Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = etched ion-track membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 192
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

64 pages, 16567 KiB  
Review
Composite Track-Etched Membranes: Synthesis and Multifaced Applications
by Anastassiya A. Mashentseva, Duygu S. Sutekin, Saniya R. Rakisheva and Murat Barsbay
Polymers 2024, 16(18), 2616; https://doi.org/10.3390/polym16182616 - 15 Sep 2024
Cited by 5 | Viewed by 3038
Abstract
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of [...] Read more.
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains. In environmental remediation, CTeMs effectively capture and decompose pollutants, offering both separation and detoxification. In sensor technology, they have the potential to provide high sensitivity and selectivity, essential for accurate detection in medical and environmental applications. For energy storage, CTeMs may be promising in enhancing ion transport, flexibility, and mechanical stability, addressing key issues in battery and supercapacitor performance. Biomedical applications may benefit from the versality of CTeMs, potentially supporting advanced drug delivery systems and tissue engineering scaffolds. Despite their numerous advantages, challenges remain in the fabrication and scalability of CTeMs, requiring sophisticated techniques and meticulous optimization. Future research directions include the development of cost-effective production methods and the exploration of new materials to further enhance the capabilities of CTeMs. This review underscores the transformative potential of CTeMs across various applications and highlights the need for continued innovation to fully realize their benefits. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 5426 KiB  
Article
e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes
by Nursanat Parmanbek, Nurgulim A. Aimanova, Anastassiya A. Mashentseva, Murat Barsbay, Fatima U. Abuova, Dinara T. Nurpeisova, Zhanar Ye. Jakupova and Maxim V. Zdorovets
Membranes 2023, 13(7), 659; https://doi.org/10.3390/membranes13070659 - 11 Jul 2023
Cited by 4 | Viewed by 1487
Abstract
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) [...] Read more.
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. Full article
Show Figures

Figure 1

14 pages, 1627 KiB  
Article
Application of Hybrid Electrobaromembrane Process for Selective Recovery of Lithium from Cobalt- and Nickel-Containing Leaching Solutions
by Dmitrii Butylskii, Vasiliy Troitskiy, Daria Chuprynina, Lasâad Dammak, Christian Larchet and Victor Nikonenko
Membranes 2023, 13(5), 509; https://doi.org/10.3390/membranes13050509 - 11 May 2023
Cited by 11 | Viewed by 2042
Abstract
New processes for recycling valuable materials from used lithium-ion batteries (LIBs) need to be developed. This is critical to both meeting growing global demand and mitigating the electronic waste crisis. In contrast to the use of reagent-based processes, this work shows the results [...] Read more.
New processes for recycling valuable materials from used lithium-ion batteries (LIBs) need to be developed. This is critical to both meeting growing global demand and mitigating the electronic waste crisis. In contrast to the use of reagent-based processes, this work shows the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Li+ and Co2+ ions. Separation is carried out using a track-etched membrane with a pore diameter of 35 nm, which can create conditions for separation if an electric field and an oppositely directed pressure field are applied simultaneously. It is shown that the efficiency of ion separation for a lithium/cobalt pair can be very high due to the possibility of directing the fluxes of separated ions to opposite sides. The flux of lithium through the membrane is about 0.3 mol/(m2 × h). The presence of coexisting nickel ions in the feed solution does not affect the flux of lithium. It is shown that the EBM separation conditions can be chosen so that only lithium is extracted from the feed solution, while cobalt and nickel remain in it. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Figure 1

20 pages, 4777 KiB  
Article
Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions
by Liliya Sh. Altynbaeva, Anastassiya A. Mashentseva, Nurgulim A. Aimanova, Dmitriy A. Zheltov, Dmitriy I. Shlimas, Dinara T. Nurpeisova, Murat Barsbay, Fatima U. Abuova and Maxim V. Zdorovets
Membranes 2023, 13(5), 495; https://doi.org/10.3390/membranes13050495 - 7 May 2023
Cited by 15 | Viewed by 2039
Abstract
This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their [...] Read more.
This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin–Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions. Full article
Show Figures

Figure 1

17 pages, 2452 KiB  
Article
Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes
by Dmitrii Butylskii, Vasiliy Troitskiy, Daria Chuprynina, Ivan Kharchenko, Ilya Ryzhkov, Pavel Apel, Natalia Pismenskaya and Victor Nikonenko
Membranes 2023, 13(5), 455; https://doi.org/10.3390/membranes13050455 - 23 Apr 2023
Cited by 10 | Viewed by 2330
Abstract
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl [...] Read more.
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl (always present in phosphorus-containing waters) and H2PO4 anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides. Full article
Show Figures

