Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ethrel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4249 KB  
Article
Toward Safer Resin Tapping: Assessing Alternative Chemical Stimulants for Pinus pinaster
by Faustino Rubio Pérez, Aida Rodríguez-García, Santiago Michavila, Ana Rodríguez, Luis Gil and Rosana López
Forests 2025, 16(5), 849; https://doi.org/10.3390/f16050849 - 19 May 2025
Cited by 1 | Viewed by 905
Abstract
The use of chemical stimulants in resin tapping is essential for prolonging the resin flow and enhancing production. Traditional stimulants, primarily composed of sulfuric acid, pose concerns related to workplace safety, environmental impact, and tree health. In this study, we compared alternative stimulant [...] Read more.
The use of chemical stimulants in resin tapping is essential for prolonging the resin flow and enhancing production. Traditional stimulants, primarily composed of sulfuric acid, pose concerns related to workplace safety, environmental impact, and tree health. In this study, we compared alternative stimulant pastes containing ethrel, salicylic acid, and citric acid with the traditional Spanish and Brazilian stimulant pastes with higher contents of sulfuric acid. We tapped Pinus pinaster seedlings with five different stimulants, using untreated and mechanically wounded plants as controls. The resin yield, tree growth, and physiological parameters were compared. The pines stimulated with citric acid released ca. 50% more resin, while ethrel and salicylic acid yielded similar amounts to the traditional paste, suggesting their potential as viable alternatives. Although all stimulants reduced the seedling growth, no significant differences were observed in the midday water potential or stomatal conductance. The internal resin accumulation and resin canal density were strongly correlated with the total resin production, and more-acidic pastes tended to cause xylem damage and resin retention. Our findings suggest that moderate acidity is sufficient to trigger resin biosynthesis and release, and that safer, less corrosive formulations, like citric acid, may provide viable, safer, and more sustainable alternatives to conventional stimulants. While the results from the seedlings provide a rapid and cost-effective screening tool, anatomical and physiological differences from mature trees should be considered when extrapolating findings to operational settings. Full article
Show Figures

Graphical abstract

19 pages, 1831 KB  
Article
Evaluation and Validation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis of the Gene Expression in Macadamia integrifolia
by Qian Yang, Ziping Yang, Hui Zeng, Minghong Zou, Ximei Song, Jifeng Wan, Zhao Wang, Jing Chen and Lianfang Luo
Forests 2024, 15(11), 1966; https://doi.org/10.3390/f15111966 - 7 Nov 2024
Viewed by 1001
Abstract
Macadamia is an economically significant crop, with its kernel oil being abundant in monounsaturated fatty acids (MUFA). Analyzing the expression of genes related to MUFA biosynthesis is essential for understanding the complex regulatory networks in Macadamia. However, there are few reports on the [...] Read more.
Macadamia is an economically significant crop, with its kernel oil being abundant in monounsaturated fatty acids (MUFA). Analyzing the expression of genes related to MUFA biosynthesis is essential for understanding the complex regulatory networks in Macadamia. However, there are few reports on the identification of suitable reference genes for use as internal controls in this species. Consequently, selecting a reliable reference gene for gene expression studies under various conditions is critical. In this study, we evaluated the expression stability of 11 traditional housekeeping genes: α-tubulin (TUBa), β-tubulin (TUBb), malate dehydrogenase (MDH), 18S ribosomal RNA (18S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), α-elongation factor 1 (EF1a), β-elongation factor 1 (EF1b), ubiquitin (UBQ), ubiquitin-conjugating enzyme (UBC), cyclophilin (CYP), and actin (ACT) under abiotic stresses, hormonal treatments and in variety of plant tissues using the online tool RefFinder, which integrates four commonly used software programs: ΔCt, geNorm (version 3.4), NormFinder (version 0953), and BestKeeper (version 1.0). A comprehensive expression stability ranking was established by integrating results from these four methods based on the geometric mean. The findings indicated that ACT was the most stable gene across all samples, including those subjected to cold stress, NaCl stress, PEG stress, ABA treatment, MeJA treatment, and both stem and leaf tissues. EF1b was identified as the most stable gene in GA treatment and heat stress samples, while UBC and CYP were ranked highest in ethrel treatment and root tissue samples, respectively. Finally, the reliability of these findings was further validated using the target gene SAD through qRT-PCR. In summary, this study evaluated and validated appropriate reference genes for qRT-PCR, which will facilitate future investigations into the molecular mechanisms in Macadamia. Full article
Show Figures

