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Abstract: The occurrence of post-sunset equatorial spread-F (ESF) could have detrimental effects on
trans-ionospheric radio wave propagation used in modern communications systems. This problem
calls for a simple but robust model that accurately predicts the occurrence of post-sunset ESF. Logistic
regression was implemented to model the daily occurrence of post-sunset ESF as a function of the
evening upward plasma drift (v). The use of logistic regression is formalized by ŷ = 1/[1 + exp(−z)],
where ŷ represents the probability of post-sunset ESF occurrence, and z is a linear function containing
v. The value of v is derived from the vertical motion of the bottom side of the F-region in the evening
equatorial ionosphere, which is observed by the ionosondes in Southeast Asia. Data points (938)
of v and post-sunset ESF occurrence were collected in the equinox seasons from 2003 to 2016. The
training set used 70% of the dataset to derive z and ŷ and the remaining 30% was used to test the
performance of ŷ. The expression z = −2.25 + 0.14v was obtained from the training set, and ŷ ≥ 0.5
(v ≥ ~16.1 m/s) and ŷ < 0.5 (v < ~16.1 m/s) represented the occurrence and non-occurrence of ESF,
respectively, with an accuracy of ~0.8 and a true skill score (TSS) of ~0.6. Similarly, in the testing set,
ŷ shows an accuracy of ~0.8 and a TSS of ~0.6. Further analysis suggested that the performance of the
z-function can be reliable in the daily F10.7 levels ranging from 60 to 140 solar flux units. The z-function
implemented in the logistic regression (ŷ) found in this study is a novel technique to predict the
post-sunset ESF occurrence. The performance consistency between the training set and the testing set
concludes that the z-function and the ŷ values of the proposed model could be a simple and robust
mathematical model for daily nowcasting the occurrence or non-occurrence of post-sunset ESFs.

Keywords: equatorial ionosphere; equatorial spread-F; logistic regression; mathematical model
for ionosphere

1. Introduction

Historically, equatorial spread-F or ESF refers to the phenomenon of spreading echoes
characterizing the F region trace of ionograms recorded by the ionosondes in the equatorial
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zone, especially during nighttime. The ESF demonstrates the existence of irregularities
(plasma density fluctuations) in the F region ionosphere [1]. The research progress in
understanding the spatial and temporal variations of ESF occurrence is currently carried
out by the coordinated ground-based and spaceborne observations, see [2–5]. Nowadays,
the prediction of ESF occurrence has become an important task in space weather services
because the irregularities at the base of the ESF occurrence have disadvantageous effects
on trans-ionospheric radio wave propagation in modern communications and navigation
systems [6]. In particular, ESF occurrence during the post-sunset period is well-known to be
a main cause of scintillation (rapid fluctuation) on L-band signals used in global navigation
satellite systems (GNSS) [7] and strong scintillation can cause deep GNSS signal fading [8].
The day-to-day variability in post-sunset ESF occurrence remains challenging, but scientists
have attempted to investigate the factors that control the generation of post-sunset ESFs [9].
Hence, developing a simpler and more robust model for nowcasting post-sunset ESFs is
necessary for space weather services.

Previous modeling of daily ESF occurrence employed the physics-based models, e.g.,
using the thermosphere ionosphere electrodynamics general circulation model (TIEGCM) [10]
and ground-to-topside model of atmosphere and ionosphere for aeronomy (GAIA) [11]. The
physical models, such as TIEGCM and GAIA, have a high complexity of the algorithm in
generating the outputs. Furthermore, the outputs from such physical models are not directly
the probability of ESF occurrence. Nevertheless, further investigations into the relationship
between the outputs from the physical models and real observation of ESF occurrence are
needed. In this study, we sought to build a simple model for nowcasting post-sunset ESFs
that could potentially be used in space weather services. This model can be defined as an
effort to forecast the occurrence of ESF a few hours after sunset by analyzing its controlling
factors before and around sunset. The identification and research of the controlling factors
of the ESF occurrence were made using previous literature [12–15]. Moreover, the model
also connects the controlling factors to the probability of ESF occurrence. Building a simple
mathematical model requires an assumption that the relations among the controlling factors
of ESF occurrence are linear functions. Additionally, this model could be beneficial because
it can be executed more easily and quickly with lower computational costs to determine
the occurrence or non-occurrence of the post-sunset ESF at a certain night.

