Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = ethyl vinyl acetate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5339 KiB  
Article
Effect of the Comonomer Nature on the Cytotoxicity and Mechanical Properties of a Cryogel Based on Sodium 2-Acrylamido-2-methyl-1-propanesulfonate Copolymers
by Olga Iakobson, Elena Ivan’kova, Yulia Nashchekina, Gleb Vaganov, Svetlana Laishevkina and Natalia Shevchenko
Colloids Interfaces 2025, 9(3), 34; https://doi.org/10.3390/colloids9030034 - 28 May 2025
Viewed by 490
Abstract
Currently, for the treatment of corneal diseases (keratitis–corneal opacities), synthetic corneal analogs based on polymer films or hydrogels are being developed. The requirements for the material include biocompatibility, the presence of a developed system of macropores, transparency, rapid swelling, and mechanical strength. Here, [...] Read more.
Currently, for the treatment of corneal diseases (keratitis–corneal opacities), synthetic corneal analogs based on polymer films or hydrogels are being developed. The requirements for the material include biocompatibility, the presence of a developed system of macropores, transparency, rapid swelling, and mechanical strength. Here, with the aim of preparing such materials, a series of gels based on a copolymer of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMP) and 2-hydroxyethyl methacrylate (or vinyl acetate, or ethyl acrylate) were obtained using cryotropic gelation. It was shown that transparent cryogels can be obtained based on the sulfonate-containing comonomer 2-acrylamido-2-methyl-1-propanesulfonic acid at a crosslinking agent concentration of 2.2 mol.%, while the nature of the acrylate comonomer did not show any effect on transparency. It was found that when using AMP and ethyl acrylate, cryogels with a developed system of macropores with a diameter of 50 to 250 μm were formed, and the mechanical strength of such cryogels was sufficient for their subsequent use as corneal implants. Moreover, the PAMP hydrogel containing 2-hydroxyethyl methacrylate or ethyl acrylate units did not affect the viability of cells even after 1 month. Full article
Show Figures

Graphical abstract

26 pages, 3633 KiB  
Article
A Comparative Study of Two Synthesis Methods for Poly(Acrylic Acid-Co-Acrylamide) Incorporating a Hyperbranched Star-Shaped Monomer
by Ramses S. Meleán Brito, Agustín Iborra, Juan M. Padró, Cristian Villa-Pérez, Miriam C. Strumia, Facundo Mattea, Juan M. Giussi and Juan M. Milanesio
Polymers 2025, 17(7), 964; https://doi.org/10.3390/polym17070964 - 1 Apr 2025
Cited by 1 | Viewed by 802
Abstract
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with [...] Read more.
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with PEGMA500 arms and modified to contain a single vinyl group, was copolymerized with acrylic acid and acrylamide. Comprehensive polymer characterization was performed using FTIR, NMR, and SEC-MALS-dRI techniques. Rheological assessments revealed that copolymers containing the star-shaped monomer exhibited significantly higher viscosities than those lacking the hyperbranched component, a result attributed to the inter- and intrachain interactions facilitated by the PEGMA500 arms. Additionally, purification studies demonstrated that dialysis was necessary to remove short-chain polymers, particularly for samples synthesized in supercritical media, to achieve optimal rheological performance. Polymers synthesized in a supercritical CO2–ethyl acetate mixture exhibited higher viscosities compared to their water-synthesized counterparts. The integration of the novel star-shaped macromonomer into HPAM-like polymers offers substantial potential for enhanced oil recovery applications. Full article
(This article belongs to the Special Issue Recent Advances in the Polymers Field for the Energy Industry)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Analysis of Potential Markers of Pork Freshness Based on Volatile Organic Compounds
by Wu Wang, Yujing Wang, Peilin Weng, Yixin Zhang, Jiali Peng, Fei Ma and Hui Zhou
Foods 2025, 14(5), 832; https://doi.org/10.3390/foods14050832 - 28 Feb 2025
Cited by 1 | Viewed by 1118
Abstract
Bacteria and endogenous enzymes generate volatile organic compounds (VOCs), which are posited to be the primary source of undesirable flavors in spoilt pork. Headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) was employed to assess the fluctuations in VOC concentrations in pork stored under tray [...] Read more.
Bacteria and endogenous enzymes generate volatile organic compounds (VOCs), which are posited to be the primary source of undesirable flavors in spoilt pork. Headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) was employed to assess the fluctuations in VOC concentrations in pork stored under tray packaging at 6–8 °C for 10 days, while total volatile basic nitrogen (TVB-N) and total viable counts (TVCs) were used to determine the quality of the pork. During storage, TVCs steadily increased, reflecting the growth of spoilage-related microorganisms, while TVB-N levels surpassed the spoilage threshold early, indicating an acceleration of the degradation process. Nine VOCs associated with pork spoilage were found by partial least squares discriminant analysis (PLS-DA), fold change (FC), and t-tests. The substances comprised ethyl acetate, acetoin, 3-methyl-1-butanol, 3-methylbutanal, 1-octen-3-ol, hexanal, vinyl acetate, 2-methylaziridine, and heptanal. A univariate linear regression analysis revealed a strong positive correlation (p < 0.001) between the gaseous total volatile basic nitrogen (G-TVBN) and the storage duration. Given that G-TVBN accurately reflects changes in pork freshness and the progression of spoilage, these results highlight the potential for dynamically monitoring the freshness and spoilage processes of pork. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

