Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = equatorial spread F (ESF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6931 KiB  
Article
Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity
by Georgios Balasis, Angelo De Santis, Constantinos Papadimitriou, Adamantia Zoe Boutsi, Gianfranco Cianchini, Omiros Giannakis, Stelios M. Potirakis and Mioara Mandea
Remote Sens. 2024, 16(18), 3506; https://doi.org/10.3390/rs16183506 - 21 Sep 2024
Cited by 1 | Viewed by 2295
Abstract
Launched on 22 November 2013, Swarm is the fourth in a series of pioneering Earth Explorer missions and also the European Space Agency’s (ESA’s) first constellation to advance our understanding of the Earth’s magnetic field and the near-Earth electromagnetic environment. Swarm provides an [...] Read more.
Launched on 22 November 2013, Swarm is the fourth in a series of pioneering Earth Explorer missions and also the European Space Agency’s (ESA’s) first constellation to advance our understanding of the Earth’s magnetic field and the near-Earth electromagnetic environment. Swarm provides an ideal platform in the topside ionosphere for observing ultra-low-frequency (ULF) waves, as well as equatorial spread-F (ESF) events or plasma bubbles, and, thus, offers an excellent opportunity for space weather studies. For this purpose, a specialized time–frequency analysis (TFA) toolbox has been developed for deriving continuous pulsations (Pc), namely Pc1 (0.2–5 Hz) and Pc3 (22–100 mHz), as well as ionospheric plasma irregularity distribution maps. In this methodological paper, we focus on the ULF pulsation and ESF activity observed by Swarm satellites during a time interval centered around the occurrence of the 24 August 2016 Central Italy M6 earthquake. Due to the Swarm orbit’s proximity to the earthquake epicenter, i.e., a few hours before the earthquake occurred, data from the mission may offer a variety of interesting observations around the time of the earthquake event. These observations could be associated with the occurrence of this geophysical event. Most notably, we observed an electron density perturbation occurring 6 h prior to the earthquake. This perturbation was detected when the satellites were flying above Italy. Full article
Show Figures

Figure 1

19 pages, 3836 KiB  
Article
Seasonal–Longitudinal Variability of Equatorial Plasma Bubbles Observed by FormoSat-7/Constellation Observing System for Meteorology Ionosphere and Climate II and Relevant to the Rayleigh–Taylor Instability
by Lung-Chih Tsai, Shin-Yi Su, Harald Schuh, Mohamad Mahdi Alizadeh and Jens Wickert
Remote Sens. 2024, 16(13), 2310; https://doi.org/10.3390/rs16132310 - 25 Jun 2024
Cited by 3 | Viewed by 1395
Abstract
The FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and Climate II (FS7/COSMIC2) program has acquired over three hundred thousand equatorial plasma bubble (EPB) observations from 2019 to 2023 in the equatorial and near low-latitude regions. The huge FS7/COSMIC2 database offers an opportunity to perform [...] Read more.
The FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and Climate II (FS7/COSMIC2) program has acquired over three hundred thousand equatorial plasma bubble (EPB) observations from 2019 to 2023 in the equatorial and near low-latitude regions. The huge FS7/COSMIC2 database offers an opportunity to perform statistical inspections of the proposed hypothesis on seasonal versus longitudinal variability of EPB occurrence rates relevant to the Rayleigh–Taylor (R-T) instability. The detected EPBs are distributed along the magnetic equator with a half width of ~20° in geomagnetic latitude. The obtained EPB occurrence rates in local time (LT) rose rapidly after sunsets, and could be deconstructed into two overlapped Gaussian distributions resembling a major peak around 23:00 LT and a minor peak around 20:20 LT. The two groups of Gaussian-distributed EPBs in LT were classified as first- and second-type EPBs, which could be caused by different mechanisms such as sporadic E (Es) instabilities and pre-reversal enhancement (PRE) fields. The obtained seasonal–longitudinal distributions of both types of EPBs presented two diffused traces of high occurrence rates, which happened near the days and longitudes when and where the angle between the two lines of magnetic declination and solar terminator at the magnetic equator was equal to zero. Finally, we analyzed the climatological and seasonal–longitudinal variability of EPB occurrences and compared the results with the physical R-T instability model controlled by Es instabilities and/or PRE fields. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

