4 types of 2B class
carcinogens and 1 type of class 3 carcinogen. Thus, they were seemingly directly exposed to
the risk of kidney cancer, liver cancer, respiratory cancer, etc. Moreover, for benzene, a class
1 carcinogen, it was below the standard value, but close to the standard value (6.84 × 10−7).
Thus, it is necessary to pay attention to it.
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Figure 6 shows the evaluation of 11 non-carcinogenic substances. As seen, the mean
total hazard quotient was 1.19. Of the 11 compounds, the non-carcinogenic risk index of
bromomethane was 5.95, thereby manifesting the highest value. Some compounds were
deemed to be hazardous because the emission concentration exceeded the standard concen-
tration for bromomethane (5.95), chlorobenzene (1.45), o-xylene (1.53), and hexachloro-1,3-
Butadiene (3.84), 4 out of 11. Moreover, the hazard quotient of 1,3-dichlorobenzene (0.17)
and 1,2,4-trichlorobenzene (0.14) was below the standard value, but close to the standard
value, thus implying that such a result cannot be neglected. Through the inhalation of
these substances, laundry workers and people living in the vicinity are likely to suffer
from toxic effects on the nervous, respiratory, urinary, and hepatic systems through in-
halation. In particular, small-scale laundries are concentrated in residential areas, thus
posing a major and significant health risk to the surrounding population. However, the
emission concentrations were estimated using a single measurement and the number
of data resulted in large standard deviations, thereby manifesting a considerable limita-
tion [46]. Çankaya et al., (2018) [10] have previously indicated that carbon tetrachloride
(7.65 × 10−6), benzene (1.09 × 10−5), and bromodichloromethane (4.53 × 10−6); all pose
cancer risks. Although carbon tetrachloride exhibited a higher risk in this study, benzene
and bromodichloromethane had been shown to have a slightly higher level of risk in the
previous study. Moreover, even though chlorobenzene and o-xylene were found to be
harmful in this study, toluene (2.12 × 10−2), chlorobenzene (4.05 × 10−2), ethylbenzene
(5.06 × 10−4), and xylenes (1.59 × 10−2); all did not exceed the standard, thereby signifying
acceptable levels [10]. Omrane, F., et al., (2021) [53] previously found that the carcino-
genic risks of TCE and PCE in Tunisia using chlorinated solvents were 1.65 × 10−1 and
1.18 × 10−2, respectively, thus greatly exceeding the standard. It is therefore reasonable to
suggest that they pose a high possibility of causing liver or kidney cancer.
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4. Conclusions

In this study, VOCs emitted from the dry-cleaning process of small laundry facilities
were analyzed, while the contribution of the chemicals to ozone and SOA formation was
quantified. Furthermore, the risk of toxic substances to the human body was assessed and
discussed for each chemical. We used the samples taken from dry-cleaning processes in
small laundry facilities and detected 47 of 77 analytes. We identified the top three sub-
stances of dry-cleaning emissions as follows: nonane (35%), decane (31%), and undecane
(13%). The dominant proportion of the alkane (82%) was affected by the organic solvent,
mostly composed of alkane (96%). Moreover, we concluded that the volatilization amount
of nonane was higher than that of other compounds under the influence of the internal
temperature of the dry-cleaning process. The analysis of POCP and SOAP contribution
confirmed that the contribution to ozone formation was dominated by nonane (41%), de-
cane (34%), and undecane (14%) with high emission concentrations. We also analyzed the
SOA formation contribution and found that o-xylene exhibited the highest contribution
rate (28%) because the SOAP value had a greater effect, compared with that of the emission
concentration. Thus, we confirmed that aromatic compounds greatly contributed to the
formation of SOA. Furthermore, decane (27%) and undecane (25%) exhibited low but
similar levels. The health risk assessment demonstrated that (1) acrylonitrile, carbon tetra-
chloride, nitrobenzene, bromodichloromethane, and chloromethane exceeded the standard
for carcinogenic substances; (2) benzene, class 1 carcinogen was close to the standard;
(3) bromomethane, chlorobenzene, o-xylene, and hexachloro-1,3-butadiene exceeded the
standard for non-carcinogenic substances (all these results were statistically significant).
Thus, people working in small laundry facilities are exposed to health risks. It is also
plausible that the period of exposure to toxic substances is high because they reside indoors
for a long time.

It is necessary to remove specific chemical substances from the organic solvent itself or
to limit the emission by installing a reduction device at the outlet of dry-cleaning machine.
Moreover, laundry workers should be generally aware of the potential health risks they are
exposed to and must wear personal protective equipment. After the dry-cleaning process,
it is necessary to minimize the risk to the human body by providing sufficient ventilation
of the indoor air. These findings lay the foundation for future studies, aimed at preparing
VOC regulatory standards and management plans.
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