Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = epithelium derived cytokine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4087 KiB  
Article
Intranasal Administration of Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Has Therapeutic Effect in Experimental Autoimmune Encephalomyelitis
by Barbara Rossi, Federica Virla, Gabriele Angelini, Ilaria Scambi, Alessandro Bani, Giulia Marostica, Mauro Caprioli, Daniela Anni, Roberto Furlan, Pasquina Marzola, Raffaella Mariotti, Gabriela Constantin, Bruno Bonetti and Ermanna Turano
Cells 2025, 14(15), 1172; https://doi.org/10.3390/cells14151172 - 30 Jul 2025
Viewed by 411
Abstract
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of [...] Read more.
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have clearly shown a therapeutic effect of ASCs. However, controversial data on their efficacy were obtained from I- and II-phase clinical trials in MS patients, highlighting standardization issues and limited data on long-term safety. In this context, ASC-derived extracellular vesicles from (ASC-EVs) represent a safer, more reproducible alternative for EAE and MS treatment. Moreover, their physical characteristics lend themselves to a non-invasive, efficient, and easy handling of intranasal delivery. Using an in vitro setting, we first verified ASC-EVs’ ability to cross the human nasal epithelium under an inflammatory milieu. Magnetic resonance corroborated these data in vivo in intranasally treated MOG35-55-induced EAE mice, showing a preferential accumulation of ASC-EVs in brain-inflamed lesions compared to a stochastic distribution in healthy control mice. Moreover, intranasal treatment of ASC-EVs at the EAE onset led to a long-term therapeutic effect using two different experimental protocols. A marked reduction in T cell infiltration, demyelination, axonal damage, and cytokine production were correlated to EAE amelioration in ASC-EV-treated mice compared to control mice, highlighting the immunomodulatory and neuroprotective roles exerted by ASC-EVs during EAE progression. Overall, our study paves the way for promising clinical applications of self-administered ASC-EV intranasal treatment in CNS disorders, including MS. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

18 pages, 2540 KiB  
Article
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
by Angélica L. R. Pavanelli, Maria Eduarda S. Lopes, André T. Reis, Flávio A. Carvalho, Sven Zalewski, André G. dos Santos, Joni A. Cirelli, James Deschner and Andressa V. B. Nogueira
Antioxidants 2025, 14(8), 901; https://doi.org/10.3390/antiox14080901 - 23 Jul 2025
Viewed by 339
Abstract
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed [...] Read more.
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed to investigate the effects of C. sylvestris on the synthesis of pro- and anti-inflammatory, proteolytic, and antioxidant molecules and on wound healing in epithelial cells. A human telomerase-immortalized gingival keratinocyte cell line (TIGKs) was used, and cells were exposed to Escherichia coli lipopolysaccharide (LPS) in the presence and absence of C. sylvestris extract, its diterpene-concentrated fraction, and its clerodane diterpene casearin J for 24 h and 48 h. Gene expression and protein synthesis were analyzed by RT-qPCR and ELISA, respectively. Nitric oxide (NO) and NF-κB activation were analyzed by Griess reaction and immunofluorescence, respectively. Additionally, cell viability was evaluated by alamarBlue® assay, and an automated scratch assay was used for wound healing. LPS significantly increased the expression of cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-17), proteases (MMP-1 and MMP-13), iNOS as well as NO synthesis, and triggered NF-κB nuclear translocation. It also reduced IL-4 expression, cell viability, and cellular wound repopulation. Treatment with C. sylvestris derivatives significantly abrogated all aforementioned LPS-induced effects by 80–100%. Furthermore, even at higher concentrations, C. sylvestris did not affect cell viability, thus proving the safety of its derivatives. C. sylvestris exerts anti-inflammatory, antiproteolytic, and antioxidant effects on gingival keratinocytes, highlighting its potential as a valuable adjunct in the prevention and treatment of periodontal diseases. Full article
Show Figures