13 pages, 6127 KiB  
Article
Occurrence Characteristics of VHF Scintillation and Equatorial Spread F over Kwajalein during Moderate Solar Activity in 2012
by Chao-Song Huang
Atmosphere 2023, 14(5), 889; https://doi.org/10.3390/atmos14050889 - 19 May 2023
Viewed by 1517
Abstract
The occurrence probability of equatorial plasma bubbles and the associated spread F (ESF) irregularities have been derived from ground-based and space-borne measurements. In general, ESF occurrence depends on season and longitude and is high in equinoctial months and low around June solstice. In [...] Read more.
The occurrence probability of equatorial plasma bubbles and the associated spread F (ESF) irregularities have been derived from ground-based and space-borne measurements. In general, ESF occurrence depends on season and longitude and is high in equinoctial months and low around June solstice. In the West Pacific sector, previous statistical results show that the ESF occurrence probability increases gradually and continuously from March to August. In this study, we use trans-ionospheric VHF data received at Kwajalein Atoll in 2012 to derive the occurrence characteristics of scintillation. It is found that the occurrence probability of strong scintillation had two maxima in June and September and a minimum in July in the evening and midnight sector but only one maximum in June in the post-midnight sector. The monthly variations of scintillation occurrence at Kwajalein are different from almost all previous studies on ESF and scintillation at or near this longitude. To identify the cause for the June peak and the July minimum of scintillation, the ion density and velocity data measured by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite in 2011–2012 are used to derive the ESF occurrence and the post-sunset vertical ion drift near Kwajalein. The ESF occurrence probability and the ion drift measured by the C/NOFS satellite showed two maxima in May/June and August/September and a minimum in July, verifying that the June peak and the July minimum of the VHF scintillation are realistic and caused by the similar variations in the ionospheric ion drift and density. Full article
Show Figures

Figure 1

13 pages, 3894 KiB  
Technical Note
Multi-Station and Multi-Instrument Observations of F-Region Irregularities in the Taiwan–Philippines Sector
by Lung-Chih Tsai, Shin-Yi Su, Jun-Xian Lv, Terry Bullett and Chao-Han Liu
Remote Sens. 2022, 14(10), 2293; https://doi.org/10.3390/rs14102293 - 10 May 2022
Cited by 2 | Viewed by 2163
Abstract
In this study, a multi-station and multi-instrument system, organized and proposed for ionospheric scintillation and equatorial spread-F (ESF) specification and their associated motions in the Taiwan–Philippines sector, is outlined. The issues related to the scintillation and ESF event observed on 26 October 2021, [...] Read more.
In this study, a multi-station and multi-instrument system, organized and proposed for ionospheric scintillation and equatorial spread-F (ESF) specification and their associated motions in the Taiwan–Philippines sector, is outlined. The issues related to the scintillation and ESF event observed on 26 October 2021, at magnetic quiet conditions are presented and discussed. We first indicate the existence of a plasma bubble in the Taiwan–Philippines sector by using the FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (FS7/COSMIC2) GPS/GLONASS radio occultation observations. We verify the latitudinal extent of the tracked plasma bubble using the recorded ionograms from the Vertical Incidence Pulsed Ionospheric Radar located at Hualien, Taiwan. We further discuss the spatial and temporal variabilities of two-dimensional vertical scintillation index VS4 maps based on the simultaneous GPS L1-band signal measurements from 133 ground-based receivers located in Taiwan and the surrounding islands. We also operate two high-sampling, software-defined GPS receivers and characterize the targeted plasma irregularities by carrying out spectrum analyses of the received signal. As a result, the derived plasma irregularities moved eastward and northward. Furthermore, the smaller the irregularity scale, the higher the spectral index and the stronger the scintillation intensity were at lower latitudes on the aimed irregularity feature. Full article
(This article belongs to the Special Issue GNSS, Space Weather and TEC Special Features)
Show Figures