Based on previous investigations, we identified the prominent factor that controls
the probability of post-sunset ESF occurrence daily, namely the daily changes in evening
upward plasma drift in the equatorial F region that can be caused by the pre-reversal en-
hancement (PRE) phenomenon [12–15]. Importantly, this factor can be measured: evening
upward plasma drift can be derived from ionosonde. Additionally, this factor can be used
to predict post-sunset ESF occurrence. The proposed simple model of the post-sunset ESF
occurrence is a binary classification model; that is, the output of the model is the occurrence
or non-occurrence of ESF at certain nights. Therefore, logistic regression is suitable for this
type of model.

In this study, we intend to build a mathematical model for the post-sunset ESF occur-
rence as a function of upward ionospheric plasma drift in the evening equatorial region. It
employs logistic regression to build the prediction model of post-sunset ESF occurrence.
Using the feature dataset, including the evening upward plasma drift and post-sunset ESF
occurrence, we can train the logistic regression model to classify nights with and without
post-sunset ESF occurrence. A database of observations from the equatorial ionosondes
in Southeast Asia was utilized. In the following sections of this paper, the basic idea of
logistic regression for modeling the post-sunset ESF occurrence, data preparation, and the
study results have been described. A summary of this study and the extension works have
been included.
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2. Materials and Methods
2.1. Modeling ESF Occurrence with Logistic Regression

The probability of the post-sunset ESF occurrence must lie between the values 0 and 1,
and linear regression cannot be used to deal with this model because the linear model also
provides outputs outside the range of 0–1. In contrast, the logistic regression technique can
be used to model probability events [16]. The probability of post-sunset ESF occurrence
using logistic regression is given by

ŷ =
1

1 + e−z (1)

where ŷ represents the probability of ESF occurrence and z is a link function between the
controlling factor (or predictor) of the ESF occurrence and the probability of ESF occurrence.
As shown in Equation (1), the output of ŷ always ranges between zero and one with
any value of z. In this study, we consider only one controlling factor of ESF occurrence,
namely the evening upward plasma drift in the equatorial region (hereafter denoted as v).
Therefore, the function z contains v. We consider z to be a linear function consisting of v.
Mathematically, function z can be expressed as

z = β0 + β1v, (2)

where β j (j = 0 to 1) are known as regression coefficients.
The regression coefficients (β j) in Equation (2) can be estimated by training obser-

vational data. Here, we need to train the dataset of v and post-sunset ESF occurrence
from observations using the gradient descent technique to obtain the optimum β j. In
principle, the gradient descent technique sets the optimum value of β j as a function of z to
minimize the errors between the predicted output (ŷ) and actual output. The actual output
is the occurrence of the post-sunset ESF based on observations that can be either 1 for the
occurrence of the post-sunset ESF or 0 for the non-occurrence of the post-sunset ESF. In this
study, we used a MATLAB toolbox to execute the gradient descent technique in obtaining
the optimum β j in Equation (2). The steps in the gradient descent technique used in this
study are briefly described as follows:

1. Setting the initial value of β j,

βt=0
j =

[
βt=0

0 , βt=0
1

]
, (3)

where t = 0 indicates the initial set of values of βt=0
j . In this study, we set the initial

value of each regression coefficient to zero.