17 pages, 5011 KiB  
Review
Evolution of Ostomy Pouch Design: Opportunities for Composite Technologies to Advance Patient Care
by Victoria Gilpin, Niamh Magee, Cameron Scott, L. Kirsty Pourshahidi, Chris I. R. Gill, Ellen E. A. Simpson, Karl McCreadie and James Davis
J. Compos. Sci. 2024, 8(10), 388; https://doi.org/10.3390/jcs8100388 - 27 Sep 2024
Cited by 2 | Viewed by 6228
Abstract
Stoma surgery can be critical in helping to restore the well-being of patients suffering from gastrointestinal disease or injury but it inevitably comes with numerous psychological and physiological complications. Disposable pouch systems which enable the collection of bowel waste have revolutionized stoma care [...] Read more.
Stoma surgery can be critical in helping to restore the well-being of patients suffering from gastrointestinal disease or injury but it inevitably comes with numerous psychological and physiological complications. Disposable pouch systems which enable the collection of bowel waste have revolutionized stoma care but providing robust, discreet devices that can efficiently meet the requirements of the patient can be challenging. Pouches must securely store a microbially active waste whilst preventing leakage, protecting the underlying skin from inflammation and minimizing odor. All of this needs to be achieved within the design constraints of a pouch that is easy to manage and yet still maintains a discreet body contour. Stoma collection has moved from the waste being collected in butyl rubber pouches to much more elaborate systems incorporating assemblies of polyvinylidene chloride, ethylene vinyl acetate, ethyl vinyl alcohol and polyvinyl alcohol with new, skin-friendly adhesive such as hydrocolloid and silicones impregnated with ceramides and aloe. Moreover, 3D printing has emerged as a means of providing personalized stoma pouches that can potentially address the age-old issue of leakage. Despite such advances, stoma pouches have evolved slowly over the past 70 or so years. A survey of the literature reveals an abundance of quality-of-life studies but a dearth of reports addressing the key technological challenges. Consequently, this narrative review considers current stoma pouch technology and highlights the issues that continue to afflict stoma patients. Research and patent literature is critically appraised in terms of current pouch technology and the potential opportunities for new composite materials are identified. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

