Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Vernonia Amygdalina Identification
2.3. Vernonia Amygdalina Leaf Extraction and Fraction Separation
2.4. Metabolomic Profiles Analysis Using LC-MS/MS
2.5. Selection and Identification of the Fungus Strain
2.6. Phytophthora Nicotianae Inhibition Assay against V. amygdalina Leaf Extract Fractions and Its Crude by Using Poison Media
2.7. Electrosprayed Particle Preparation
2.8. Electrosprayed Particle Morphology Study and Diameter Measurement
2.9. Fourier Transform Infrared Spectrometry
2.10. P. nicotianae Inhibition Assay against V. Amygdalina Extract Loaded Electrosprayed Particles
2.11. Statistical Analysis
3. Results
3.1. V. amygdalina Leaf Extract Fractions Inhibition Efficacy against P. nicotianae
3.2. Metabolomic Profile of Each V. amygdalina Fraction
3.3. Characterization of Electrosprayed Particles Containing V. amygdalina Leaf Extract
3.4. Phytophthora Nicotianae Inhibition Efficacy of Electrosprayed Particle Formulae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Oranization of the United Nations. Available online: https://www.fao.org/faostat/en/#compare (accessed on 21 August 2023).
- Jungbluth, F. Economic Analysis of Crop Protection in Citrus Production in Central Thailand. Ph.D. Thesis, University of Hannover, Hanover, Germany, 2000. [Google Scholar]
- Ippolito, A.; Schena, L.; Nigro, F.; Soleti Ligorio, V.; Yaseen, T. Real-time detection of Phytophthora nicotianae and P. citrophthorain citrus roots and soil. Eur. J. Plant Pathol. 2004, 110, 833–843. [Google Scholar] [CrossRef]
- Watanarojanaporn, N.; Boonkerd, N.; Wongkaew, S.; Prommanop, P.; Teaumroong, N. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and Phytophthora suppression. Sci. Hortic. 2011, 128, 423–433. [Google Scholar] [CrossRef]
- Graham, J.; Timmer, L. Phytophthora diseases of citrus. Plant Dis. Int. Importance 1992, 3, 250–269. [Google Scholar]
- Ezrari, S.; Radouane, N.; Tahiri, A.; El Housni, Z.; Mokrini, F.; Özer, G.; Lazraq, A.; Belabess, Z.; Amiri, S.; Lahlali, R. Dry root rot disease, an emerging threat to citrus industry worldwide under climate change: A review. Physiol. Mol. Plant Pathol. 2022, 117, 101753. [Google Scholar] [CrossRef]
- Graham, J.; Feichtenberger, E. Citrus Phytophthora diseases: Management challenges and successes. J. Citr. Path. 2015, 2. [Google Scholar] [CrossRef]
- Hung, P.M.; Wattanachai, P.; Kasem, S.; Poeaim, S. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus. Mycobiology 2015, 43, 288–296. [Google Scholar] [CrossRef]
- Afek, U.; Sztejnberg, A. Effects of fosetyl-Al and phosphorous acid on scoparone, a phytoalexin associated with resistance of citrus to Phytophthora citrophthora. Phytopathology 1989, 79, 736–739. [Google Scholar] [CrossRef]
- Cohen, Y.; Coffey, M.D. Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 1986, 24, 311–338. [Google Scholar] [CrossRef]
- Intaparn, P. Controlling Pythium Root Rot by Nano-Particle Extracts from Cordyceps and Herbs. Ph.D. Thesis, Graduate School, Chiang Mai University, Chiang Mai, Thailand, 2020. [Google Scholar]
- Villa, N.O.; Kageyama, K.; Asano, T.; Suga, H. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and β-tubulin gene sequences. Mycologia 2006, 98, 410–422. [Google Scholar] [CrossRef]
- Ho, H.H. The taxonomy and biology of Phytophthora and Pythium. J. Bacteriol. Mycol. Open Access 2018, 6, 40–45. [Google Scholar] [CrossRef]
- Sridhar, R.; Ramakrishna, S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 2013, 3, e24281. [Google Scholar] [CrossRef]
- Peltonen, L.; Valo, H.; Kolakovic, R.; Laaksonen, T.; Hirvonen, J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin. Drug Delivery 2010, 7, 705–719. [Google Scholar] [CrossRef]
- World Flora Online Database Gymnanthemum Amygdalinum (Delile) Sch.Bip. Available online: http://www.worldfloraonline.org/taxon/wfo-0000096111. (accessed on 5 December 2021).