Figure 1

13 pages, 2652 KiB  
Article
Overview of Polyethylene Terephthalate Foils Patterned Using 10 MeV Carbon Ions for Realization of Micromembranes
by Mariapompea Cutroneo, Vladimir Havranek, Anna Mackova, Petr Malinsky, Romana Miksova, Giovanni Ceccio, Lucio Ando’ and Alena Michalcova
Micromachines 2023, 14(2), 284; https://doi.org/10.3390/mi14020284 - 22 Jan 2023
Cited by 6 | Viewed by 1849
Abstract
Polymer membranes are conventionally prepared using high-energy particles from radioactive decay or by the bombardment of hundreds of MeVs energy ions. In both circumstances, tracks of damage are produced by particles/ions passing through the polymer, and successively, the damaged material is removed by [...] Read more.
Polymer membranes are conventionally prepared using high-energy particles from radioactive decay or by the bombardment of hundreds of MeVs energy ions. In both circumstances, tracks of damage are produced by particles/ions passing through the polymer, and successively, the damaged material is removed by chemical etching to create narrow pores. This process ensures nanosized pore diameter but with random placement, leading to non-uniform local pore density and low membrane porosity, which is necessary to reduce the risk of their overlapping. The present study is focused on the use of polyethylene terephthalate (PET) foils irradiated by 10.0 MeV carbon ions, easily achievable with ordinary ion accelerators. The ion irradiation conditions and the chemical etching conditions were monitored to obtain customized pore locations without pore overlapping in PET. The quality, shape, and size of the pores generated in the micromembranes can have a large impact on their applicability. In this view, the Scanning Transmission Ion Microscopy coupled with a computer code created in our laboratory was implemented to acquire new visual and quantitative insights on fabricated membranes. Full article
(This article belongs to the Special Issue Thin Film Deposition: From Fundamental Research to Applications)
Show Figures

Figure 1

18 pages, 2844 KiB  
Article
Modeling the Conductivity and Diffusion Permeability of a Track-Etched Membrane Taking into Account a Loose Layer
by Vladlen S. Nichka, Semyon A. Mareev, Pavel Yu. Apel, Konstantin G. Sabbatovskiy, Vladimir D. Sobolev and Victor V. Nikonenko
Membranes 2022, 12(12), 1283; https://doi.org/10.3390/membranes12121283 - 19 Dec 2022
Cited by 12 | Viewed by 2594
Abstract
The microheterogeneous model makes it possible to describe the main transport properties of ion-exchange membranes using a single set of input parameters. This paper describes an adaptation of the microheterogeneous model for describing the electrical conductivity and diffusion permeability of a track-etched membrane [...] Read more.
The microheterogeneous model makes it possible to describe the main transport properties of ion-exchange membranes using a single set of input parameters. This paper describes an adaptation of the microheterogeneous model for describing the electrical conductivity and diffusion permeability of a track-etched membrane (TEM). Usually, the transport parameters of TEMs are evaluated assuming that ion transfer occurs through the solution filling the membrane pores, which are cylindrical and oriented normally to the membrane surface. The version of the microheterogeneous model developed in this paper takes into account the presence of a loose layer, which forms as an intermediate layer between the pore solution and the membrane bulk material during track etching. It is assumed that this layer can be considered as a “gel phase” in the framework of the microheterogeneous model due to the fixed hydroxyl and carboxyl groups, which imparts ion exchange properties to the loose layer. The qualitative and quantitative agreement between the calculated and experimental concentration dependencies of the conductivity and diffusion permeability is discussed. The role of the model input parameters is described in relation to the structural features of the membrane. In particular, the inclination of the pores relative to the surface and their narrowing in the middle part of the membrane can be important for their properties. Full article
Show Figures

Figure 1

23 pages, 3576 KiB  
Review
Recent Developments and Perspectives of Recycled Poly(ethylene terephthalate)-Based Membranes: A Review
by Kirill Kirshanov, Roman Toms, Gadir Aliev, Alina Naumova, Pavel Melnikov and Alexander Gervald
Membranes 2022, 12(11), 1105; https://doi.org/10.3390/membranes12111105 - 5 Nov 2022
Cited by 18 | Viewed by 4627
Abstract
Post-consumer poly(ethylene terephthalate) (PET) waste disposal is an important task of modern industry, and the development of new PET-based value added products and methods for their production is one of the ways to solve it. Membranes for various purposes, in this regard are [...] Read more.
Post-consumer poly(ethylene terephthalate) (PET) waste disposal is an important task of modern industry, and the development of new PET-based value added products and methods for their production is one of the ways to solve it. Membranes for various purposes, in this regard are such products. The aim of the review, on the one hand, is to systematize the known methods of processing PET and copolyesters, highlighting their advantages and disadvantages and, on the other hand, to show what valuable membrane products could be obtained, and in what areas of the economy they can be used. Among the various approaches to the processing of PET waste, we single out chemical methods as having the greatest promise. They are divided into two large categories: (1) aimed at obtaining polyethylene terephthalate, similar in properties to the primary one, and (2) aimed at obtaining copolyesters. It is shown that among the former, glycolysis has the greatest potential, and among the latter, destruction followed by copolycondensation and interchain exchange with other polyesters, have the greatest prospects. Next, the key technologies for obtaining membranes, based on polyethylene terephthalate and copolyesters are considered: (1) ion track technology, (2) electrospinning, and (3) non-solvent induced phase separation. The methods for the additional modification of membranes to impart hydrophobicity, hydrophilicity, selective transmission of various substances, and other properties are also given. In each case, examples of the use are considered, including gas purification, water filtration, medical and food industry use, analytical and others. Promising directions for further research are highlighted, both in obtaining recycled PET-based materials, and in post-processing and modification methods. Full article
Show Figures