Figure 1

12 pages, 926 KB  
Article
Optimal Shoot Mass for Propagation to Increase the Yield and Quality of Pineapple
by Nguyen Quoc Hung, Le Thi My Ha, Dao Thi Lien, Nguyen Thi Thanh Nga and Vu Phong Lam
Sustainability 2024, 16(13), 5729; https://doi.org/10.3390/su16135729 - 4 Jul 2024
Cited by 4 | Viewed by 3040
Abstract
This study investigates the impact of shoot mass on the growth, flowering, and yield of pineapple plants in two consecutive crops (2019–2020 and 2020–2021). Four treatments with varying shoot masses (200–300 g, 350–400 g, 450–500 g, >500 g) were analyzed for their flowering [...] Read more.
This study investigates the impact of shoot mass on the growth, flowering, and yield of pineapple plants in two consecutive crops (2019–2020 and 2020–2021). Four treatments with varying shoot masses (200–300 g, 350–400 g, 450–500 g, >500 g) were analyzed for their flowering time, fruit harvesting, and yield parameters. To induce flowering, Ethrel was applied at a concentration of 0.4%. Each shoot was treated with 20–25 mL of Ethrel, resulting in synchronized flowering in the pineapples. The experiment employed a complete randomized block design (RCBD) comprising four treatments. The results reveal that bigger shoot masses lead to earlier flowering and a shorter time for fruit harvesting, ranging from mid-February to early July. Furthermore, this study explored the yield factors, showing that shoot masses of 350–500 g consistently result in higher harvest numbers, fruit weights, and theoretical yields. The influence of shoot mass on fruit quality parameters, including size, biochemical composition, and edibility, was also examined. Notably, smaller shoot masses are associated with higher dry matter, vitamin C, sugar, and brix levels, indicating superior quality. The findings suggest that optimizing shoot mass could significantly impact the pineapple cultivation timeline, yield, and fruit quality, providing valuable insights for pineapple farmers and cultivators. These findings carry profound implications for pineapple cultivation practices and market strategies. By optimizing shoot mass, growers can strategically adjust planting schedules to capitalize on favorable flowering and harvesting periods, potentially enhancing market competitiveness. Moreover, the insights gleaned regarding fruit quality parameters offer avenues for targeted marketing strategies, catering to discerning consumer preferences for superior-quality produce. Thus, this study not only advances scientific understanding but also provides actionable insights that could revolutionize pineapple cultivation practices and market positioning strategies, ultimately benefiting farmers and cultivators alike. Full article
Show Figures

Figure 1

18 pages, 2397 KB  
Article
Gene Expression Profiling and Qualitative Characteristics in Delaying Flesh Softening of Avocado Fruits
by Ourania Anagnostopoulou, Georgios Tsaniklidis, Konstantinos Paschalidis and Filippos Ververidis
Genes 2024, 15(7), 860; https://doi.org/10.3390/genes15070860 - 1 Jul 2024
Cited by 1 | Viewed by 1405
Abstract
In this research, qualitative characteristics were studied under different post-harvest treatments in Hass and Fuerte cultivars of avocado (Persea americana) fruits. The post-harvest treatments performed in fruits of these cultivars comprised Ethrel application and plastic film (membrane) covering. The measurements of [...] Read more.
In this research, qualitative characteristics were studied under different post-harvest treatments in Hass and Fuerte cultivars of avocado (Persea americana) fruits. The post-harvest treatments performed in fruits of these cultivars comprised Ethrel application and plastic film (membrane) covering. The measurements of qualitative characteristics were related to color; flesh consistency; measurements of titratable acidity, total soluble solids, percentage of total phenolic contents, and ascorbic peroxidase activity; and the real-time (quantitative) polymerase chain reaction (qPCR) of gene expression and enzyme activities of phenylalanine ammonia-lyase (PAL) and beta-galactosidase (β-gal). The experiments found that the application of plastic film has excellent results in retaining qualitative characteristics and enzyme activities via maintaining firmness in higher levels. The plastic film covering appeared to delay ripening without the use of chemicals and, therefore, it has the potential to extend the duration of the post-harvest life of the avocado fruit. Variations between the two cultivars were found in the measurements of total soluble solids (Fuerte cultivar showed an increase of 22%, whereas Hass cultivar showed an increase of 120% in Brix values) and total phenolic contents (Fuerte cultivar showed a decrease of 16% and Hass cultivar showed an increase of 29%). It is worth noting that PAL’s activity increased significantly (over 44%), as compared to other treatments, and β-galactosidase’s activity decreased, as compared to other treatments. In conclusion, plastic film covering results in a decrease in the activity of β-galactosidase, as shown by the reaction of hydrolysis (enzyme activity) but also from the expression of the related genes. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
Show Figures