Figure 1

27 pages, 8834 KiB  
Article
Genetic and Immunological Profiling of Recent SARS-CoV-2 Omicron Subvariants: Insights into Immune Evasion and Infectivity in Monoinfections and Coinfections
by Nadine Alvarez, Irene Gonzalez-Jimenez, Risha Rasheed, Kira Goldgirsh, Steven Park and David S. Perlin
Viruses 2025, 17(7), 918; https://doi.org/10.3390/v17070918 - 27 Jun 2025
Viewed by 570
Abstract
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and [...] Read more.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact on public health continue to demand attention as the virus continues to evolve, demonstrating a remarkable ability to adapt to diverse selective pressures including immune responses, therapeutic treatments, and prophylactic interventions. The SARS-CoV-2 variant landscape remains dynamic, with new subvariants continuously emerging, many harboring spike protein mutations linked to immune evasion. In this study, we characterized a panel of live SARS-CoV-2 strains, including those key subvariants implicated in recent waves of infection. Our findings revealed a significant variability in mutation patterns in the spike protein across the strains analyzed. Commercial antibodies and human convalescent plasma (HCoP) samples from unvaccinated donors were ineffective in neutralizing the most recent Omicron subvariants, particularly after the emergence of JN.1 subvariant. Using human airway epithelial cells derived from healthy bronchiolar tissue (hBAEC), we established both monoinfections and coinfections involving SARS-CoV-2, Influenza A virus H1N1 (IFAV_H1N1) and Respiratory Syncytial Virus (RSV). Assessments were conducted to compare viral infectivity and the production and release of immune mediators in the apical and basolateral compartments. Notably, Omicron KP.3.1.1 subvariant induced a more pronounced cytopathic effect in hBAEC compared to its parental strain JN.1 and even surpassed the impact observed with the ancestral wild-type virus (WA1/2020, Washington strain). Furthermore, the coinfection of KP.3.1.1 subvariant with IFAV_H1N1 or RSV did not attenuate SARS-CoV-2 infectivity; instead, it significantly exacerbated the pathogenic synergy in the lung epithelium. Our study demonstrated that pro-inflammatory cytokines IL-6, IFN-β, and IL-10 were upregulated in hBAEC following SARS-CoV-2 monoinfection with recent Omicron subvariants as well as during coinfection with IFAV_H1N1 and RSV. Taken together, our findings offer new insights into the immune evasion strategies and pathogenic potential of evolving SARS-CoV-2 Omicron subvariants, as well as their interactions with other respiratory viruses, carrying important implications for therapeutic development and public health preparedness. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
Show Figures

Graphical abstract

22 pages, 991 KiB  
Review
The Role of Epithelial-Derived Extracellular Vesicles in Allergic Sensitisation: A Systematic Review
by William Browne, Georgina Hopkins, Stella Cochrane, Victoria James, David Onion and Lucy C. Fairclough
Int. J. Mol. Sci. 2025, 26(12), 5791; https://doi.org/10.3390/ijms26125791 - 17 Jun 2025
Viewed by 427
Abstract
The aim of this systematic review was to evaluate the current evidence for the involvement of epithelial-derived extracellular vesicles (EVs) in Immunoglobulin E (IgE)-mediated allergic sensitisation. Original clinical and research studies specifically examining the effect of epithelial-derived EVs in IgE-mediated allergic sensitisation were [...] Read more.
The aim of this systematic review was to evaluate the current evidence for the involvement of epithelial-derived extracellular vesicles (EVs) in Immunoglobulin E (IgE)-mediated allergic sensitisation. Original clinical and research studies specifically examining the effect of epithelial-derived EVs in IgE-mediated allergic sensitisation were included. Non-IgE mediated allergies, abstracts and review articles were excluded. A total of 18 publications were identified from three databases (EMBASE, Web of Science and PubMed) that indicate epithelial-derived EVs have the potential to promote tolerance or allergic sensitisation. For example, epithelial-derived EVs have the potential to promote IgE-mediated allergic sensitisation by delivering mRNAs that promote T helper 2 (Th2) polarisation and cytokine secretion, or promote tolerance through the induction of T regulatory (Treg) cells. The results also indicate that the potential role of epithelial-derived EVs in IgE-mediated allergic sensitisation may be dependent on the barrier, with all publications related to intestinal epithelium driving tolerance, but publications on nasal and bronchial/alveolar epithelia gaving mixed effects. No publications were found on cutaneous epithelia. Taken together, the literature suggests that epithelial-derived EVs play a key role in influencing IgE-mediated allergic sensitisation. Further research examining all epithelial barriers, using both robust human in vitro models that give more biologically relevant information, as well as clinical studies, are required to further characterise the role of epithelial-derived EVs in IgE-mediated allergic sensitisation. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma: 3rd Edition)
Show Figures

Figure 1

14 pages, 1262 KiB  
Article
Acute Exposure to Aerosolized Nanoplastics Modulates Redox-Linked Immune Responses in Human Airway Epithelium
by Joshua D. Breidenbach, Benjamin W. French, Upasana Shrestha, Zaneh K. Adya, R. Mark Wooten, Andrew M. Fribley, Deepak Malhotra, Steven T. Haller and David J. Kennedy
Antioxidants 2025, 14(4), 424; https://doi.org/10.3390/antiox14040424 - 31 Mar 2025
Viewed by 1069
Abstract
Micro- and nanoplastics (MPs and NPs) are pervasive environmental pollutants detected in aquatic ecosystems, with emerging evidence suggesting their presence in airborne particles generated by water body motion. Inhalation exposure to airborne MPs and NPs remains understudied despite documented links between occupational exposure [...] Read more.
Micro- and nanoplastics (MPs and NPs) are pervasive environmental pollutants detected in aquatic ecosystems, with emerging evidence suggesting their presence in airborne particles generated by water body motion. Inhalation exposure to airborne MPs and NPs remains understudied despite documented links between occupational exposure to these particles and adverse respiratory outcomes, including airway inflammation, oxidative stress, and chronic respiratory diseases. This study explored the effects of acute NP exposure on a fully differentiated 3D human airway epithelial model derived from 14 healthy donors. Airway epithelium was exposed to aerosolized 50 nm polystyrene NPs at concentrations ranging from 2.5 to 2500 µg/mL for three minutes per day over three days. Functional assays revealed no significant alterations in tissue integrity, cell survival, mucociliary clearance, or cilia beat frequency, suggesting intact epithelial function post-exposure. However, cytokine and chemokine profiling identified a significant five-fold increase in CCL3 (MIP-1α), a neutrophilic chemoattractant, in NP-exposed samples compared to controls. This was corroborated by increased neutrophil chemotaxis in response to conditioned media from NP-exposed tissues, indicating a pro-inflammatory neutrophilic response. Conversely, levels of interleukins (IL-21, IL-2, IL-15), CXCL10, and TGF-β were significantly reduced, suggesting immunomodulatory effects that may impair adaptive immune responses and tissue repair mechanisms. These findings demonstrate that short-term exposure to NP-containing aerosols induces a distinct pro-inflammatory response in airway epithelium, characterized by enhanced neutrophil recruitment and reduced secretion of key immune modulators. These findings underscore the potential for aerosolized NPs to induce oxidative and inflammatory stress, raising concerns about their long-term impact on respiratory health and redox regulation. Full article
Show Figures