2. Computing the cost function (error) between the predicted and actual outputs based
on logistic regression; hence, the cost function is given by:

J = − 1
m
[∑m

i=1 yi log (ŷi) + (1− yi) log (1− ŷi)], (4)

where J is the cost function, i represents the number of observation data in the training
set ranging from 1 to m (number of observations), y is the actual output of the post-
sunset ESF occurrence from the observations, and ŷ is the predicted output of the
post-sunset ESF occurrence obtained from Equation (1).

3. Computing the gradient of the cost function for each coefficient β j.

∂J
∂β0

=
1
m ∑m

i=1 (ŷ
i − yi), (5a)

∂J
∂β1

=
1
m

m

∑
i=1

(ŷi − yi)vi, (5b)
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∇J =
[

∂J
∂β0

,
∂J

∂β1

]
(6)

4. Finding the minimum J and ∇J to obtain the optimum β j using the fminunc function
in the optimization toolbox of the MATLAB software. The function fminunc is used
to find a local minimum of J with a value of ∇J very close to zero.

Finally, after β j is obtained, the logistic regression in Equation (1) was used to model
the post-sunset ESF occurrence as the occurrence (value 1) or non-occurrence (value 0) of
the post-sunset ESF. Using Equation (1), when the value of ŷ is greater than/equals 0.5, the
probability of the ESF occurrence equals 1. Otherwise, the probability of ESF occurrence
is equal to 0 (when the value of ŷ is less than 0.5). In other words, ESF occurrence is
established when the value of z is larger than or equal to zero, whereas ESF non-occurrence
is identified when the value of z is smaller than zero.

2.2. Data Used

The data recorded by the three ionosondes in the equatorial regions of Southeast
Asia were used to obtain a dataset of both v and ESF occurrences to develop a logistic
regression model for post-sunset ESF occurrence. These three ionosondes were located
in Chumphon (CPN; 99.4◦E, 10.7◦N, dip latitude: 3.0◦N) in Thailand, Bac Lieu (BCL;
105.7◦E, 9.3◦N, dip latitude: 1.5◦N) in Vietnam, and Cebu (CEB; 123.9◦E, 10.4◦N, dip
latitude: 3.0◦N) in the Philippines. Note that these three ionosondes have been operating
in the project of the Southeast Asia Low-latitude Ionospheric Network (SEALION) of the
National Institute of Information and Communications Technology (NICT), Japan [17,18].
From the ionosondes, the data of v and the post-sunset ESF occurrence were collected
during the equinox seasons (March–April and September–October) from 2003 to 2016 as a
database foundation to build a model. We collected the data during the equinox season
because of the season when the post-sunset ESFs frequently occur in the longitudinal
sector of Southeast Asia. In the equinox seasons in Southeast Asia, the large v associated
with the PRE phenomenon is effectively generated because of the alignment of the solar
terminator and geomagnetic meridian, and thus the large v effectively generates the post-
sunset ESF [19]. In practice, the ionograms from the ionosondes were examined from
18:30 LT to 21:00 LT with a 5-min time resolution to obtain the data of v and the post-sunset
ESF occurrence. Note that “LT” in each ionosonde observation is the local time at the
longitude of the ionosonde, LT = UTC + longitude/15◦ where longitude is in degree (◦).
The examinations of ionograms from 18:30 to 19:00 and from 19:00 to 21:00 are used to
estimate v and to observe the occurrence of post-sunset ESF, respectively. The ionograms
were manually scaled to obtain the virtual height (h′) at approximately 3 MHz from 18:30
to 19:00 LT, and the v data were collected on specified nights using the time derivative
of h′ in that time interval. It is considered that h′ at ~3 MHz in the evening is close to
the true bottom side height of the F region [17]. Furthermore, data on the occurrence of
post-sunset ESFs from ionosondes were collected. In this study, the ESF in the ionogram
is identified when the F region trace shows either a range spread-F (RSF) phenomenon
or a mixed spread-F (MSF) phenomenon. The RSF and MSF indicate the irregularities
located at the bottom side F region and the irregularities located from the bottom side
to the peak of the F region, respectively [7]. We visually inspect the ESF occurrence in
ionograms by eyes. However, we followed the definitions of RSF and MSF from the URSI
Handbook of ionogram interpretation and reduction [20]. The RSF type is identified when
the lower part of the F region trace in the ionogram shows a broadening in range or virtual
height. The MSF type is identified as a mixed RSF and frequency spread-F (FSF) (the FSF
ionogram is identified when the F region trace near the critical frequency is broadened in
frequency). The ionograms show MSF type when the F region trace is broadened in both
range and frequency. In addition to visual inspection by eyes, we identified both RSF and
MSF ionograms when the spreading for the lowest part of the trace exceeds 30 km in range.
The value of 30 km comes from the URSI handbook. Moreover, the definition for the data
of a night with (value 1) and without (value 0) post-sunset ESF occurrence are described
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as follows. A night with post-sunset ESF occurrence is defined as an event when at least
one ionogram shows the ESF (either the RSF or MSF) from 19:00 LT to 21:00 LT, which
was denoted by 1. A night without post-sunset ESF occurrence indicates that no ionogram
showed the ESF in that period, which was denoted by 0.