Figure 1

12 pages, 8784 KB  
Article
Cytological and Transcriptome Analyses Provide Insights into Persimmon Fruit Size Formation (Diospyros kaki Thunb.)
by Huawei Li, Yujing Suo, Hui Li, Peng Sun, Shuzhan Li, Deyi Yuan, Weijuan Han and Jianmin Fu
Int. J. Mol. Sci. 2024, 25(13), 7238; https://doi.org/10.3390/ijms25137238 - 30 Jun 2024
Viewed by 1300
Abstract
Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of [...] Read more.
Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of ‘Yaoxianwuhua’. The results showed that stages 3–4 (June 11–June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 4.0)
Show Figures

Figure 1

19 pages, 7820 KB  
Article
SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription
by Chen Sun, Gaifang Yao, Jinghan Zhao, Ruying Chen, Kangdi Hu, Guanghua He and Hua Zhang
Int. J. Mol. Sci. 2024, 25(3), 1873; https://doi.org/10.3390/ijms25031873 - 3 Feb 2024
Cited by 3 | Viewed by 2178
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened [...] Read more.
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

24 pages, 5396 KB  
Article
Genome-Wide Analysis of MBF1 Family Genes in Five Solanaceous Plants and Functional Analysis of SlER24 in Salt Stress
by Dongnan Xia, Lulu Guan, Yue Yin, Yixi Wang, Hongyan Shi, Wenyu Li, Dekai Zhang, Ran Song, Tixu Hu and Xiangqiang Zhan
Int. J. Mol. Sci. 2023, 24(18), 13965; https://doi.org/10.3390/ijms241813965 - 11 Sep 2023
Cited by 5 | Viewed by 2261
Abstract
Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 [...] Read more.
Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants. Full article
(This article belongs to the Special Issue Molecular Aspects of Plant Salinity Stress and Tolerance 2.0)
Show Figures

Figure 1

16 pages, 7572 KB  
Article
CaCP15 Gene Negatively Regulates Salt and Osmotic Stress Responses in Capsicum annuum L.
by Luyao Zhou, Sizhen Yang, Chunlin Chen, Meng Li, Qingjie Du, Jiqing Wang, Yanxu Yin and Huaijuan Xiao
Genes 2023, 14(7), 1409; https://doi.org/10.3390/genes14071409 - 7 Jul 2023
Cited by 4 | Viewed by 2103
Abstract
Salt and osmotic stress seriously restrict the growth, development, and productivity of horticultural crops in the greenhouse. The papain-like cysteine proteases (PLCPs) participate in multi-stress responses in plants. We previously demonstrated that salt and osmotic stress affect cysteine protease 15 of pepper ( [...] Read more.
Salt and osmotic stress seriously restrict the growth, development, and productivity of horticultural crops in the greenhouse. The papain-like cysteine proteases (PLCPs) participate in multi-stress responses in plants. We previously demonstrated that salt and osmotic stress affect cysteine protease 15 of pepper (Capsicum annuum L.) (CaCP15); however, the role of CaCP15 in salt and osmotic stress responses is unknown. Here, the function of CaCP15 in regulating pepper salt and osmotic stress resistance was explored. Pepper plants were subjected to abiotic (sodium chloride, mannitol, salicylic acid, ethrel, methyl jasmonate, etc.) and biotic stress (Phytophthora capsici inoculation). The CaCP15 was silenced through the virus-induced gene silencing (VIGS) and transiently overexpressed in pepper plants. The full-length CaCP15 fragment is 1568 bp, with an open reading frame of 1032 bp, encoding a 343 amino acid protein. CaCP15 is a senescence-associated gene 12 (SAG12) subfamily member containing two highly conserved domains, Inhibitor 129 and Peptidase_C1. CaCP15 expression was the highest in the stems of pepper plants. The expression was induced by salicylic acid, ethrel, methyl jasmonate, and was infected by Phytophthora capsici inoculation. Furthermore, CaCP15 was upregulated under salt and osmotic stress, and CaCP15 silencing in pepper enhanced salt and mannitol stress resistance. Conversely, transient overexpression of CaCP15 increased the sensitivity to salt and osmotic stress by reducing the antioxidant enzyme activities and negatively regulating the stress-related genes. This study indicates that CaCP15 negatively regulates salt and osmotic stress resistance in pepper via the ROS-scavenging. Full article
Show Figures