15 pages, 1113 KiB  
Article
Fermentation Performances and Aroma Contributions of Selected Non-Saccharomyces Yeasts for Cherry Wine Production
by Federico Bianchi, Michele Avesani, Marilinda Lorenzini, Giacomo Zapparoli and Barbara Simonato
Foods 2024, 13(15), 2455; https://doi.org/10.3390/foods13152455 - 3 Aug 2024
Cited by 4 | Viewed by 1618
Abstract
This study evaluates the fermentation performances of non-Saccharomyces strains in fermenting cherry must from Italian cherries unsuitable for selling and not intended to be consumed fresh, and their effects on the chemical composition of the resulting wine. Fermentation trials in 100 and [...] Read more.
This study evaluates the fermentation performances of non-Saccharomyces strains in fermenting cherry must from Italian cherries unsuitable for selling and not intended to be consumed fresh, and their effects on the chemical composition of the resulting wine. Fermentation trials in 100 and 500 mL of must were carried out to select 21 strains belonging to 11 non-Saccharomyces species. Cherry wines obtained by six select strains were chemically analyzed for fixed and volatile compounds. Quantitative data were statistically analyzed by agglomerative hierarchical clustering, partial least squared discriminant analysis, and principal component analysis. Wines revealed significant differences in their composition. Lactic acid and phenylethyl acetate levels were very high in wines produced by Lachancea and Hanseniaspora, respectively. Compared to S. cerevisiae wine, non-Saccharomyces wines had a lower content of fatty acid ethyl esters 4-vinyl guaiacol and 4-vinyl phenol. The multivariate analysis discriminated between wines, demonstrating the different contributions of each strain to aroma components. Specifically, all wines from non-Saccharomyces strains were kept strictly separate from the control wine. This study provided comprehensive characterization traits for non-conventional strains that enhance the aroma complexity of cherry-based wine. The use of these yeasts in cherry wine production appears promising. Further investigation is required to ascertain their suitability for larger-scale fermentation. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 4894 KiB  
Article
Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters
by Marek Gliński, Małgorzata Gidzińska, Łukasz Czerwiński, Kasper Drozdowski, Ewa M. Iwanek (nee Wilczkowska), Andrzej Ostrowski and Dariusz Łomot
Molecules 2024, 29(3), 584; https://doi.org/10.3390/molecules29030584 - 24 Jan 2024
Cited by 1 | Viewed by 1819
Abstract
A series of 20 wt.% MO2/S catalysts (where M = Ce, Mn or Zr and S = SiO2 or Al2O3) were prepared using various precursors of the active phases. The resulting catalysts were characterized using different [...] Read more.
A series of 20 wt.% MO2/S catalysts (where M = Ce, Mn or Zr and S = SiO2 or Al2O3) were prepared using various precursors of the active phases. The resulting catalysts were characterized using different methods (XRD, TPR and SBET). For the first time, anhydrides were used as potential starting materials for ketone synthesis. This novel reaction was performed on various aliphatic anhydrides in the presence of catalysts within a temperature range of 523–723 K. For all anhydrides, except for pivalic anhydride, the appropriate ketones were obtained with good or very good yields. The vapor-phase catalytic ketonization of esters of benzene-1,x-dicarboxylic acids (x = 2, 3 or 4) with acetic acid were studied in the range of 673–723 K in order to obtain 1,x-diacetylbenzenes. Their yields strongly increased with an increase in the x value (0, 8 and 43% for x = 2, 3 and 4, respectively). The presence of acetophenone as a side product was always noted. In the case of ω-phenylalkanoic acids, their vapor-phase ketonization with acetic acid led to the formation of appropriate ketones with 47–49% yields. Much lower yields of ketones (3–19%) were obtained for acids and ethyl esters containing heterocycle substituents (with O or S atoms) and/or vinyl groups. In the reaction between ethyl 4-nitrophenylacetate and acetic acid, only the products of ester decomposition (p-toluidine and p-nitrotoluene) were determined. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis)
Show Figures

Graphical abstract

25 pages, 6176 KiB  
Article
Mevacor/Poly(vinyl acetate/2-hydroxyethyl methacrylate) as Solid Solution: Preparation, Solubility Enhancement and Drug Delivery
by Mohammed Alassaf, Saad Mohammed Alqahtani, Rana Salem Al Khulaifi, Waseem Sharaf Saeed, Faisal S. Alsubaie, Abdelhabib Semlali and Taieb Aouak
Polymers 2023, 15(19), 3927; https://doi.org/10.3390/polym15193927 - 28 Sep 2023
Cited by 1 | Viewed by 1506
Abstract
Mevacor/Poly(vinyl acetate-co-2-hydroxyethyl methacrylate) drug carrier systems (MVR/VAC-HEMA) containing different Mevacor (MVR) contents were prepared in one pot by free radical copolymerization of vinyl acetate with 2-hydroxyethyl methacrylate using an LED lamp light in the presence of camphorquinone as a photoinitiator and Mevacor as [...] Read more.
Mevacor/Poly(vinyl acetate-co-2-hydroxyethyl methacrylate) drug carrier systems (MVR/VAC-HEMA) containing different Mevacor (MVR) contents were prepared in one pot by free radical copolymerization of vinyl acetate with 2-hydroxyethyl methacrylate using an LED lamp light in the presence of camphorquinone as a photoinitiator and Mevacor as a drug filler. The prepared material was characterized by FTIR, 1H NMR, DSC, SEM and XRD methods. Different parameters influencing the efficiency in the Mecvacor-water solubility and the drug delivery of this system, such as the swelling capacity of the carrier, the amount of Mevacor loaded and the pH medium have been widely investigated. The results obtained revealed that the Mevacor particles were uniformly dispersed in their molecular state in the copolymer matrix forming a solid solution; the cell toxicity of the virgin poly(vinyl acetate-co-2-hydroxy ethyl methacrylate) (VAC-HEMA) and MVR/VAC-HEMA drug carrier system exhibited no significant effect on their viability when between 0.25 and 2.00 wt% was loaded in these materials; the average swelling capacity of VAC-HEMA material in water was found to be 45.16 wt%, which was practically unaffected by the pH medium and the solubility of MVR deduced from the release process reached more than 22 and 37 times that of the powder dissolved directly in pH 1 and 7 media, respectively. The in vitro MVR release kinetic study revealed that the MVR/VAC-HEMA system containing 0.5 wt% MVR exhibited the best performance in the short gastrointestinal transit (GITT), while that containing 2.0 wt% is for the long transit as they were able to considerably reduce the minimum release of this drug in the stomach (pH1). Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds)
Show Figures