- Du, X.; Smirnov, A.; Pluskal, T.; Jia, W.; Sumner, S. Metabolomics Data Preprocessing Using ADAP and MZmine 2. In Computational Methods and Data Analysis for Metabolomics; Li, S., Ed.; Springer: New York, NY, USA, 2020; pp. 25–48. [Google Scholar]
- Chomchid, S.; McGovern, R.J.; Cheewankoon, R.; To-anun, C. Efficiency of Chaetomium in controlling citrus root rot. Khon Kaen Agric. J. 2020. [Google Scholar] [CrossRef]
- USP-NF Online. <776> Optical Microscopy; United States Pharmacopeia: Rockville, MD, USA, 2023. [Google Scholar]
- Hou, J.; Wang, Y.; Xue, H.; Dou, Y. Biomimetic Growth of Hydroxyapatite on Electrospun CA/PVP Core–Shell Nanofiber Membranes. Polymers 2018, 10, 1032. [Google Scholar] [CrossRef]
- Franca, T.; Goncalves, D.; Cena, C. ATR-FTIR spectroscopy combined with machine learning for classification of PVA/PVP blends in low concentration. Vib. Spectrosc. 2022, 120, 103378. [Google Scholar] [CrossRef]
- Index Fungorum. Available online: http://www.indexfungorum.org/ (accessed on 28 June 2023).
- Panabieres, F.; Ali, G.S.; Allagui, M.B.; Dalio, R.J.D.; Gudmestad, N.C.; Kuhn, M.-L.; Roy, S.G.; Schena, L.; Zampounis, A. Phytophthora nicotianae diseases worldwide: New knowledge of a long-recognised pathogen. Phytopathol. Mediterr. 2016, 55, 20–40. [Google Scholar]
- Ferrin, D.; Kabashima, J. In vitro insensitivity to metalaxyl of isolates of Phytophthora citricola and P. parasitica from ornamental hosts in southern California. Plant Dis. 1991, 75, 1041–1044. [Google Scholar] [CrossRef]
- Pongpisutta, R. Fruit Rot of Durian cv. Mon Thong Caused by Phytophthora palmivora (Butl.) Butl. and Its Control. Master’s Thesis, Kasetsart University, Bangkok, Thailand, 1992. [Google Scholar]
- Kongtragoul, P.; Ishikawa, K.; Ishii, H. Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand. Horticulturae 2021, 7, 375. [Google Scholar] [CrossRef]
- National Science and Technology Development Agency. BCG Concept Background. Available online: https://www.bcg.in.th/eng/background/ (accessed on 7 July 2023).
- Adamski, Z.; Blythe, L.L.; Milella, L.; Bufo, S.A. Biological Activities of Alkaloids: From Toxicology to Pharmacology. Toxins 2020, 12, 210. [Google Scholar] [CrossRef]
- Alhilal, M.; Sulaiman, Y.A.M.; Alhilal, S.; Gomha, S.M.; Ouf, S.A. Antifungal Activity of New Diterpenoid Alkaloids Isolated by Different Chromatographic Methods from Delphinium peregrinum L. var. eriocarpum Boiss. Molecules 2021, 26, 1375. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Zhang, J.; Peng, J.-W.; Zhang, Z.-J.; Zhao, W.-B.; Wang, R.-X.; Ma, K.-Y.; Li, J.-C.; Liu, Y.-Q.; Zhao, Z.-M.; et al. Discovery of luotonin A analogues as potent fungicides and insecticides: Design, synthesis and biological evaluation inspired by natural alkaloid. Eur. J. Med. Chem. 2020, 194, 112253. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Ma, K.-Y.; Du, S.-S.; Zhang, Z.-J.; Wu, T.-L.; Sun, Y.; Liu, Y.-Q.; Yin, X.-D.; Zhou, R.; Yan, Y.-F.; et al. Antifungal Exploration of Quinoline Derivatives against Phytopathogenic Fungi Inspired by Quinine Alkaloids. J. Agric. Food Chem. 2021, 69, 12156–12170. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J. Electrost. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, C.; Yue, X.; Li, X.; Zhou, P.; Wu, A.; Chen, C.; Qu, Y.; Zhang, C. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. Mater. Des. 2022, 220, 110850. [Google Scholar] [CrossRef]
