Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = erasers proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2851 KiB  
Article
Effect of m6A Recognition Protein YTHDC1 on Skeletal Muscle Growth
by Huijun Huang, Geyan Lu, Liyao Xiao, Baohua Tan, Yuming Yang, Linjun Hong, Zicong Li, Gengyuan Cai and Ting Gu
Animals 2025, 15(13), 1978; https://doi.org/10.3390/ani15131978 - 5 Jul 2025
Viewed by 358
Abstract
Skeletal muscle is the largest heterogeneous organ in the body, and multiple factors in intrinsic genetic and epigenetic regulation influence its growth. The N6-methyladenosine ed(m6A) modification is a conserved and most prevalent RNA modification, whose function is dependent on [...] Read more.
Skeletal muscle is the largest heterogeneous organ in the body, and multiple factors in intrinsic genetic and epigenetic regulation influence its growth. The N6-methyladenosine ed(m6A) modification is a conserved and most prevalent RNA modification, whose function is dependent on m6A writers, erasers, and m6A readers, such as the YTH protein family. YTHDC1 is the only member of the YTH protein family member that exists in the cell nucleus, which plays an important role in mRNA alternative polyadenylation and alternative splicing processes. However, the function of YTHDC1 in regulating myoblast proliferation, differentiation, and in vivo skeletal muscle development remains unclear. Therefore, in this study, we studied the function of YTHDC1 in C2C12 cell line and mouse. Our results showed that YTHDC1 significantly promoted myogenic differentiation while inhibiting myoblast proliferation in C2C12 cells, and the results of our in vivo experiment showed that interfering with YTHDC1 led to a significant enhancement of muscle growth in mice. Furthermore, the transcriptome sequencing analysis revealed that YTHDC1 might modulate skeletal muscle development by regulating alternative splicing of genes, including Akap13, Smarca2, Tnnt3, and Neb. Our study shed light on understanding the function and molecular mechanisms of YTHDC1 in regulating skeletal muscle development, highlighting the critical contribution of m6A-mediated RNA splicing in muscle growth. These results indicated that YTHDC1 could be a potential breeding target gene to enhance meat quality in livestock. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

15 pages, 1827 KiB  
Article
Genome-Wide Identification and Evolutionary Analysis of m6A-Related Gene Family in Poplar Nanlin895
by Zeyu Li, Rongxia Liu, Mingqiang Zhu, Jinye Zhang, Zhoujin Li, Kaixin Huang, Zehua Ren, Yan Zhao, Keming Luo and Qin Song
Plants 2025, 14(13), 2017; https://doi.org/10.3390/plants14132017 - 1 Jul 2025
Viewed by 380
Abstract
Background: N6-methyladenosine (m6A) is the most prevalent chemical modification of eukaryotic RNA, playing a crucial role in regulating plant growth and development, stress responses, and other essential biological processes. The enzymes involved in m6A modification—methyltransferases (writers), demethylases (erasers), and recognition proteins (readers)—have been [...] Read more.
Background: N6-methyladenosine (m6A) is the most prevalent chemical modification of eukaryotic RNA, playing a crucial role in regulating plant growth and development, stress responses, and other essential biological processes. The enzymes involved in m6A modification—methyltransferases (writers), demethylases (erasers), and recognition proteins (readers)—have been identified in various plant species; however, their roles in the economically significant tree species Populus deltoides × P. euramericana (NL895) remain underexplored. Results: In this study, we identified 39 m6A-related genes in the NL895 genome, comprising 8 writers, 13 erasers, and 18 readers. Evolutionary analysis indicated that the expansion of writers and readers primarily resulted from whole-genome duplication events. Purifying selection pressures were observed on all duplicated gene pairs, suggesting their essential roles in functional differentiation. Phylogenetic analysis revealed that writers, erasers, and readers are categorized into six, four, and two groups, respectively, with these genes being more conserved among dicotyledonous plants. Gene structure, protein domains, and motifs exhibited greater conservation within the same group. Promoter analysis of m6A-related genes showed enrichment of cis-acting elements associated with responses to light, phytohormones, and stress, indicating their potential involvement in gene expression regulation. Under cadmium treatment, the expression of all writers was significantly upregulated in both the aboveground and root tissues of NL895. Conclusions: This study systematically identified m6A-related gene families in Populus deltoides × P. euramericana (NL895), elucidating their evolutionary patterns and expression regulation characteristics. These findings provide a theoretical foundation for analyzing the molecular mechanisms of m6A modification in poplar growth, development, and stress adaptation, and offered candidate genes for molecular breeding in forest trees. Full article
Show Figures

