VOC Emission Characteristics of the Glass Deep-Processing Industry in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Collection and Chemical Analysis
2.3. Quality Control
2.4. Reactivity Analysis of Pollution Sources
3. Result and Discussion
3.1. Characteristics of VOCs Emission
3.2. Ozone Formation Potential for VOCs
3.3. Secondary Aerosol Formation Potential for VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Xue, Z.; Li, H.; Yan, L.; Yang, Y.; Wang, Y.; Duan, J.; Li, L.; Chai, F.; Cheng, M.; et al. Ambient volatile organic compounds pollution in China. J. Environ. Sci. 2017, 55, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Liu, Y.; Cui, Y.; Xue, Z.; Gao, Z.; Du, J. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant. J. Environ. Sci. 2020, 95, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Carabineiro, S.A.C.; Thompson, D.T. Catalytic Applications for Gold Nanotechnology. In Nanocatalysis; Heiz, U., Landman, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 377–489. [Google Scholar]
- Ozturk, B.; Yilmaz, D. Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams. Process. Saf. Environ. Prot. 2006, 84, 391–398. [Google Scholar] [CrossRef]
- Lu, X.; Wang, M.; Ding, F.; Yu, Y.; Zhang, Z.; Hu, K. Changes of O3-VOCs-NOx Sensitivity and VOCs Sources at an Urban Site of Nanjing Between 2020 and 2021. Environ. Sci. 2022, 1–18. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Dong, H.; Hu, M.; Li, X.; Liu, Y.; Lu, S.; Shao, M.; Su, R.; Wang, H.; et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Sci. Bull. 2018, 63, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.X.; Lyu, X.P.; Cheng, H.R.; Ling, Z.H.; Guo, H. Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environ. Sci. Process. Impacts 2019, 21, 916–929. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Lei, Y.; Xue, W. Path of coordinated control of PM25 and ozone in China. Chin. Sci. Bull. 2022, 67, 2089–2099. [Google Scholar] [CrossRef]
- Chen, J.; Peng, J.; Xu, Y. Spatiotemporal Distribution and Health Impacts of PM2.5 and O3 in Beijing, from 2014 to 2020. Environ. Sci. 2021, 42, 4071–4082. [Google Scholar] [CrossRef]
- Zhong, M.; Tian, J.; Ye, D. China’s Total VOCs Control Program Research and Suggestions during the 14th Five-Year Period. Environ. Impact Assess. 2021, 43, 1–6. [Google Scholar] [CrossRef]
- Liu, J.F.; Zhao, J.; Li, T.T.; Bai, Y.H.; Liu, Z.R. Establishment of Chinese anthropogenic source volatile organic compounds emission inventory. China Environ. Sci. 2008, 28, 496–500. [Google Scholar]
- Qi, Y.; Shen, L.; Zhang, J.; Yao, J.; Lu, R.; Miyakoshi, T. Species and release characteristics of VOCs in furniture coating process. Environ. Pollut. 2019, 245, 810–819. [Google Scholar] [CrossRef]
- Cheng, N.; Jing, D.; Zhang, C.; Chen, Z.; Li, W.; Li, S.; Wang, Q. Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China. Sci. Total Environ. 2021, 752, 141899. [Google Scholar] [CrossRef]
- Liang, X.M.; Zhang, J.N.; Chen, X.F.; Shi, T.L.; Sun, X.B.; Fan, L.Y.; Ye, D.Q. Reactivity-based Anthropogenic VOCs Emission Inventory in China. Environ. Sci. 2017, 38, 845–854. [Google Scholar] [CrossRef]
- Rajabi, H.; Mosleh, M.H.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processing—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Liu, W.; Wu, B.; Liu, S.; Liu, X.; Hao, Y.; Liang, W.; Lin, S.; Luo, L.; Zhao, S.; et al. Emission characteristics and inventory of volatile organic compounds from the Chinese cement industry based on field measurements. Environ. Pollut. 2023, 316, 120600. [Google Scholar] [CrossRef]
- Zheng, W. Market Situation of glass deep processing industry. Chin. Build. Met. Struct. 2018, 45–47. [Google Scholar]
- Zhou, J.; Jiangtao, S. Instructions for the Preparation of Emission Standards for Air Pollutants in Glass Industry (Draft). In Proceedings of the 2020 23rd National Glass Kiln Technology Seminar, Anhui, China, April 14–17 2020; pp. 195–220. [Google Scholar]
- Zhejiang Provincial Department of Ecology and Environment. Feasible Technical Guide for the Prevention and Control of Volatile Organic Matter Pollution: Ecological Environment of Zhejiang Province; Department of Ecology and Environment of Zhejiang Province: Hangzhou, China, 2021.