Figure 1 displays a sequence of ionograms from 18:30 LT to 19:25 LT obtained from
the CEB ionosonde on 31 March 2014. The figure is intended to represent a method that
uses the ionosondes to calculate v and observe the occurrence of post-sunset ESF. In the
figure, the ionograms obtained between 18:30 LT and 19:10 LT show a typical F region trace
at night as characterized by a thin trace. The maximum or critical frequency of the F region
(foF2) can be scaled in the normal F region trace. From 18:55 LT to 19:05 LT, the echoes (2F),
which result from double reflection from the F region trace, are displayed. In other words,
the 2F trace is not the real F region trace, and the ESF occurrence is not identified from
multiple reflections of the real F region trace. The ionograms obtained between 18:30 LT
and 19:00 LT show the h′ at ~3 MHz enhancement from altitudes of 336 km to 448 km,
indicating the uplift of the F region to a higher altitude. By calculating the time derivative
of h′ from 18:30 LT to 1900 LT, the value of v was found to be ~62 m/s. Furthermore, on that
night, the ionograms display the ESF from 19:15 LT to 21:00 LT (only the ESF appearances
(white circles) between 19:15 LT and 19:25 LT are shown in the figure). As seen in Figure 1,
the ESF appearances in the ionograms from 19:15 to 19:25 LT are displayed as the typical
MSF (the ionograms where RSF and FSF are present at the same time), and we measured
that the spread of trace in the lowest part exceeds 30 km in range. Therefore, the data
for the post-sunset ESF occurrence is equal to 1 on the night of 31 March 2014, obtained
from the CEB ionosonde. On that night, the data of v and the post-sunset ESF occurrence
were also available from the CPN ionosonde, and the values of v and the post-sunset ESF
occurrence were ~92 m/s and 1, respectively. Thus, on the night of 31 March 2014, two
pairs of values of v and the post-sunset ESF occurrence were obtained from two ionosondes.
The data of v and the occurrence/non-occurrence of post-sunset ESF were collected from
the combination of CPN, BCL, and CEB ionosondes in the same manner as described in
Figure 1. In this study, 938 data points of pairs of v and the occurrence/non-occurrence of
post-sunset ESF were collected.

Figure 2 shows the distribution of the data of v and post-sunset ESF occurrence
collected from the three ionosonde stations. As seen in the figure, most data are collected
from the CPN ionosonde (577 of 938 data points) followed by data collected from the BCL
(306 data points) and CEB (55 data points) ionosondes. In addition to the data obtained
from ionosonde, each pair of v and the occurrence/non-occurrence of post-sunset ESF
is also complemented with daily F10.7 (in solar flux unit, sfu). Therefore, our dataset
contains 938 data points, where each data point consists of daily F10.7 and a pair of v and
the occurrence/non-occurrence of post-sunset ESF. Datapoints for v and the occurrence of
post-sunset ESF were collected in F10.7 values ranging from 60 to 240 sfu. From 938 data
points, the training set used 70% of the dataset to build the mathematical model for the
post-sunset ESF occurrence (Equations (1) and (2)), and the mathematical model was tested
using the remaining 30% of the dataset. In addition, in the result of this study, we will
check the performance of the model with various levels of solar activity.