Figure 1

15 pages, 771 KiB  
Review
The Dynamic Interactions of m6A Modification and R-Loops: Implications for Genome Stability
by Nicholas Kim and Hong Sun
Epigenomes 2025, 9(2), 21; https://doi.org/10.3390/epigenomes9020021 - 11 Jun 2025
Viewed by 952
Abstract
R-loops, three-stranded RNA-DNA hybrid nucleic acid structures, are recognized for their roles in both physiological and pathological processes. Regulation of R-loops is critical for genome stability as disruption of R-loop homeostasis can lead to aberrant gene expression, replication stress, and DNA damage. Recent [...] Read more.
R-loops, three-stranded RNA-DNA hybrid nucleic acid structures, are recognized for their roles in both physiological and pathological processes. Regulation of R-loops is critical for genome stability as disruption of R-loop homeostasis can lead to aberrant gene expression, replication stress, and DNA damage. Recent studies suggest that the RNA modification, N6-methyladenosine (m6A), can modify R-loops and the writers, erasers, and readers of m6A are involved in the dynamic regulation of R-loops. Here, we discuss the reported functions of various m6A regulatory proteins in relation to R-loops, highlighting their distinct roles in recognizing and modulating the formation, stability, and resolution of these structures. We further examine the functional implications of m6A and R-loop interaction in human diseases, with a particular emphasis on their roles in cancer. Full article
Show Figures