- Bock, N.; Woodruff, M.A.; Hutmacher, D.W.; Dargaville, T.R. Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers 2011, 3, 131–149. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Clasen, C.; Van den Mooter, G. Pharmaceutical Applications of Electrospraying. J. Pharm. Sci. 2016, 105, 2601–2620. [Google Scholar] [CrossRef]
- Almería, B.; Deng, W.; Fahmy, T.M.; Gomez, A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J. Colloid Interface Sci. 2010, 343, 125–133. [Google Scholar] [CrossRef]
- Adibkia, K.; Selselehjonban, S.; Emami, S.; Osouli-Bostanabad, K.; Barzegar-Jalali, M. Electrosprayed polymeric nanobeads and nanofibers of modafinil: Preparation, characterization, and drug release studies. Bioimpacts 2019, 9, 179–188. [Google Scholar] [CrossRef]
- Morais, A.Í.S.; Vieira, E.G.; Afewerki, S.; Sousa, R.B.; Honorio, L.M.C.; Cambrussi, A.N.C.O.; Santos, J.A.; Bezerra, R.D.S.; Furtini, J.A.O.; Silva-Filho, E.C.; et al. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. J. Funct. Biomater. 2020, 11, 4. [Google Scholar] [CrossRef]
- Tipduangta, P.; Belton, P.; Fábián, L.; Wang, L.Y.; Tang, H.; Eddleston, M.; Qi, S. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate. Mol. Pharm. 2016, 13, 25–39. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
Formula No. | F7 (g) | CA (g) | PVA (g) | F7 %w/w | CA %w/w | PVA %w/w |
---|---|---|---|---|---|---|
1 | 0.03 | 0.30 | - | 9 | 91 | - |
2 | 0.03 | 0.45 | - | 6.25 | 93.75 | - |
3 | 0.03 | 0.60 | - | 5 | 95 | - |
4 | 0.03 | 0.30 | 0.30 | 5 | 47.5 | 47.5 |
5 | 0.03 | 0.225 | 0.225 | 6.25 | 46.875 | 46.875 |
F7 Concentration (µg/mL) | PIRG (%) |
---|---|
Control | 0.00 C |
200 | 3.88 C |
500 | 10.7 B |
1000 | 34.82 A |
LSD | 5.87 |
CV | 15.34 |
Concentration (µg/mL) | PIRG of Formula 2 (%) | PIRG of Formula 5 (%) |
---|---|---|
Control | 0.00 A | 0.00 A |
600 | 25.77 B | 67.82 B |
1500 | 90.35 C | 100.00 C |
3000 | 100.00 D | 100.00 C |
LSD | 3.75 | 0.68 |
CV | 5.18 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tipduangta, P.; Chansakaow, S.; Thakad, S.; Samutrtai, P.; Intharuksa, A.; Cheewangkoon, R.; Karunarathna, A.; Promthep, T.; Sirithunyalug, B. Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot. Horticulturae 2023, 9, 969. https://doi.org/10.3390/horticulturae9090969
Tipduangta P, Chansakaow S, Thakad S, Samutrtai P, Intharuksa A, Cheewangkoon R, Karunarathna A, Promthep T, Sirithunyalug B. Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot. Horticulturae. 2023; 9(9):969. https://doi.org/10.3390/horticulturae9090969
Chicago/Turabian StyleTipduangta, Pratchaya, Sunee Chansakaow, Sirinthicha Thakad, Pawitrabhorn Samutrtai, Aekkhaluck Intharuksa, Ratchadawan Cheewangkoon, Anuruddha Karunarathna, Tipprapa Promthep, and Busaban Sirithunyalug. 2023. "Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot" Horticulturae 9, no. 9: 969. https://doi.org/10.3390/horticulturae9090969
APA StyleTipduangta, P., Chansakaow, S., Thakad, S., Samutrtai, P., Intharuksa, A., Cheewangkoon, R., Karunarathna, A., Promthep, T., & Sirithunyalug, B. (2023). Vernonia amygdalina Leaf Extract Loaded Electrosprayed Particles for Inhibiting Phytophthora spp. Causing Citrus Root Rot. Horticulturae, 9(9), 969. https://doi.org/10.3390/horticulturae9090969