Remote Sens. 2022, 14, 1896 6 of 13Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. A sequence of ionograms in the time interval of 18:30 LT–19:25 LT was obtained from the 
Cebu ionosonde on 31 March 2014. 
Figure 1. A sequence of ionograms in the time interval of 18:30 LT–19:25 LT was obtained from the
Cebu ionosonde on 31 March 2014.



Remote Sens. 2022, 14, 1896 7 of 13

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

Figure 2 shows the distribution of the data of v and post-sunset ESF occurrence col-
lected from the three ionosonde stations. As seen in the figure, most data are collected 
from the CPN ionosonde (577 of 938 data points) followed by data collected from the BCL 
(306 data points) and CEB (55 data points) ionosondes. In addition to the data obtained 
from ionosonde, each pair of v and the occurrence/non-occurrence of post-sunset ESF is 
also complemented with daily F10.7 (in solar flux unit, sfu). Therefore, our dataset contains 
938 data points, where each data point consists of daily F10.7 and a pair of v and the occur-
rence/non-occurrence of post-sunset ESF. Datapoints for v and the occurrence of post-sun-
set ESF were collected in F10.7 values ranging from 60 to 240 sfu. From 938 data points, the 
training set used 70% of the dataset to build the mathematical model for the post-sunset 
ESF occurrence (Equations (1) and (2)), and the mathematical model was tested using the 
remaining 30% of the dataset. In addition, in the result of this study, we will check the 
performance of the model with various levels of solar activity.  

 
Figure 2. The distribution of the data collected from Chumphon (CPN), Bac Lieu (BCL), and Cebu 
(CEB) ionosondes stations during equinox seasons from 2003 to 2016. 

3. Results and Discussion 
This study employed the evening upward plasma drift (v) from the ionosondes as a 

predictor in the model of post-sunset ESF using logistic regression. From these observa-
tions, the first results from this study, as displayed in Figure 3, intend to statistically vis-
ualize the relationship between v as a predictor and the occurrence rate of the post-sunset 
ESF. In the panel, the red curve shows the occurrence rate of post-sunset ESFs as a function 
of v. The occurrence (black dots) and non-occurrence (cyan circles) of post-sunset ESFs 
were also distinguished by 0 and 1. 
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(CEB) ionosondes stations during equinox seasons from 2003 to 2016.

3. Results and Discussion

This study employed the evening upward plasma drift (v) from the ionosondes as a
predictor in the model of post-sunset ESF using logistic regression. From these observations,
the first results from this study, as displayed in Figure 3, intend to statistically visualize the
relationship between v as a predictor and the occurrence rate of the post-sunset ESF. In the
panel, the red curve shows the occurrence rate of post-sunset ESFs as a function of v. The
occurrence (black dots) and non-occurrence (cyan circles) of post-sunset ESFs were also
distinguished by 0 and 1.