- National Development and Reform Commission of the People’s Republic of China. Implementation Guide for Upgrading Energy Conservation and Carbon Reduction in Key Sectors of Energy-Intensive Industries (2022 Edition); National Development and Reform Commission: Beijing, China, 2022.
- Liu, H.; Xu, B.; Li, J.; Yao, Y.; Fang, X.; Yang, H. The test method of Volatile Organic Compounds (VOCs). Electr. Power Technol. Environ. Prot. 2017, 33, 1–5. [Google Scholar]
- Li, Q.; Su, G.; Li, C.; Wang, M.; Tan, L.; Gao, L.; Mingge, W.; Wang, Q. Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. J. Hazard. Mater. 2019, 375, 52–60. [Google Scholar] [CrossRef]
- Li, L.; An, J.Y.; Shi, Y.Y.; Zhou, M.; Yan, R.S.; Huang, C.; Wang, H.L.; Lou, S.R.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Dong, M.; Li, W.; Gao, X.; Ye, R.; Zhang, D. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
- Qi, Y.; Ni, J.; Zhao, D.; Zhang, N.; Ji, T.; Gong, S. Emission Characteristics of Volatile Organic Compounds (VOCs) fromTypical Industrial Sectors in Xingtai City. Res. Environ. Sci. 2021, 34, 2339–2349. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Q.; Cai, Z.; Chen, C.; Ye, F. Problems and Process Optimization of Adsorption and Catalytic CombustionProcess in Waste Gas Treatment of Coating Industry. J. Salt Sci. Chem. Ind. 2020, 49, 7–9. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Zhang, Y.; Zhu, J.; Wang, W.; Jiang, H.; Liu, Z. Research progress on paint thinner testing and identification. Fire Sci. Technol. 2020, 39, 282–284. [Google Scholar]
- Jin, P. Characteristics of hexane (n-hexane). Saf. Health 2010, 07, 34. [Google Scholar]
- Zhang, L.; Wu, T.; He, Y.; Li, Z.; Yan, H. Study on detection methods of volatile organic compounds in adhesives. China Adhes. 2019, 28, 45–48. [Google Scholar] [CrossRef]
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | ||||
---|---|---|---|---|---|---|---|---|---|
Types of VOCs | MIR | FAC | mg/m3 | mg/m3 | mg/m3 | mg/m3 | mg/m3 | mg/m3 | |
Alkanes | n-Hexane | 1.24 | 0.025 | 2.12 | 1.89 | 0.487 | 0.105 | 0.034 | |
n-Heptane | 1.07 | 0.06 | 0 | 0.006 | 0.007 | 0 | 0 | 0 | |
Alkenes | 1-Decene | 0.003 | 0 | 0 | 0 | 0 | 0.004 | ||
1,3-Butadiene | 12.61 | 0 | 0.234 | 0.011 | 0.101 | 0 | 0 | ||
1-Dodecene | 0.011 | 0 | 0.007 | 0 | 0.017 | 0.013 | |||
Halocarbons | Dibromochloromethane | 0 | 0 | 0 | 0 | 0 | 0 | ||
Tribromomethane | 0 | 0 | 0 | 0 | 0 | 0 | |||