Figure 1

13 pages, 2926 KiB  
Article
Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot
by Pratchaya Tipduangta, Sunee Chansakaow, Sirinthicha Thakad, Pawitrabhorn Samutrtai, Aekkhaluck Intharuksa, Ratchadawan Cheewangkoon, Anuruddha Karunarathna, Tipprapa Promthep and Busaban Sirithunyalug
Horticulturae 2023, 9(9), 969; https://doi.org/10.3390/horticulturae9090969 - 25 Aug 2023
Viewed by 1896
Abstract
Citrus is an important economic plant in Thailand. The infection of citrus roots by Phytophthora nicotianae leads to root rot, reduced growth, and branch death. Although fosetyl aluminum and metalaxyl are commonly employed to address citrus root rot, they possess limitations in terms [...] Read more.
Citrus is an important economic plant in Thailand. The infection of citrus roots by Phytophthora nicotianae leads to root rot, reduced growth, and branch death. Although fosetyl aluminum and metalaxyl are commonly employed to address citrus root rot, they possess limitations in terms of their ability to diffuse to the root of citrus. Vernonia amygdalina leaf ethyl acetate extract (VLE) has been demonstrated to effectively inhibit Pythium deliense, a fungus closely related to Phytophthora nicotianae. This study aimed to investigate the anti-fungus activity of fractions obtained from the ethyl acetate extract of Vernonia amygdalina leaf against Phytophthora nicotianae, identify the most effective fraction, and formulate it into polymeric micro/nanoparticles using the electrospray process. The findings revealed that the VLE fraction eluted with ethanol:chloroform 1:1 had a high alkaloid content from metabolomic study and exhibited the potential to inhibit Phytophthora nicotianae at a concentration of 200 µg/mL. Consequently, this fraction was selected for incorporation into polymer blends of Poly Vinyl Alcohol/cellulose acetate to generate electrosprayed particles with a diameter of 0.97 ± 0.55 microns. These particles effectively suppressed in vitro Phytophthora nicotianae, thereby suggesting that VLE-containing electrosprayed particles have the potential to be applied and their in vivo performance in the treatment of citrus root rot evaluated in future experiments. Full article
Show Figures

Graphical abstract

16 pages, 3635 KiB  
Article
Development of a Purity Certified Reference Material for Vinyl Acetate
by Chen He, Qin Gao, Changwen Ye, Guotao Yang, Pengfei Zhang, Rongchao Yang, Qing Zhang and Kang Ma
Molecules 2023, 28(17), 6245; https://doi.org/10.3390/molecules28176245 - 25 Aug 2023
Cited by 2 | Viewed by 1891
Abstract
Vinyl acetate is a restricted substance in food products. The quantification of the organic impurities in vinyl acetate is a major problem due to its activity, instability, and volatility. In this paper, while using the mass balance method to determine the purity of [...] Read more.
Vinyl acetate is a restricted substance in food products. The quantification of the organic impurities in vinyl acetate is a major problem due to its activity, instability, and volatility. In this paper, while using the mass balance method to determine the purity of vinyl acetate, an improved method was established for the determination of the content of three impurities in vinyl acetate reference material, and the GC-FID peak area normalization for vinyl acetate was calibrated. The three trace organic impurities were identified by gas chromatography tandem high-resolution mass spectrometry to be methyl acetate, ethyl acetate, and vinyl propionate. The content and relative correction factors for the three organic impurities were measured. The purity of vinyl acetate determined by the mass balance method was 99.90% with an expanded uncertainty of 0.30%, and the total content of organic impurities was 0.08% with a relative correction factor of 1.23%. The vinyl acetate reference material has been approved as a national certified reference material in China as GBW (E) 062710. Full article
(This article belongs to the Special Issue Mass Spectrometry for Biomedical and Food Analysis)
Show Figures