Figure 3 shows the occurrence rate of post-sunset ESF at intervals of −20 ≤ v < −10,
−10 ≤ v < 0, 0 ≤ v < 10, . . . , and 50 ≤ v < 60 m/s. The collected 938 data points of v
ranged from approximately −13 m/s to 92 m/s, in which v ≥ 60 m/s values indicate the
occurrence of post-sunset ESF. The negative v values show the non-occurrence of post-
sunset ESF, except for three data points. As for the v values of 0–40 m/s, the occurrence
and non-occurrence of post-sunset ESFs overlap. In general, the red curve shows that the
probability of post-sunset ESF occurrence increases when v increases. When v increased
from a negative value to 30 m/s, the post-sunset ESF occurrence rate increased from 0 to
0.8. The probability of a post-sunset ESF occurrence higher than 0.5 could occur when
the v values are greater than 20 m/s. Furthermore, the post-sunset ESF occurrence rates
are higher than 0.8 for v ≥ 30 m/s, and these features are consistent with the findings of
a previous study [21]. Figure 3 shows a higher correlation between large v and a higher
probability of ESF occurrence, and it is a well-known finding. When v is large enough,
the necessary seeding mechanisms for generating strong ESF always appear to be present.
Therefore, these two phenomena (v and ESF occurrence) are highly correlated [12,13].
However, the relationship between the probability of ESF occurrence and v cannot be
simply approximated by linear regression. This study innovates to implement the logistic
regression to model the probability of ESF occurrence. Clearly, the red curve in Figure 3
can be approximated by the logistic regression (Equation (1)) and v can be a good predictor
of the z-function (Equation (2)).
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Next, the result from the training set, that is, the regression coefficients (βj) for the
z function (Equation (2)) are shown. Furthermore, the z-function was used in the logistic
regression (Equation (1)) to predict the occurrence of post-sunset ESFs. The training set
utilized 70% of the dataset, and the remaining 30% was used for the testing set. By steps
of the gradient descent technique described earlier, z = −2.25 + 0.14v was obtained from
the training set, and this z-function is used in Equation (1) to predict the occurrence of
post-sunset ESFs in both training and testing datasets. Figure 4 shows the probability of
post-sunset ESF occurrence as a function of v (black curve) calculated from the z-function
(z = −2.25 + 0.14v) implemented in logistic regression and the red curve is the occurrence
rate of ESF from the ionosondes observation. Note that the red curve in Figure 4 is the
same as the red curve in Figure 3. As seen in Figure 4, the black curve closely fits with the
red curve. We emphasized that the z-function found is an important finding to model the
probability of ESF occurrence. Furthermore, Figure 4 displays the blue line indicating a
value of v (~16.1 m/s), and this v can be used to indicate whether post-sunset ESF occurred.
With the expression z = −2.25 + 0.14v and logistic regression in Equation (1), the threshold
of v (~16.1 m/s) can be found when z is equal to zero. When z ≥ 0, it means that v is greater
than/equals ~16.1 m/s and the post-sunset ESF occurrence is expected (the probability
(ŷ) ≥ 0.5). Otherwise, z is less than zero, meaning that v is lower than ~16.1 m/s, and the
post-sunset ESF occurrence is not expected (the probability (ŷ) < 0.5). In conclusion, this
study suggests that the z-function (z = –2.25 + 0.14v) implemented in logistic regression can
be a new technique to predict post-sunset ESF occurrence.
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Table 1 summarizes the performances of the z-function (z = −2.25 + 0.14v) or the
threshold of v (~16.1 m/s) in predicting the post-sunset ESF occurrence for both training
and testing datasets. In addition, Table 1 also shows the performance of predicting post-
sunset ESF occurrence using the persistence technique (i.e., what happened yesterday
will happen today). The persistence technique is a useful benchmark for model-model
comparisons [22]. We have successfully collected 780-data points in our dataset to perform the
persistence technique. In the table, the performances are quantified using the accuracy, true
positive rate (TPR), false-positive rate (FPR), and true skill score (TSS). Accuracy is calculated
from the ratio between the summation of true positives (TP) and true negatives (TN) and
the number of data observations. TP is the number of predicted and observed post-sunset
ESF events. TN is the number of unpredicted and unobserved post-sunset ESF events. The
TPR was calculated as the ratio of TP to the number of observed post-sunset ESF occurrences.
Furthermore, FPR = 1− TNR, where TNR (true negative rate) is the ratio of TN to the number
of unobserved post-sunset ESF occurrences. Finally, TSS = TPR − FPR, and the range values
of accuracy, TPR, FPR, and TSS are [0 1], [0 1], [0 1], and [−1 1], respectively.