Carbon tetrachloride | 0 | 0.013 | 0 | 0 | 0.011 | 0 | |||
1,2-Dibromoethane | 0 | 0 | 0 | 0 | 0 | 0 | |||
1,2-Dichloroethane | 0.21 | 0.015 | 0.005 | 0.005 | 0 | 0.125 | 0.022 | ||
1,1,1-Trichloroethane | 0 | 0 | 0 | 0 | 0 | 0 | |||
1,1,2-Trichloroethane | 0.086 | 0 | 0 | 0.001 | 0 | 0 | 0 | ||
1,1,2-Trichlorotrifluoroethane | 0 | 0.012 | 0.005 | 0 | 0 | 0.004 | |||
1,1,2,2-Tetrachloroethane | 0 | 0 | 0 | 0 | 0 | 0 | |||
Hexamethyldisiloxane | 0 | 0 | 0 | 0.011 | 0 | 0 | |||
1,1-Dichloroethylene | 0 | 0.003 | 0 | 0 | 0 | 0 | |||
cis-1,2-Dichloroethylene | 0 | 0 | 0 | 0 | 0 | 0 | |||
trans-1,2-Dichloroethylene | 0 | 0 | 0 | 0 | 0 | 0.127 | |||
Tetrachloroethylene | 0.031 | 0.057 | 0.138 | 0.091 | 0.037 | 0.078 | 0.029 | ||
Chloropropene | 7 | 0 | 0.044 | 0.277 | 0 | 0.006 | 0 | ||
cis-1,3-Dichloropropene | 5.03 | 0 | 0.002 | 0 | 0 | 0 | 0 | ||
trans-1,3-Dichloropropene | 3.7 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Chlorobenzene | 0.32 | 0 | 0.161 | 0.201 | 0.308 | 0.013 | 0 | ||
1,3-Dichlorobenzene | 0 | 0.086 | 0.073 | 0.021 | 0.016 | 0 | |||
Aromatics | Benzene | 0.72 | 2 | 0.061 | 1.53 | 0.262 | 0.339 | 0.083 | 0.02 |
Toluene | 4 | 5.4 | 0.117 | 0.299 | 0.103 | 0.133 | 0.36 | 0.099 | |
Ethylbenzene | 3.04 | 5.4 | 0.091 | 4.34 | 0.06 | 0.035 | 0.155 | 0.07 | |
o-Xylene | 7.64 | 5 | 0.097 | 7.84 | 0.086 | 0.097 | 0.193 | 0.086 | |
m/p-Xylene | 8.2 | 4.7 | 0.291 | 12.7 | 0.18 | 0.102 | 0.546 | 0.245 | |
1,2,3-Trimethylbenzene | 0 | 0.421 | 0 | 0 | 0 | 0 | |||
1,2,4-Trimethylbenzene | 8.87 | 2 | 0.053 | 2.39 | 0.013 | 0 | 0.053 | 0.063 | |
1,3,5-Trimethylbenzene | 2.9 | 0.015 | 1.61 | 0 | 0 | 0.018 | 0.015 | ||
4-Ethyltoluene | 4.44 | 2.5 | 0.016 | 1.57 | 0 | 0 | 0.016 | 0.015 | |
Ethenylbenzene | 1.73 | 0.012 | 0.333 | 0.068 | 0.014 | 0.044 | 0.009 | ||
Carbon disulphide | 0.019 | 0.052 | 0.013 | 0.02 | 0.028 | 0.013 | |||
OVOCs | Tetrahydrofuran | 4.31 | 0.093 | 0.201 | 0.006 | 0.003 | 0.036 | 0.062 | |
Benzaldehyde | −0.67 | 0.002 | 0.057 | 0.01 | 0.011 | 0.005 | 0.002 | ||
Acetone | 0.36 | 0.13 | 0.8 | 0.223 | 0.267 | 0.07 | 0.09 | ||
3-Pentanone | 0 | 0 | 0 | 0 | 0 | 0 | |||
Cyclopentanone | 0 | 0.003 | 0.002 | 0 | 0 | 0 | |||
2-Nonanone | 0 | 0 | 0 | 0 | 0 | 0 | |||
2-Hexanone | 0 | 0 | 0 | 0 | 0 | 0 | |||
4-Methyl-2-pentanone | 0.158 | 0.192 | 0.048 | 0.024 | 0.063 | 0.115 | |||
2-Heptanone | 0 | 0.008 | 0.001 | 0 | 0 | 0 | |||
Anisole | 0 | 0 | 0 | 0 | 0 | 0 | |||