Figure 1

17 pages, 4022 KiB  
Article
Liquid Foam-Ethyl Vinyl Acetate Adhesive Systems for Lining Process of Paintings: Prospects of a User-Friendly, Harmless Alternative to Conventional Products
by Gaia Tarantola, Elena Medri, Arianna Splendore, Francesca Lo Russo, Chiara Matteucci and Matteo Minelli
Polymers 2023, 15(7), 1741; https://doi.org/10.3390/polym15071741 - 31 Mar 2023
Cited by 7 | Viewed by 2884
Abstract
The lining of paintings is a process of conservation science and art restoration used to strengthen, flatten, or consolidate paintings on canvas by attaching by means of adhesives a second canvas to the back of the existing one. To this aim, the prospects [...] Read more.
The lining of paintings is a process of conservation science and art restoration used to strengthen, flatten, or consolidate paintings on canvas by attaching by means of adhesives a second canvas to the back of the existing one. To this aim, the prospects of the use of ethyl vinyl acetate (EVA) resins in aqueous dispersion applied as an adhesive in a foam form have been investigated in the present study. The key physical properties of the foam have been investigated, with a deep focus on rheological behavior and the drying rate, comparing the results with those obtained using the liquid products that are commercially available. Dedicated mock-ups have been prepared to test the adhesive for the lining process, inspecting adhesion strength, colorimetric properties, and the influence on the possible chromatic and visual alteration of the surface, also looking at the chemical interaction with painting materials and the deterioration after an artificial ageing process. The results obtained clearly indicated that the proposed technology is very suitable for the targeted application, and an EVA water-based foamed dispersion can be used for paintings’ lining, in view of the ease of application, being an appropriate adhesion, no chemical interaction, nor the deterioration of the painting. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

14 pages, 2137 KiB  
Article
Hydrothermal Leaching of Silver and Aluminum from Waste Monocrystalline and Polycrystalline Photovoltaic Panels
by Eleni Kastanaki, Emmanouel Lagoudakis, Georgios Kalogerakis and Apostolos Giannis
Appl. Sci. 2023, 13(6), 3602; https://doi.org/10.3390/app13063602 - 11 Mar 2023
Cited by 16 | Viewed by 3754
Abstract
The aim of this study was to investigate the hydrothermal leaching of silver and aluminum from waste monocrystalline silicon (m-Si) and polycrystalline silicon (p-Si) photovoltaic panels (PV) from both cells and metal ribbons using mild HNO3 solutions. Prior to leaching, pretreatment was [...] Read more.
The aim of this study was to investigate the hydrothermal leaching of silver and aluminum from waste monocrystalline silicon (m-Si) and polycrystalline silicon (p-Si) photovoltaic panels (PV) from both cells and metal ribbons using mild HNO3 solutions. Prior to leaching, pretreatment was applied to remove the fluoropolymer backsheet and thermally degrade the ethyl vinyl acetate (EVA) polymer. Several hydrothermal parameters were investigated, such as the liquid-to-solid (L/S) ratio, HNO3 concentration (N), time (t) and temperature (T). Based on preliminary tests, the HNO3 concentration was set in the range of 1–2 N to reduce hazardous waste effluents. The response surface methodology (RSM) was applied to optimize the hydrothermal leaching parameters. It was found that processing time was the most important factor for Ag leaching, followed by HNO3 concentration and L/S ratio, while the processing temperature (100–140 °C) was not a statistically significant factor. Aluminum leaching was efficient under most hydrothermal conditions. For comparison, leaching was also applied at lower temperatures of 25–45 °C for prolonged times; however, lower efficiencies were observed. Under the optimal hydrothermal conditions, Ag can be completely leached, while Al dissolution was favored at hydrothermal conditions compared with lower temperature leaching. Silver leaching efficiency was 100% under hydrothermal conditions; however, under conventional lower temperature conditions, it was 80.7–85.3% for m-Si and p-Si waste panels. Under conventional lower temperature conditions, Al leaching efficiency was 56.6–61.3% for p-Si and m-Si waste panels. Full article
Show Figures