Figure 1

17 pages, 2282 KiB  
Article
Increased METTL3 Expression and m6A Methylation in Myoblasts of Facioscapulohumeral Muscular Dystrophy
by Nikolaos Settas, Adam J Bittel and Yi-Wen Chen
Int. J. Mol. Sci. 2025, 26(11), 5170; https://doi.org/10.3390/ijms26115170 - 28 May 2025
Viewed by 882
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. In this study, an analysis of human FSHD muscle biopsies revealed differential expressions of six m6A regulators, including writers, readers and eraser proteins. In [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. In this study, an analysis of human FSHD muscle biopsies revealed differential expressions of six m6A regulators, including writers, readers and eraser proteins. In immortalized human FSHD myoblasts, we found higher levels of mRNA and protein expression of a major m6A regulator, methyltransferase-like protein 3 (METTL3), in comparison with myoblasts from unaffected siblings (UASbs). Quantification of the overall RNA m6A levels in the FSHD myoblasts revealed significant elevation compared with their UASb, which was reversed to UASb levels following treatment with an antisense oligonucleotide targeting the DUX4 mRNA. Using Oxford Nanopore direct-RNA sequencing, we mapped m6A across the transcriptome and identified genes harboring differential methylated m6A sites, including several involved in iron homeostasis. Western blot protein quantification showed that FSHD myoblasts had higher levels of ferritin-heavy chain-207 isoform and mitoferrin-1. In addition, our data showed elevation in mitochondrial ferrous iron in FSHD myoblasts. Our findings suggest that m6A RNA modifications play a pivotal role in FSHD pathophysiology and may serve as biomarker for this disease. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 305 KiB  
Review
The Role of M6A LncRNA Modification in Papillary Thyroid Cancer
by Michelle S. Klausner, Caylee A. Greenberg, Kaleb A. Noruzi, Raj K. Tiwari and Jan Geliebter
Int. J. Mol. Sci. 2025, 26(7), 2833; https://doi.org/10.3390/ijms26072833 - 21 Mar 2025
Viewed by 816
Abstract
Thyroid Cancer (TC) is the most common endocrine cancer, of which papillary thyroid cancer (PTC), a well-differentiated type of TC, accounts for 80–90%. Long non-coding RNAs (lncRNAs), which comprise non-protein-coding segments of the genome, have been found to play a crucial role in [...] Read more.
Thyroid Cancer (TC) is the most common endocrine cancer, of which papillary thyroid cancer (PTC), a well-differentiated type of TC, accounts for 80–90%. Long non-coding RNAs (lncRNAs), which comprise non-protein-coding segments of the genome, have been found to play a crucial role in various biological processes, including cancer development. The activity of lncRNAs is modified through epigenetic modifications, with N6-Methyladenosine (m6A) modifications implicated in the progression of several malignancies. The activity of m6A is further regulated by modifying enzymes classified as “readers”, writers”, and “erasers”, of which specific enzymes have been found to play a role in various aspects of PTC. Recent research has highlighted the significance of m6A modification in regulating the expression and function of lncRNAs associated with PTC pathogenesis. Dysregulation of this process implicates tumor proliferation, invasion, and metastasis, with subsequent impact on prognosis. Therefore, understanding the interplay between m6A modification and lncRNAs provides valuable insights into the molecular mechanisms underlying PTC progression. This narrative review aims to explore the established role of several prominent m6A modifying enzymes and lncRNAs on cancer pathogenesis and seeks to clarify the function of these enzymes in PTC pathogenesis. Full article
(This article belongs to the Special Issue Molecular Biology of the Thyroid Cancer and Thyroid Dysfunctions)
16 pages, 6064 KiB  
Article
Dynamic Changes in Tomato (Solanum lycopersicum) RNA m6A Modification During Seed Germination and Under Microgravity Conditions
by Jiali Cui, Jiahui Zhao, Haiying Zhang, Jingyuan Li, Libo Jiang and Na Wang
Horticulturae 2025, 11(3), 282; https://doi.org/10.3390/horticulturae11030282 - 5 Mar 2025
Viewed by 818
Abstract
Research exploring involvement of RNA N6-methyladenosine (m6A) in tomato (Solanum lycopersicum) seed germination remains limited. There is also a lack of direct evidence supporting the interaction among tomato seed germination, microgravity, and m6A modification. In [...] Read more.
Research exploring involvement of RNA N6-methyladenosine (m6A) in tomato (Solanum lycopersicum) seed germination remains limited. There is also a lack of direct evidence supporting the interaction among tomato seed germination, microgravity, and m6A modification. In this study, Micro-Tom tomatoes are used as the experimental material to conduct tomato genetic transformation, seed germination assay, and m6A modification levels identification experiments. During tomato seed germination processes, the m6A modification level significantly increases under the mutual influence of various m6A methyltransferase subunits and multiple eraser proteins. As a m6A reader gene, SlYTP9 expression significantly affects the germination of tomato seeds, with promotion and inhibition in OE (overexpression) and RNAi (RNA interference) transgenic tomato plants, respectively. Microgravity promotes seed germination in the early germination period (0–3 days past germination; 0–3 DPG), but this promoting effect gradually disappears as the seedling grows (8–15 DPG). Further exploration revealed that this promoting effect is correlated with m6A modification, manifested as enhanced expression of most m6A writer genes; increased expression levels of overall reader genes; altered expression trends of some m6A eraser genes, particularly SlALKBH2; and enhanced m6A modification levels. The experimental results obtained in this study can provide a theoretical basis and evidence support for elucidating the role of m6A in tomato seed germination, as well as for exploring the interactions between seed germination, microgravity, and m6A modification. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