tert-Butyl methyl ether | 0.73 | 0.005 | 0 | 0.002 | 0 | 0.003 | 0 | ||
Ethyl acetate | 0.83 | 1.57 | 0.172 | 0.087 | 0.058 | 0.348 | 0.205 | ||
Vinyl acetate | 3.2 | 0.014 | 0 | 0 | 0 | 0.172 | 0.019 | ||
n-Butyl acetate | 0.83 | 0.292 | 0.424 | 0.016 | 0.018 | 0.115 | 0.137 | ||
Ethyl lactate | 0 | 0 | 0 | 0 | 0 | 0 | |||
Propylene glycol monomethyl ether acetate | 0.019 | 0.015 | 0.005 | 0 | 0.021 | 0.011 | |||
Methyl methacrylate | 0 | 0.047 | 0.15 | 0 | 0 | 0 | |||
Isopropanol | 0.61 | 0.925 | 0.124 | 0.089 | 0.257 | 0.117 | 0.22 |
Enterprise | VOCs Concentration Before Evolution (mg/m3) | End-Treatment Process | VOCs Concentration after Evolution (mg/m3) | Purification Efficiency (%) |
---|---|---|---|---|
Enterprise1 | 45.73 | Activated carbon adsorption + water curtain spraying + catalytic combustion | 4.09 | 91.06 |
Enterprise 2 | 57.47 | Activated carbon adsorption + catalytic combustion | 38.00 | 33.88 |
Enterprise 3 | 46.91 | Activated carbon adsorption + spray tower + dry adsorption + catalytic combustion | 3.99 | 91.49 |
Enterprise 4 | 20.82 | RTO exhaust gas treatment | 2.34 | 88.76 |
Enterprise 5 | 6.13 | Activated carbon adsorption + UV photo-oxidation | 2.82 | 54.00 |
Enterprise 6 | 7.53 | Activated carbon adsorption + UV photo-oxidation catalyst | 1.73 | 77.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, M.; Wang, M.; Chen, C.; Wang, X.; Nie, X.; Wang, W.; Xiong, Q.; Zhang, C.; Li, P.; et al. VOC Emission Characteristics of the Glass Deep-Processing Industry in China. Atmosphere 2023, 14, 179. https://doi.org/10.3390/atmos14010179
Zhang F, Wang M, Wang M, Chen C, Wang X, Nie X, Wang W, Xiong Q, Zhang C, Li P, et al. VOC Emission Characteristics of the Glass Deep-Processing Industry in China. Atmosphere. 2023; 14(1):179. https://doi.org/10.3390/atmos14010179
Chicago/Turabian StyleZhang, Fan, Mingya Wang, Mingshi Wang, Chun Chen, Xiyue Wang, Xiaojun Nie, Wenju Wang, Qinqing Xiong, Chunhui Zhang, Penghao Li, and et al. 2023. "VOC Emission Characteristics of the Glass Deep-Processing Industry in China" Atmosphere 14, no. 1: 179. https://doi.org/10.3390/atmos14010179
APA StyleZhang, F., Wang, M., Wang, M., Chen, C., Wang, X., Nie, X., Wang, W., Xiong, Q., Zhang, C., Li, P., Wang, Y., & Zhang, X. (2023). VOC Emission Characteristics of the Glass Deep-Processing Industry in China. Atmosphere, 14(1), 179. https://doi.org/10.3390/atmos14010179