Graphical abstract

10 pages, 1582 KiB  
Article
Etching and Doping of Pores in Polyethylene Terephthalate Analyzed by Ion Transmission Spectroscopy and Nuclear Depth Profiling
by Giovanni Ceccio, Jiri Vacik, Jakub Siegel, Antonino Cannavó, Andrey Choukourov, Pavel Pleskunov, Marco Tosca and Dietmar Fink
Membranes 2022, 12(11), 1061; https://doi.org/10.3390/membranes12111061 - 28 Oct 2022
Cited by 1 | Viewed by 2116
Abstract
This work is devoted to the study of controlled preparation and filling of pores in polyethylene terephthalate (PET) membranes. A standard wet chemical etching with different protocols (isothermal and isochronous etching for different times and temperatures and etching from one or both sides [...] Read more.
This work is devoted to the study of controlled preparation and filling of pores in polyethylene terephthalate (PET) membranes. A standard wet chemical etching with different protocols (isothermal and isochronous etching for different times and temperatures and etching from one or both sides of the films) was used to prepare the micrometric pores. The pores were filled with either a LiCl solution or boron deposited by magnetron sputtering. Subsequent control of the pore shape and dopant filling was performed using the nuclear methods of ion transmission spectroscopy (ITS) and neutron depth profiling (NDP). It turned out that wet chemical etching, monitored and quantified by ITS, was shown to enable the preparation of the desired simple pore geometry. Furthermore, the effect of dopant filling on the pore shape could be well observed and analyzed by ITS and, for relevant light elements, by NDP, which can determine their depth (and spatial) distribution. In addition, both non-destructive methods were proven to be suitable and effective tools for studying the preparation and filling of pores in thin films. Thus, they can be considered promising for research into nanostructure technologies of thin porous membranes. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Figure 1

25 pages, 7197 KiB  
Article
Azo-Dye-Functionalized Polycarbonate Membranes for Textile Dye and Nitrate Ion Removal
by Carrie Cockerham, Ashton Caruthers, Jeremy McCloud, Laura M. Fortner, Sungmin Youn and Sean P. McBride
Micromachines 2022, 13(4), 577; https://doi.org/10.3390/mi13040577 - 7 Apr 2022
Cited by 6 | Viewed by 4126
Abstract
Challenges exist in the wastewater treatment of dyes produced by the world’s growing textiles industry. Common problems facing traditional wastewater treatments include low retention values and breaking the chemical bonds of some dye molecules, which in some cases can release byproducts that can [...] Read more.
Challenges exist in the wastewater treatment of dyes produced by the world’s growing textiles industry. Common problems facing traditional wastewater treatments include low retention values and breaking the chemical bonds of some dye molecules, which in some cases can release byproducts that can be more harmful than the original dye. This research illustrates that track-etched polycarbonate filtration membranes with 100-nanometer diameter holes can be functionalized with azo dye direct red 80 at 1000 µM, creating a filter that can then be used to remove the entire negatively charged azo dye molecule for a 50 µM solution of the same dye, with a rejection value of 96.4 ± 1.4%, at a stable flow rate of 114 ± 5 µL/min post-functionalization. Post-functionalization, Na+ and NO3 ions had on average 17.9%, 26.0%, and 31.1% rejection for 750, 500, and 250 µM sodium nitrate solutions, respectively, at an average flow rate of 177 ± 5 µL/min. Post-functionalization, similar 50 µM azo dyes had increases in rejection from 26.3% to 53.2%. Rejection measurements were made using ultraviolet visible-light spectroscopy for dyes, and concentration meters using ion selective electrodes for Na+ and NO3 ions. Full article
(This article belongs to the Special Issue Nanomaterial-Based Membranes and Applications)
Show Figures