23 pages, 3781 KiB  
Review
The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease
by Qi Shu, Yun Liu and Huasong Ai
Cells 2025, 14(4), 307; https://doi.org/10.3390/cells14040307 - 18 Feb 2025
Cited by 2 | Viewed by 1248
Abstract
Histone modifications serve as molecular switches controlling critical cellular processes. The ubiquitination of histone H2A at lysines 13 and 15 (H2AK13/15ub) is a crucial epigenetic modification that coordinates DNA repair and genome stability during the DNA damage response (DDR). This epigenetic mark is [...] Read more.
Histone modifications serve as molecular switches controlling critical cellular processes. The ubiquitination of histone H2A at lysines 13 and 15 (H2AK13/15ub) is a crucial epigenetic modification that coordinates DNA repair and genome stability during the DNA damage response (DDR). This epigenetic mark is dynamically regulated by three functional protein groups: “writer” enzymes (e.g., E3 ubiquitin ligase RNF168 that catalyzes H2AK13/15ub formation), “reader” proteins (including 53BP1 and BRCA1-BARD1 that recognize the mark to guide DNA repair), and “eraser” deubiquitinases (such as USP3 and USP16 that remove the modification). Dysregulation of the precisely coordinated network of H2AK13/15ub is strongly associated with various diseases, including RIDDLE syndrome, neurodegenerative disorders, immune deficiencies, and breast cancer. This review systematically analyzes the dynamic regulation of H2AK13/15ub in DDR and explores its therapeutic potential for disease intervention. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

18 pages, 1406 KiB  
Review
Novel Insight of N6-Methyladenosine in Cardiovascular System
by Huan Zhang, Wei Lu, Haoyue Tang, Aiqun Chen, Xiaofei Gao, Congfei Zhu and Junjie Zhang
Medicina 2025, 61(2), 222; https://doi.org/10.3390/medicina61020222 - 26 Jan 2025
Cited by 1 | Viewed by 1363
Abstract
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as “writers”, including METTL3/14 and WTAP, and removed by demethylases, or “erasers”, such as FTO and ALKBH5. It is [...] Read more.
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as “writers”, including METTL3/14 and WTAP, and removed by demethylases, or “erasers”, such as FTO and ALKBH5. It is recognized by m6A-binding proteins, or “readers”, such as YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and HNRNPA2B1. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Recent studies indicate that m6A RNA modification plays a critical role in both the physiological and pathological processes involved in the initiation and progression of CVDs. In this review, we will explore how m6A RNA methylation impacts both the normal and disease states of the cardiovascular system. Our focus will be on recent advancements in understanding the biological functions, molecular mechanisms, and regulatory factors of m6A RNA methylation, along with its downstream target genes in various CVDs, such as atherosclerosis, ischemic diseases, metabolic disorders, and heart failure. We propose that the m6A RNA methylation pathway holds promise as a potential therapeutic target in cardiovascular disease. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