Figure 1

13 pages, 2467 KiB  
Technical Note
Modeling Post-Sunset Equatorial Spread-F Occurrence as a Function of Evening Upward Plasma Drift Using Logistic Regression, Deduced from Ionosondes in Southeast Asia
by Prayitno Abadi, Umar Ali Ahmad, Yuichi Otsuka, Punyawi Jamjareegulgarn, Dyah Rahayu Martiningrum, Agri Faturahman, Septi Perwitasari, Randy Erfa Saputra and Reza Rendian Septiawan
Remote Sens. 2022, 14(8), 1896; https://doi.org/10.3390/rs14081896 - 14 Apr 2022
Cited by 12 | Viewed by 2820
Abstract
The occurrence of post-sunset equatorial spread-F (ESF) could have detrimental effects on trans-ionospheric radio wave propagation used in modern communications systems. This problem calls for a simple but robust model that accurately predicts the occurrence of post-sunset ESF. Logistic regression was implemented to [...] Read more.
The occurrence of post-sunset equatorial spread-F (ESF) could have detrimental effects on trans-ionospheric radio wave propagation used in modern communications systems. This problem calls for a simple but robust model that accurately predicts the occurrence of post-sunset ESF. Logistic regression was implemented to model the daily occurrence of post-sunset ESF as a function of the evening upward plasma drift (v). The use of logistic regression is formalized by y^=1/[1+exp(z)], where y^ represents the probability of post-sunset ESF occurrence, and z is a linear function containing v. The value of v is derived from the vertical motion of the bottom side of the F-region in the evening equatorial ionosphere, which is observed by the ionosondes in Southeast Asia. Data points (938) of v and post-sunset ESF occurrence were collected in the equinox seasons from 2003 to 2016. The training set used 70% of the dataset to derive z and y^ and the remaining 30% was used to test the performance of y^. The expression z=2.25+0.14v was obtained from the training set, and y^0.5 (v ≥ ~16.1 m/s) and y^<0.5 (v < ~16.1 m/s) represented the occurrence and non-occurrence of ESF, respectively, with an accuracy of ~0.8 and a true skill score (TSS) of ~0.6. Similarly, in the testing set, y^ shows an accuracy of ~0.8 and a TSS of ~0.6. Further analysis suggested that the performance of the z-function can be reliable in the daily F10.7 levels ranging from 60 to 140 solar flux units. The z-function implemented in the logistic regression (y^) found in this study is a novel technique to predict the post-sunset ESF occurrence. The performance consistency between the training set and the testing set concludes that the z-function and the y^ values of the proposed model could be a simple and robust mathematical model for daily nowcasting the occurrence or non-occurrence of post-sunset ESFs. Full article
Show Figures

Figure 1

13 pages, 8173 KiB  
Article
Climatology of Spread F over Tucumán from Massive Statistical Analysis of Autoscaled Data
by Carlo Scotto and Dario Sabbagh
Atmosphere 2021, 12(10), 1351; https://doi.org/10.3390/atmos12101351 - 15 Oct 2021
Viewed by 2348
Abstract
Automatic ionogram interpretation methods developed for real-time ionospheric monitoring can be applied in retrospective studies to analyze large quantities of data. The Autoscala software, implemented for such a purpose, includes a routine for automatic detection of diffused echoes known as spread F, which [...] Read more.
Automatic ionogram interpretation methods developed for real-time ionospheric monitoring can be applied in retrospective studies to analyze large quantities of data. The Autoscala software, implemented for such a purpose, includes a routine for automatic detection of diffused echoes known as spread F, which appear in ionograms due to the presence of ionospheric irregularities along the radio signal path. The main objective of this routine is to reject bad quality ionograms. This new capability was used in a climatological study including a large number of ionograms recorded at the low-latitude ionospheric station of Tucumán (26.9° S, 294.6° E, magnetic latitude 15.5° S, Argentina). The study took into account different levels of geomagnetic and solar activity from 2012 to 2020. The results demonstrate the capability of Autoscala to capture the main signature characteristics of spread F and the temporal evolution of the ionosphere peak heigh hmF2, capturing the post-sunset plasma surge that precedes development of spread F. Maximum occurrence of spread F is observed in local summer, with a tendency to shift before midnight with increasing solar activity. Other new climatological details that emerged from the study are illustrated and briefly discussed, dealing with connection with geomagnetic activity, and morning hmF2 behavior after extremely marked nighttime spread F occurrence. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