Graphical abstract

14 pages, 895 KiB  
Article
No Effect of EVA and TPU Custom Foot Orthoses on Mechanical Asymmetries during Acute Intense Fatigue
by Ken Van Alsenoy, Joong Hyun Ryu and Olivier Girard
Symmetry 2023, 15(3), 705; https://doi.org/10.3390/sym15030705 - 11 Mar 2023
Cited by 3 | Viewed by 1892
Abstract
This study examined the impact of custom foot orthoses made of ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only), on mechanical asymmetries during repeated treadmill sprints. Eighteen well-trained male runners executed eight, 5-s [...] Read more.
This study examined the impact of custom foot orthoses made of ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only), on mechanical asymmetries during repeated treadmill sprints. Eighteen well-trained male runners executed eight, 5-s sprints (rest: 25 s) on an instrumented motorized treadmill in three footwear conditions (EVA, TPU, and CON). We evaluated the group mean asymmetry scores using the ‘symmetry angle’ (SA) formula, which assigns a score of 0% for perfect symmetry and a score of 100% for perfect asymmetry. There was no condition (all p ≥ 0.053) or time (p ≥ 0.074) main effects, nor were there any significant time × condition interactions on SA scores for any variables (p ≥ 0.640). Mean vertical, horizontal, and total forces presented mean SA values (pooled values for the three conditions) of 2.6 ± 1.9%, 2.9 ± 1.6%, and 2.4 ± 1.8%, respectively. Mean SA scores were ~1–3% for contact time (1.5 ± 0.5%), flight time (3.0 ± 0.3%), step frequency (1.1 ± 0.5%), step length (1.9 ± 0.7%), vertical stiffness (2.1 ± 0.9%), and leg stiffness (2.4 ± 1.1%). Mean SA scores were ~2–6.5% for duration of braking (4.1 ± 1.6%) and propulsive (2.4 ± 1.0%) phases, and peak braking (6.2 ± 2.9%) and propulsive (2.1 ± 1.4%) forces. In well-trained runners facing intense fatigue, wearing custom foot orthoses did not modify the observed low-to-moderate natural stride mechanical asymmetries. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

10 pages, 914 KiB  
Communication
Phthalates Concentration in House Dust of Kozani City (Greece): Exposure Estimation and Their Association with Building Characteristics
by Emmanouil Hantzidakis, Maria Giagkou, Ioannis Sakellaris, Evangelos Tolis and John Bartzis
Atmosphere 2023, 14(2), 418; https://doi.org/10.3390/atmos14020418 - 20 Feb 2023
Cited by 7 | Viewed by 2749
Abstract
Phthalates can be found in personal care products as solvents and plasticizers in various polymers, especially PVC, wall coverings, certain paints, vinyl floor coverings, electronic devices, medical devices, food packages, toys, cables and other products. Humans are ingesting food products that contain phthalates, [...] Read more.
Phthalates can be found in personal care products as solvents and plasticizers in various polymers, especially PVC, wall coverings, certain paints, vinyl floor coverings, electronic devices, medical devices, food packages, toys, cables and other products. Humans are ingesting food products that contain phthalates, or they have dermal contact with phthalate-containing material, such as clothes, PVC gloves, personal care products or house dust. In this study, samples of dust from several houses in Kozani city, Greece, were collected and analyzed for phthalate concentration, and the potential association with building characteristics was examined utilizing detailed checklists. Samples were taken from the vacuum cleaner of the houses and extracted with ethyl acetate, and then analyzed with GC-MS in the SIM mode. The levels of phthalate ranged from 10.57 to 221.19 μg/g for Di-iso-butyl phthalate (DiBP), 4.03 to 264.91 μg/g for Di-n-butyl phthalate (DBP), 0.72 to 20.22 μg/g for benzyl-butyl phthalate (BBP) and 62.73 to 1233.54 μg/g for Di- (2-ethylhexyl) phthalate (DEHP), with detection limits of 4.5, 3.3, 11.6 and 13.1 ng/g, respectively. Using the Kruskal–Wallis statistical test, several associations were found between the measured phthalate and occupant activities (duration of ventilation and location of temporary garbage storage) and building characteristics (plastic or synthetic materials inside the houses). Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