15 pages, 2343 KiB  
Article
YTH N6-methyladenosine RNA Binding Protein 1 Inhibits Smooth Muscle Cell Phenotypic Modulation and Neointimal Hyperplasia
by Kai Tian, Dunpeng Cai, Shuang Yang, Wen Zhao, Xiaohan Mei and Shi-You Chen
Cells 2025, 14(3), 160; https://doi.org/10.3390/cells14030160 - 22 Jan 2025
Viewed by 1332
Abstract
Smooth muscle cell (SMC) phenotypic transition contributes to several major vascular diseases such as intimal hyperplasia and restenosis, atherosclerosis, and aneurysm. However, the molecular mechanisms underlying this process are not fully understood. The objectives of this study are to determine the role of [...] Read more.
Smooth muscle cell (SMC) phenotypic transition contributes to several major vascular diseases such as intimal hyperplasia and restenosis, atherosclerosis, and aneurysm. However, the molecular mechanisms underlying this process are not fully understood. The objectives of this study are to determine the role of mRNA N6-methyladenosine (m6A) modification in SMC phenotypic modulation and injury-induced neointima formation. By using an m6A quantification kit, we found that m6A levels are altered during the early stage of SMC phenotypic modulation. RNA sequencing revealed that m6A modifications in the mRNAs of 708 genes are elevated while modifications in the mRNAs of 300 genes are decreased. These modifications occur in genes widely distributed in most chromosomes and involved in many cellular processes and signaling/gene regulations. Meanwhile, the regulators for m6A modifications are altered by PDGF-BB, a known factor inducing SMC phenotypic modulation. Although m6A writers and erasers are not altered during SMC phenotypic modulation, m6A reader YTHDF1 is dramatically reduced as early as 12 h following PDGF-BB treatment, a time much earlier than the downregulation of SMC contractile proteins. Importantly, the overexpression of YTHDF1 reverses the expression of SMC contractile proteins, suggesting a restoration of contractile SMC phenotype. By using a rat carotid artery balloon-injury model, we found that injury significantly decreases YTHDF1 levels in the medial SMCs while inducing neointima formation. Of significance, restoring YTHDF1 expression through lentiviral transduction blocks injury-induced neointima formation. Moreover, YTHDF1 delivery restores the expression of SMC contractile proteins that is diminished in arterial media layers due to the injury. These data demonstrate that YTHDF1 plays a protective role in maintaining the contractile SMC phenotype and vascular homeostasis during injury-induced pathological vascular remodeling. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

20 pages, 10999 KiB  
Article
Characterization of the N6-Methyladenosine Gene Family in Peanuts and Its Role in Abiotic Stress
by Wei Wang, Jianxin Bian, Xiaoyu Liu and Xiaoqin Liu
Int. J. Plant Biol. 2025, 16(1), 7; https://doi.org/10.3390/ijpb16010007 - 6 Jan 2025
Cited by 1 | Viewed by 919
Abstract
Members of the m6A gene family are involved in key biological processes such as plant growth, development, stress responses, and light signal transduction. However, the function of m6A genes in peanuts has been understudied. Our analysis identified 61 m [...] Read more.
Members of the m6A gene family are involved in key biological processes such as plant growth, development, stress responses, and light signal transduction. However, the function of m6A genes in peanuts has been understudied. Our analysis identified 61 m6A family members in the peanut genome, including 21 writer genes, 22 eraser genes, and 18 reader genes, distributed across 20 chromosomes. Phylogenetic analysis revealed that ALKBH proteins are categorized into six subfamilies, while YTH family proteins form nine subfamilies. Promoter cis-element analysis indicated that m6A gene promoters contain light-responsive, hormone-responsive, growth-related, low-temperature defense, and other stress-related elements. Expression studies of AhALKBH8Ba and AhALKBH8Bb in various peanut tissues suggest that these genes play vital roles in peanut fruit needle development. Furthermore, AhETC1a and AhETC1b were significantly upregulated following the loss of mechanical pressure in peanut pods. This study identifies several key genes involved in light and mechanical stress response during peanut pod development. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
The mRNA N6-Methyladenosine Response to Dehydration in Xenopus laevis
by Saif Rehman, Mackenzie Parent and Kenneth B. Storey
Animals 2024, 14(22), 3288; https://doi.org/10.3390/ani14223288 - 15 Nov 2024
Cited by 1 | Viewed by 1112
Abstract
The African clawed frog, Xenopus laevis, exhibits remarkable adaptations to survive in its arid habitat, including behavioral and metabolic changes during periods of drought. During extreme dehydration, X. laevis undergoes estivation, a state characterized by increased urea and ammonia levels, depression of [...] Read more.
The African clawed frog, Xenopus laevis, exhibits remarkable adaptations to survive in its arid habitat, including behavioral and metabolic changes during periods of drought. During extreme dehydration, X. laevis undergoes estivation, a state characterized by increased urea and ammonia levels, depression of the metabolic rate, and tissue hypoxia. To understand the molecular mechanisms underlying these adaptations, we investigated the potential role of N6-methyladenosine (m6A), a widespread mRNA modification, in X. laevis during extreme dehydration. We analyzed the protein levels of key components in the m6A pathway, including writers (METTL3, METTL14, and WTAP), erasers (ALKBH5 and FTO), and readers (SRSF3, YTHDF1, YTHDF2, YTHDF3, and eIF3a), in the liver and kidneys of control frogs and frogs that had lost 35 ± 0.93% of their total body water. The relative protein levels generally decreased or remained unchanged, with the exception of YTHDF3, which depicted a protein level increase in the liver. Notable changes included eIF3a, which was downregulated by 26 ± 8% and 80 ± 8% in the dehydrated liver and kidney tissues, respectively. Additionally, the total m6A increased by 353 ± 30% and 177 ± 17% in dehydrated liver and kidney RNA samples, respectively. This study highlights the importance of epigenetic mechanisms in stress tolerance and provides a foundation for further exploration of the role of epigenetics in dehydration tolerance. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