20 pages, 5854 KiB  
Article
Ionospheric S4 Scintillations from GNSS Radio Occultation (RO) at Slant Path
by Dong L. Wu
Remote Sens. 2020, 12(15), 2373; https://doi.org/10.3390/rs12152373 - 23 Jul 2020
Cited by 22 | Viewed by 10082
Abstract
Ionospheric scintillation can significantly degrade the performance and the usability of space-based communication and navigation signals. Characterization and prediction of ionospheric scintillation can be made from the Global Navigation Satellite System (GNSS) radio occultation (RO) technique using the measurement from a deep slant [...] Read more.
Ionospheric scintillation can significantly degrade the performance and the usability of space-based communication and navigation signals. Characterization and prediction of ionospheric scintillation can be made from the Global Navigation Satellite System (GNSS) radio occultation (RO) technique using the measurement from a deep slant path where the RO tangent height (ht) is far below the ionospheric sources. In this study, the L–band S4 from the RO measurements at ht = 30 km is used to infer the amplitude scintillation on the ground. The analysis of global RO data at ht = 30 km shows that sporadic–E (Es), equatorial plasma bubbles (EPBs), and equatorial spread–F (ESF) produce most of the significant S4 enhancements, although the polar S4 is generally weak. The enhanced S4 is a strong function of local time and magnetic dip angle. The Es–induced daytime S4 tends to have a negative correlation with the solar cycle at low latitudes but a positive correlation at high latitudes. The nighttime S4 is dominated by a strong semiannual variation at low latitudes. Full article
(This article belongs to the Special Issue Remote Sensing of Ionosphere Observation and Investigation)
Show Figures

Graphical abstract

18 pages, 6719 KiB  
Article
Satellite Formation Flight Simulation Using Multi-Constellation GNSS and Applications to Ionospheric Remote Sensing
by YuXiang Peng and Wayne A. Scales
Remote Sens. 2019, 11(23), 2851; https://doi.org/10.3390/rs11232851 - 30 Nov 2019
Cited by 8 | Viewed by 5785
Abstract
The Virginia Tech Formation Flying Testbed (VTFFTB) is a global navigation satellite system (GNSS)-based hardware-in-the-loop (HIL) simulation testbed for spacecraft formation flying with ionospheric remote sensing applications. Past applications considered only the Global Positioning System (GPS) constellation. The rapid GNSS modernization offers more [...] Read more.
The Virginia Tech Formation Flying Testbed (VTFFTB) is a global navigation satellite system (GNSS)-based hardware-in-the-loop (HIL) simulation testbed for spacecraft formation flying with ionospheric remote sensing applications. Past applications considered only the Global Positioning System (GPS) constellation. The rapid GNSS modernization offers more signals from other constellations, including the growing European system—Galileo. This study presents an upgrade of VTFFTB with the incorporation of Galileo and the associated enhanced capabilities. By simulating an ionospheric plasma bubble scenario with a pair of LEO satellites flying in formation, the GPS-based simulations are compared to multi-constellation GNSS simulations including the Galileo constellation. A comparison between multi-constellation (GPS and Galileo) and single-constellation (GPS) shows the absolute mean and standard deviation of vertical electron density measurement errors for a specific Equatorial Spread F (ESF) scenario are decreased by 32.83% and 46.12% with the additional Galileo constellation using the 13 July 2018 almanac. Another comparison based on a simulation using the 8 March 2019 almanac shows the mean and standard deviation of vertical electron density measurement errors were decreased further to 43.34% and 49.92% by combining both GPS and Galileo data. A sensitivity study shows that the Galileo electron density measurements are correlated with the vertical separation of the formation configuration. Lower C/N 0 level increases the measurement errors and scattering level of vertical electron density retrieval. Relative state estimation errors are decreased, as well by utilizing GPS L1 plus Galileo E1 carrier phase instead of GPS L1 only. Overall, superior performance on both remote sensing and relative navigation applications is observed by adding Galileo to the VTFFTB. Full article
Show Figures

Graphical abstract

Back to TopTop