Figure 1

20 pages, 4847 KB  
Article
Regulating Enzymatic Antioxidants, Biochemical and Physiological Properties of Tomato under Cold Stress: A Crucial Role of Ethylene
by Yousry Bayoumi, Sabah Osman, Abdelwahab Etman, El-Samahy El-Semellawy, Svein Ø. Solberg and Hassan El-Ramady
Agriculture 2023, 13(2), 266; https://doi.org/10.3390/agriculture13020266 - 21 Jan 2023
Cited by 7 | Viewed by 5353
Abstract
The production of tomato under low-temperature stress in the open fields is a challenge faced by many farmers. The current study compares the use of different ethylene treatments to accelerate the fruit ripening of tomato during two successive seasons under cold stress. The [...] Read more.
The production of tomato under low-temperature stress in the open fields is a challenge faced by many farmers. The current study compares the use of different ethylene treatments to accelerate the fruit ripening of tomato during two successive seasons under cold stress. The treatments included foliar application of ethrel (2500, 5000, and 7500 ppm) in the open field at the mature green stage, dipping collected fruits in ethrel solution (1000, 1500, and 2000 ppm) right after harvest, and application of gaseous ethylene (100, 200, and 300 ppm) to the harvested fruits. The effects were compared to untreated fruits (control). Characteristics, such as physical properties (ripening, weight loss, firmness, decay, and fruit color), chemical properties (ascorbic acid, acidity, total soluble sugars, and pigments), and enzymatic activities (polygalacturonase and pectin methylesterase), were sampled throughout the storage period. In general, the ethylene gas application was the most effective method in accelerating the fruit ripening process compared to the other methods applied. The highest vitamin C total soluble solid contents and redness parameters were found after applying the highest dose of ethylene gas (300 ppm). This indicates that the ripening of tomato fruits, which are cultivated under cold stress conditions as found during the early summer season in a Mediterranean climate, might be harvested at a mature green stage and exposed to ethylene application. Full article
(This article belongs to the Special Issue Crop Antioxidant System and Its Responses to Stress)
Show Figures

Figure 1

20 pages, 5260 KB  
Article
Transcriptional and Metabolic Characterization of Feeding Ramie Growth Enhanced by a Combined Application of Gibberellin and Ethrel
by Hongdong Jie, Yushen Ma, De-Yu Xie and Yucheng Jie
Int. J. Mol. Sci. 2022, 23(19), 12025; https://doi.org/10.3390/ijms231912025 - 10 Oct 2022
Cited by 8 | Viewed by 2209
Abstract
Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and [...] Read more.
Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and metabolism of plants. Herein, we report effects of the GA3 and ETH application on the growth and plant metabolism of feeding ramie in the field. A combination of GA3 and ETH was designed to spray new plants. The two hormones enhanced the growth of plants to produce more biomass. Meanwhile, the two hormones reduced the contents of lignin in leaves and stems, while increased the content of flavonoids in leaves. To understand the potential mechanisms behind these results, we used RNA-seq-based transcriptomics and UPLC-MS/MS-based metabolomics to characterize gene expression and metabolite profiles associated with the treatment of GA3 and ETH. 1562 and 2364 differentially expressed genes (DEGs) were obtained from leaves and stems (treated versus control), respectively. Meanwhile, 99 and 88 differentially accumulated metabolites (DAMs) were annotated from treated versus control leaves and treated versus control stems, respectively. Data mining revealed that both DEGs and DAMs were associated with multiple plant metabolisms, especially plant secondary metabolism. A specific focus on the plant phenylpropanoid pathway identified candidates of DEGs and DEMs that were associated with lignin and flavonoid biosynthesis. Shikimate hydroxycinnamoyl transferase (HCT) is a key enzyme that is involved in the lignin biosynthesis. The gene encoding B. nivea HCT was downregulated in the treated leaves and stems. In addition, genes encoding 4-coumaryl CoA ligase (4CL) and trans-cinnamate 4-monooxygenase (CYP73A), two lignin pathway enzymes, were downregulated in the treated stems. Meanwhile, the reduction in lignin in the treated leaves led to an increase in cinnamic acid and p-coumaryl CoA, two shared substrates of flavonoids that are enhanced in contents. Taken together, these findings indicated that an appropriate combination of GA3 and ETH is an effective strategy to enhance plant growth via altering gene expression and plant secondary metabolism for biomass-enhanced and value-improved feeding ramie. Full article
(This article belongs to the Special Issue A New Era of Sustainability: Plant Biostimulants)
Show Figures