Figure 1

14 pages, 2759 KiB  
Article
Conical Nanotubes Synthesized by Atomic Layer Deposition of Al2O3, TiO2, and SiO2 in Etched Ion-Track Nanochannels
by Nils Ulrich, Anne Spende, Loïc Burr, Nicolas Sobel, Ina Schubert, Christian Hess, Christina Trautmann and Maria Eugenia Toimil-Molares
Nanomaterials 2021, 11(8), 1874; https://doi.org/10.3390/nano11081874 - 21 Jul 2021
Cited by 11 | Viewed by 3586
Abstract
Etched ion-track polycarbonate membranes with conical nanochannels of aspect ratios of ~3000 are coated with Al2O3, TiO2, and SiO2 thin films of thicknesses between 10 and 20 nm by atomic layer deposition (ALD). By combining ion-track [...] Read more.
Etched ion-track polycarbonate membranes with conical nanochannels of aspect ratios of ~3000 are coated with Al2O3, TiO2, and SiO2 thin films of thicknesses between 10 and 20 nm by atomic layer deposition (ALD). By combining ion-track technology and ALD, the fabrication of two kinds of functional structures with customized surfaces is presented: (i) arrays of free-standing conical nanotubes with controlled geometry and wall thickness, interesting for, e.g., drug delivery and surface wettability regulation, and (ii) single nanochannel membranes with inorganic surfaces and adjustable isoelectric points for nanofluidic applications. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 4168 KiB  
Article
Polyelectrolyte Functionalisation of Track Etched Membranes: Towards Charge-Tuneable Adsorber Materials
by Lisa Wiedenhöft, Mohamed M. A. Elleithy, Mathias Ulbricht and Felix H. Schacher
Membranes 2021, 11(7), 509; https://doi.org/10.3390/membranes11070509 - 6 Jul 2021
Cited by 2 | Viewed by 2669
Abstract
Porous adsorber membranes are promising materials for the removal of charged pollutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical [...] Read more.
Porous adsorber membranes are promising materials for the removal of charged pollutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical pores of 0.2 or 1 µm diameter with two polyelectrolytes, poly(2-acrylamido glycolic acid) (PAGA) and poly(N-acetyl dehydroalanine) (PNADha). The polyelectrolyte functionalised membranes were characterised by changes in wettability and hydraulic permeability in response to the external stimuli pH and the presence of Cu2+ ions. The response of the membranes proved to be consistent with functionalisation inside the pores, and the change of grafted polyelectrolyte macro-conformation was due to the reversible protonation or binding of Cu2+ ions. Moreover, the adsorption of the model dye methylene blue was studied and quantified. PAGA-grafted membranes showed an adsorption behavior following the Langmuir model for methylene blue. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

12 pages, 6297 KiB  
Article
Fabrication of Size- and Shape-Controlled Platinum Cones by Ion-Track Etching and Electrodeposition Techniques for Electrocatalytic Applications
by Yuma Sato, Hiroshi Koshikawa, Shunya Yamamoto, Masaki Sugimoto, Shin-ichi Sawada and Tetsuya Yamaki
Quantum Beam Sci. 2021, 5(3), 21; https://doi.org/10.3390/qubs5030021 - 1 Jul 2021
Cited by 3 | Viewed by 3780
Abstract
The micro/nanocone structures of noble metals play a critical role as heterogeneous electrocatalysts that provide excellent activity. We successfully fabricated platinum cones by electrodeposition using non-penetrated porous membranes as templates. This method involved the preparation of template membranes by the swift-heavy-ion irradiation of [...] Read more.
The micro/nanocone structures of noble metals play a critical role as heterogeneous electrocatalysts that provide excellent activity. We successfully fabricated platinum cones by electrodeposition using non-penetrated porous membranes as templates. This method involved the preparation of template membranes by the swift-heavy-ion irradiation of commercially available polycarbonate films and subsequent chemical etching in an aqueous NaOH solution. The surface diameter, depth, aspect ratio and cone angle of the resulting conical pores were controlled in the ranges of approximately 70–1500 nm, 0.7–11 μm, 4–12 and 5–13°, respectively, by varying the etching conditions, which finally produced size- and shape-controlled platinum cones with nanotips. In order to demonstrate the electrocatalytic activity, electrochemical measurements were performed for the ethanol oxidation reaction. The oxidation activity was found to be up to 3.2 times higher for the platinum cone arrays than for the platinum plate. Ion-track etching combined with electrodeposition has the potential to be an effective method for the fabrication of micro/nanocones with high electrocatalytic performance. Full article
Show Figures

Figure 1

19 pages, 4918 KiB  
Article
Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes
by Alyona V. Russakova, Liliya Sh. Altynbaeva, Murat Barsbay, Dmitriy A. Zheltov, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Membranes 2021, 11(2), 116; https://doi.org/10.3390/membranes11020116 - 6 Feb 2021
Cited by 19 | Viewed by 2534
Abstract
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption [...] Read more.
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption. Full article
(This article belongs to the Special Issue Track-etched Membranes: Formation Features and Applications)
Show Figures

Figure 1

Back to TopTop