In Table 1, the use of the z-function (z = −2.25 + 0.14v) or the threshold of v (~16.1 m/s)
has a good performance in predicting the post-sunset ESF occurrence in the training and
testing datasets. As shown in Table 1, the good performance of the z-function can be
quantified by higher values of accuracy, TPR, and TSS, along with a lower value of FPR.
Interestingly, the performances of the z-function in the training and testing datasets have
consistent values. Clearly, the performances of the z-function in both datasets are better
than that of the persistence technique. We consider that with an accuracy of ~0.8, TSS
of ~0.6, and a better performance than the persistence technique, the z-function used in
the logistic regression has a good performance in classifying nights with and without
post-sunset ESF occurrence in the training and testing datasets. This finding indicates
that the z-function proposed and implemented in the logistic regression (Equation (1)) can
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be a robust mathematical model to predict the occurrence and non-occurrence of post-
sunset ESF on nights when new inputs of v are added. We consider that our mathematical
model, like the proposed z-function in this study, can be a prospective tool for nowcasting
post-sunset ESF occurrence in space weather services.

Table 1. The performances of logistic regression model and persistence technique for forecasting
post-sunset ESF occurrence.

Datasets
Performance

Accuracy TPR FPR TSS

Training
(657 data points) 0.78 0.79 0.22 0.57

Testing
(281 data points) 0.79 0.79 0.21 0.58

Persistence technique
(780 data points) 0.65 0.68 0.38 0.30

In this study, the threshold of v (~16.1 m/s) for determining the occurrence of post-
sunset ESF is a statistical finding. It is well-known that the threshold of v for the occurrence
of post-sunset ESF could vary with the level of solar activity [23]. Therefore, we need
to check the consistency of the threshold of v (~16.1 m/s) in classifying nights with and
without post-sunset ESF occurrences with various solar activity levels. Figure 5 shows the
scatter plot of v and F10.7 (upper panel) with the occurrence (black dots) and non-occurrence
(cyan circles) of post-sunset ESF. Note that 938 datapoints of v and post-sunset ESF occur-
rence are plotted in the upper panel. The blue line indicates the v of ~16.1 m/s. The figure
intends to check the performance of the threshold of v (16.1 m/s) (blue line) in classifying
the occurrence and non-occurrence of post-sunset ESF at intervals of 60 ≤ F10.7 < 80 sfu,
80 ≤ F10.7 < 100 sfu, . . . , and 200 ≤ F10.7 < 220 sfu. Datapoints above or at the blue line
will be classified as the occurrence of post-sunset ESF, whereas data points below the
line will be classified as non-occurrence of post-sunset ESF. The number of data points
(black dots and cyan circles) at each interval of F10.7 is displayed in the lower panel of
Figure 5. At each interval of F10.7, black dots and cyan circles highly overlap. However,
by calculating the accuracy of the performance of v (~16.1 m/s) in classifying the occur-
rence and non-occurrence of post-sunset ESF, the red curve in the upper panel shows the
accuracy of ~0.8 in F10.7 values ranging from 60 to 140 sfu. The number of data points is
832 in the F10.7 interval of 60–140 sfu. The number of data points for each F10.7 interval
above 140 sfu is significantly decreased (below 80 data points), and the accuracy of the
performance may not be reliable. In short, the threshold of v (~16.1 m/s) could be reliable
for determining whether post-sunset ESF occurred with the accuracy of ~0.8 in the solar
activity F10.7 intervals of 60–140 sfu.