Figure 1

25 pages, 3457 KB  
Article
Whole Transcriptome Analyses of Apricots and Japanese Plum Fruits after 1-MCP (Ethylene-Inhibitor) and Ethrel (Ethylene-Precursor) Treatments Reveal New Insights into the Physiology of the Ripening Process
by Juan A. Salazar, David Ruiz, Patricio Zapata, Pedro J. Martínez-García and Pedro Martínez-Gómez
Int. J. Mol. Sci. 2022, 23(19), 11045; https://doi.org/10.3390/ijms231911045 - 20 Sep 2022
Cited by 18 | Viewed by 3334
Abstract
The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after [...] Read more.
The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after different ethylene regulator treatments, including 1-MCP (ethylene-inhibitor) and Ethrel (ethylene-precursor) in two contrasting selected apricot (Prunus armeniaca L.) and Japanese plum (P. salicina L.) cultivars, ‘Goldrich’ and ‘Santa Rosa’. KEEG and protein–protein interaction network analysis unveiled that the most significant metabolic pathways involved in the ripening process were photosynthesis and plant hormone signal transduction. In addition, previously discovered genes linked to fruit ripening, such as pectinesterase or auxin-responsive protein, have been confirmed as the main genes involved in this process. Genes encoding pectinesterase in the pentose and glucuronate interconversions pathway were the most overexpressed in both species, being upregulated by Ethrel. On the other hand, auxin-responsive protein IAA and aquaporin PIP were both upregulated by 1-MCP in ‘Goldrich’ and ‘Santa Rosa’, respectively. Results also showed the upregulation of chitinase and glutaredoxin 3 after Ethrel treatment in ‘Goldrich’ and ‘Santa Rosa’, respectively, while photosystem I subunit V psaG (photosynthesis) was upregulated after 1-MCP in both species. Furthermore, the overexpression of genes encoding GDP-L-galactose and ferredoxin in the ascorbate and aldarate metabolism and photosynthesis pathways caused by 1-MCP favored antioxidant activity and therefore slowed down the fruit senescence process. Full article
(This article belongs to the Special Issue Advances in Research for Fruit Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 6342 KB  
Article
Effects of Several Preharvest Canopy Applications on Yield and Quality of Table Grapes (Vitis vinifera L.) Cv. Crimson Seedless
by Despoina G. Petoumenou and Vasileios-Emmanouil Patris
Plants 2021, 10(5), 906; https://doi.org/10.3390/plants10050906 - 30 Apr 2021
Cited by 7 | Viewed by 4375
Abstract
Modern viticultural areas are being confronted with the negative impacts of global warming on yield and fruit composition, with especially adverse effects on anthocyanin synthesis. Novel and sustainable tools, such as biostimulants, may represent a viable alternative to traditional cultural practices, thus promoting [...] Read more.
Modern viticultural areas are being confronted with the negative impacts of global warming on yield and fruit composition, with especially adverse effects on anthocyanin synthesis. Novel and sustainable tools, such as biostimulants, may represent a viable alternative to traditional cultural practices, thus promoting eco-friendly strategies to enhance the yield, fruit quality and abiotic stress tolerance of grapevines. ‘Crimson Seedless’ is a late-season red table grape variety, and due to climatic warming, its berries are frequently failing to acquire the commercially acceptable red color. Canopy applications of different biostimulants, namely, Kelpak®, Sunred®, Cytolan®, LalVigne™ Mature as well as Ethrel® Top, were tested on grapevine cv. Crimson Seedless grown under semi-arid Mediterranean conditions in order to evaluate their effects on yield and fruit quality. Some of the products were sprayed in canopies at labeled doses, and some were applied at doses reported in other studies. For the control treatment, canopies were sprayed with water. Sampling started at veraison and was repeated at 10-day intervals to measure the evolution of berry weight, length and diameter, as well as the total soluble solids and titratable acidity of the juice. The grapes were harvested when the berries of one of the treatments attained the commercially acceptable color. The greatest improvements in the red berry color were achieved with Sunred® (at a dose of 4 L ha−1) and Ethrel® Top (250 ppm plus glycerol at 1%), each applied at veraison and 10 days later. The different applications had varying effects on productivity and qualitative parameters. Only Sunred® improved the accumulation of anthocyanin and the overall acceptability of table grapes by consumers. The obtained results clearly demonstrate that applying Sunred® can improve the yield and qualitative parameters of the red table grape variety ‘Crimson Seedless’, indicating that this biostimulant could be a viable alternative to the most widely used plant growth regulator, ethephon. Full article
(This article belongs to the Special Issue Biostimulants in Plants Science)
Show Figures