21 pages, 5533 KiB  
Review
Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer
by Siyi Yang, Xinyi Fan and Wei Yu
Cells 2024, 13(21), 1812; https://doi.org/10.3390/cells13211812 - 2 Nov 2024
Cited by 8 | Viewed by 2580
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified [...] Read more.
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

31 pages, 3300 KiB  
Review
The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy
by Urszula Oleksiewicz, Monika Kuciak, Anna Jaworska, Dominika Adamczak, Anna Bisok, Julia Mierzejewska, Justyna Sadowska, Patrycja Czerwinska and Andrzej A. Mackiewicz
Int. J. Mol. Sci. 2024, 25(21), 11466; https://doi.org/10.3390/ijms252111466 - 25 Oct 2024
Cited by 8 | Viewed by 9972
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular [...] Read more.
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 7623 KiB  
Article
Structural Analysis of Virus Regulatory N6-Methyladenosine (m6A) Machinery of the Black Flying Fox (Pteropus alecto) and the Egyptian Fruit Bat (Rousettus aegyptiacus) Shows Evolutionary Conservation Amongst Mammals
by Asmaa Nasr, Nikki Copeland and Muhammad Munir
Genes 2024, 15(11), 1361; https://doi.org/10.3390/genes15111361 - 23 Oct 2024
Cited by 1 | Viewed by 1195
Abstract
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the [...] Read more.
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the Egyptian fruit bat) are bats associated with several viral zoonoses yet neglected in the field of m6A epigenetics studies. Objectives: This study utilises various bioinformatics and in silico tools to genetically identify, characterise and annotate the m6A machinery in P. alecto and R. aegyptiacus. Methods: A range of bioinformatic tools were deployed to comprehensively characterise all known m6A-associated proteins of P. alecto and R. aegyptiacus. Results: Phylogenetically, the m6A fat mass and obesity-associated protein (FTO) eraser placed the order Chiroptera (an order including all bat species) in a separate clade. Additionally, it showed the lowest identity matrices in P. alecto and R. aegyptiacus when compared to other mammals (74.1% and 72.8%) and Homo sapiens (84.0% and 76.1%), respectively. When compared to humans, genetic loci-based analysis of P. alecto and R. aegyptiacus showed syntenic conservation in multiple flanking genes of 8 out the 10 m6A-associated genes. Furthermore, amino acid alignment and protein tertiary structure of the two bats’ m6A machinery demonstrated conservation in the writers but not in erasers and readers, compared to humans. Conclusions: These studies provide foundational annotation and genetic characterisation of m6A machinery in two important species of bats which can be exploited to study bat–virus interactions at the interface of epitranscriptomics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1022 KiB  
Review
PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers
by Tingyu Fan, Jianlian Xie, Guo Huang, Lili Li, Xi Zeng and Qian Tao
Epigenomes 2024, 8(3), 36; https://doi.org/10.3390/epigenomes8030036 - 15 Sep 2024
Cited by 2 | Viewed by 2759
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone [...] Read more.
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value. Full article
Show Figures

Figure 1

Back to TopTop