The post-sunset ESF occurrence in this study is determined as either the occurrences of
RSF or MSF with the spreading trace greater than 30 km in range. The mathematical model
of the post-sunset ESF occurrence found in this study could miss predicting the weaker
post-sunset ESF occurrences (RSF and MSF with the spreading trace less than 30 km). In
addition, the model may have a different accuracy when the threshold of spreading trace
in determining the ESF occurrence is changed. The degree of spreading trace in the ESF
occurrence can be related to the strength of v, see [24]. We consider that if the threshold
of spreading trace is changed to be greater (or less) than 30 km, the threshold of v in
determining the post-sunset ESF could be stronger (or weaker) than ~16.1 m/s. As a result,
the accuracy of the model changes because the threshold of v in determining the post-sunset
ESF occurrence is changed. Furthermore, we would like to discuss the accuracy of 0.8 in
our model to predict post-sunset ESF occurrences, and it means that the model could have
an error of 0.2 to predict the post-sunset ESF occurrences. As seen in Figure 5, occurrence
and non-occurrence of post-sunset ESF highly overlap. Non-occurrence of post-sunset
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ESF can be occurred either v less than or greater than v of 16.1 m/s. We found that a few
points of negative v show the occurrence of post-sunset ESF. On the other hand, we found
one data point with stronger v (~40 m/s) showing non-occurrence of post-sunset ESF. The
error of 0.2 in our model reflects that the ESF generation could not be controlled by v alone,
although v is an important controlling factor for ESF generation. Another controlling factor,
such as the presence of large-scale wave structure (LSWS) of plasma density perturbation
in the bottom side equatorial F region, could importantly govern the ESF occurrence [25].
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4. Summary and Future Works

This study implemented a logistic regression (Equation (1)) with link function z
(Equation (2)) containing a linear combination of evening vertical plasma motion (v) to
model the post-sunset ESF occurrence. The parameter v is used as a predictor for nowcasting
post-sunset ESF occurrence. Data on v and post-sunset ESF occurrences were collected in
equinox seasons from the ionosondes in the equatorial zone of Southeast Asia to build the
model. From the training dataset, the formalization of z was done as z = −2.25 + 0.14v,
and this z function is used in the logistic regression (Equation (1)) to determine whether
post-sunset ESF occurred in both the training and testing datasets. From the expression
z, the threshold of v (~16.1 m/s) can be derived to expect whether the post-sunset ESF
occurred. The values of v ≥ ~16.1 m/s result in positive z, whereas v < ~16.1 m/s results in
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negative z. When the value of z is greater than or equal to zero (or the ŷ in Equation (1) is
greater than or equal to 0.5), the occurrence of a post-sunset ESF is expected. Otherwise,
when the z value is less than zero (or the ŷ is less than 0.5), the occurrence of a post-sunset
ESF is not expected. With such criteria, the performance of the z function or the threshold
of v (~16.1 m/s) found in this study has an accuracy of 0.8 and a TSS of 0.6 for predicting
the post-sunset ESF occurrence in both training and testing datasets. The performances of
the z-function are better than that of the persistence technique (an accuracy of 0.6 and a TSS
of 0.3). This study suggested that the z-function is a statistical finding that can be used to
predict the post-sunset ESF occurrence. Here, the z-function found can be implemented in
logistic regression for modeling post-sunset ESF occurrence, and this can be a simple and
robust mathematical model to predict post-sunset ESF occurrence. The model found in this
study can be reliable to predict the post-sunset ESF occurrence in the range of solar flux
F10.7 between 60 and 140 sfu.

The mathematical model of the post-sunset ESF occurrence found in this study requires
real-time observation of v if it is implemented in space weather services. This work must be
complemented by the automatic calculation of v from the ionosonde. Future work needs to
develop an automatic scaling of h′ from the ionosonde in the evening sector of the equatorial
region. In particular, the automatic scaling of h′ at ~3 MHz for the three ionosondes stations
used in this study is required to support the implementation of the model for nowcasting
the post-sunset ESF in the space weather services in Southeast Asia. In addition, the
mathematical model found in this study should be validated using data observation in
solstice months to determine the consistency and accuracy of the model performance.
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