Figure 1

20 pages, 5826 KB  
Article
Morphological, Transcriptomic and Hormonal Characterization of Trimonoecious and Subandroecious Pumpkin (Cucurbita maxima) Suggests Important Roles of Ethylene in Sex Expression
by Yunli Wang, Chundong Yan, Bingxue Zou, Chaojie Wang, Wenlong Xu, Chongshi Cui and Shuping Qu
Int. J. Mol. Sci. 2019, 20(13), 3185; https://doi.org/10.3390/ijms20133185 - 28 Jun 2019
Cited by 18 | Viewed by 3655
Abstract
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, [...] Read more.
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, and transcriptome sequencing was performed using an Illumina HiSeqTM 2000 System. 496 up-regulated genes and 375 down-regulated genes were identified between shoot apices containing mostly male flower buds and only female flower buds. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the differentially expressed genes were mainly enriched in the ethylene and auxin synthesis and signal transduction pathways. In addition, shoot apices at the 4-leaf stage were treated with the ethylene-releasing agent 2-chloroethylphosphonic acid (Ethrel), aminoethoxyvinyl glycine (AVG), AgNO3 and indoleacetic acid (IAA). The number of female flowers up to node 20 on the main stem of ‘2013–12’ increased significantly after Ethrel and IAA treatment and decreased significantly after AVG and AgNO3 treatment. The female flowers in ‘9–6’ showed slight changes after treatment with the exogenous chemicals. The expression of key genes in ethylene synthesis and signal transduction (CmaACS7, CmaACO1, CmaETR1 and CmaEIN3) was determined using quantitative RT-PCR, and the expression of these four genes was positively correlated with the number of female flowers in ‘2013–12’. The variations in gene expression, especially that of CmaACS7, after chemical treatment were small in ‘9–6’. From stage 1 (S1) to stage 7 (S7) of flower development, the expression of CmaACS7 in the stamen was much lower than that in the ovary, stigma and style. These transcriptome data and chemical treatment results indicated that IAA might affect pumpkin sex expression by inducing CmaACS7 expression and indirectly affecting ethylene production, and the ethylene synthesis and signal transduction pathways play crucial roles in pumpkin flower sex expression. A possible reason for the differences in sex expression between pumpkin lines ‘2013–12’ and ‘9–6’ was proposed based on the key gene expression. Overall, these transcriptome data and chemical treatment results suggest important roles for ethylene in pumpkin sex expression. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

21 pages, 3969 KB  
Article
The Involvement of Ethylene in Calcium-Induced Adventitious Root Formation in Cucumber under Salt Stress
by Jian Yu, Lijuan Niu, Jihua Yu, Weibiao Liao, Jianming Xie, Jian Lv, Zhi Feng, Linli Hu and Mohammed Mujitaba Dawuda
Int. J. Mol. Sci. 2019, 20(5), 1047; https://doi.org/10.3390/ijms20051047 - 28 Feb 2019
Cited by 37 | Viewed by 5136
Abstract
Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl2) or [...] Read more.
Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl2) or 0.1 μM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway. Full article
(This article belongs to the Special Issue Root Development in Plants)
Show Figures

Figure 1

Back to TopTop