13 pages, 9292 KiB  
Article
Monitoring Chemical Accidents in Industrial Complexes Using Tower-Installed Infrared System for Remote Chemical Detection and Long-Range Video Surveillance System
by Seul Gi Lee, Eun Hee Kim and Byung Chol Ma
Appl. Sci. 2023, 13(3), 1544; https://doi.org/10.3390/app13031544 - 25 Jan 2023
Cited by 4 | Viewed by 3183
Abstract
Chemical industrial complexes are extensive, complex structures with large-scale chemical facilities where large quantities of various chemical substances are handled. Detection equipment must be installed in high locations to monitor these industrial complexes and detect chemical accidents from a distance. In previous studies, [...] Read more.
Chemical industrial complexes are extensive, complex structures with large-scale chemical facilities where large quantities of various chemical substances are handled. Detection equipment must be installed in high locations to monitor these industrial complexes and detect chemical accidents from a distance. In previous studies, individual monitoring equipment was temporarily installed on the ground, on a rooftop, or on a vehicle to detect chemical accidents from a distance. In this study, however, the industrial complex chemical accident monitoring system was developed by combining different technologies and was installed on a tower. For the Yeosu National Industrial Complex (which functioned as a test bed), 70m-high steel towers were built. Additionally, an infrared system for remote chemical detection (SIGIS-2, Bruker) and a long-range video surveillance system (TORUSS-LR2000, Globalsystems) were installed at the top of steel towers to monitor the entire industrial complex. The target substances to be monitored in real time by the infrared system for remote chemical detection were selected, and the monitoring sections were classified to enable each piece of equipment to distinguish the scanned areas. To improve the accuracy of the detection results, the information about the actual handled substances and respective facilities of the sites in the industrial complex was inserted into the database of the system and then connected to the sections. During the three-month test operation, various chemical substances (including 1,3-butadiene, methanol, methylamine, ethyl acetate, ammonia, and vinyl chloride) were detected at each section in 20,034 cases, and the detection results were consistent with the inserted actual information. The accumulated detection data shows that the detection frequency of a specific chemical substance was high in each section. This can be used as a basis for modifying the threshold of the anomaly detection model, thereby improving the accuracy of the system. Therefore, this system can detect and evaluate the leakage of chemical substances and the occurrence of fires or smoke through large-scale scans 24 h per day. Furthermore, it can be used for the early detection of and effective responses to chemical accidents in industrial complexes. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

14 pages, 2143 KiB  
Article
Aryloxy Ionic Liquid-Catalyzed Homogenous Esterification of Cellulose with Low-Reactive Acyl Donors
by Akina Yoshizawa, Chie Maruyama, Samuel Budi Wardhana Kusuma, Naoki Wada, Kosuke Kuroda, Daisuke Hirose and Kenji Takahashi
Polymers 2023, 15(2), 419; https://doi.org/10.3390/polym15020419 - 13 Jan 2023
Cited by 8 | Viewed by 3764
Abstract
Ionic liquids (ILs) are recyclable, non-volatile, and can dissolve cellulose, a natural polymer that is insoluble in versatile solvents. Therefore, ILs have been used to modify cellulose. However, 1-ethyl-3-methylimidazolium acetate (EmimOAc), a commercially available IL often used to dissolve and modify cellulose to [...] Read more.
Ionic liquids (ILs) are recyclable, non-volatile, and can dissolve cellulose, a natural polymer that is insoluble in versatile solvents. Therefore, ILs have been used to modify cellulose. However, 1-ethyl-3-methylimidazolium acetate (EmimOAc), a commercially available IL often used to dissolve and modify cellulose to prepare cellulose-based materials, causes the undesired introduction of an acetyl group derived from the acetate anion of EmimOAc onto the hydroxy group of cellulose during esterification. In this study, for cellulose esterification, we prepared aryloxy ILs as non-carboxylate-type and basic ILs, which can theoretically prevent the undesired introduction of an acyl group from the IL onto the hydroxy group of cellulose. The optimized 1-ethyl-3-methylimidazolium 2-pyridinolate (Emim2OPy) and mixed solvent system achieved rapid cellulose esterification (within 30 min) with an excellent degree of substitution (DS) value (up to >2.9) derived from the employed low-reactive vinyl esters and bio-based unsaturated aldehydes, without any undesired substituent introduction from side reactions. Full article
(This article belongs to the Special Issue Advanced Preparation and Application of Cellulose)
Show Figures

Graphical abstract

Back to TopTop