Figure 1

15 pages, 857 KiB  
Review
Innate Immunity in Cystic Fibrosis: Varied Effects of CFTR Modulator Therapy on Cell-to-Cell Communication
by Jennifer Hynes, Clifford C. Taggart, Rabindra Tirouvanziam and Judith A. Coppinger
Int. J. Mol. Sci. 2025, 26(6), 2636; https://doi.org/10.3390/ijms26062636 - 14 Mar 2025
Cited by 1 | Viewed by 1165
Abstract
Cystic Fibrosis (CF) is a life-shortening, multi-organ disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Prominent clinical features of CF take place in the lung, hallmarked by cycles of bacterial infection and a dysfunctional inflammatory airway response, leading to [...] Read more.
Cystic Fibrosis (CF) is a life-shortening, multi-organ disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Prominent clinical features of CF take place in the lung, hallmarked by cycles of bacterial infection and a dysfunctional inflammatory airway response, leading to eventual respiratory failure. Bidirectional crosstalk between epithelial cells, leukocytes (e.g., neutrophils, macrophages) and bacteria via release of intra-cellular mediators is key to driving inflammation in CF airways. In recent years, a highly effective combination of therapeutics targeting the CFTR defect have revolutionized treatment in CF. Despite these advancements and due to the complexity of the immune response in the CF airway, the full impact of highly effective modulator therapy (HEMT) on airway inflammation is not fully determined. This review provides the evidence to date on crosstalk mechanisms between host epithelium, leukocytes and bacteria and examines the effect of HEMT on both soluble and membrane-derived immune mediators in clinical samples. The varied effects of HEMT on expression of key proteases, cytokines and extracellular vesicles (EVs) in relation to clinical parameters is assessed. Advances in treatment with HEMT have shown potential in dampening the chronic inflammatory response in CF airways. However, to fully quell inflammation and maximize lung tissue resilience, further interventions may be necessary. Exploring the effects of HEMT on key immune mediators paves the way for identifying new anti-inflammatory approaches targeting host immune cell interactions, such as EV-directed lung therapies. Full article
(This article belongs to the Special Issue New Research Insights in Cystic Fibrosis and CFTR-Related Diseases)
Show Figures

Figure 1

17 pages, 3522 KiB  
Article
Differential Responses of Pediatric and Adult Primary Epithelial Cells to Human Metapneumovirus and Respiratory Syncytial Virus Infection
by Pius I. Babawale and Antonieta Guerrero-Plata
Viruses 2025, 17(3), 380; https://doi.org/10.3390/v17030380 - 6 Mar 2025
Cited by 3 | Viewed by 1384
Abstract
Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are pneumoviruses causing lower respiratory tract infections, primarily in infants and children rather than in healthy adults. Human bronchial epithelial cells serve as a viral replication target and source of the innate immune response to [...] Read more.
Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are pneumoviruses causing lower respiratory tract infections, primarily in infants and children rather than in healthy adults. Human bronchial epithelial cells serve as a viral replication target and source of the innate immune response to these viruses. To better understand the immune responses induced by RSV and HMPV in the pediatric airway epithelium, we comparatively studied pediatric and adult epithelial responses. We used normal human bronchial epithelial (NHBE) cells cultured in an air–liquid interface culture system (ALI), which helps to mimic the architecture of the human lower respiratory tract epithelium. Our results demonstrate differential viral replication patterns and reduced interferons; and inflammatory cytokines’ expression in pediatric cells compared to adult cells. However, pediatric epithelial cells expressed an increased mucus response and induced a stronger pro-inflammatory response in monocyte-derived dendritic cells. These findings reveal age-dependent immune epithelial responses that may contribute to more severe infections by HMPV and RSV. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

36 pages, 802 KiB  
Review
Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition
by Katarzyna Napiórkowska-Baran, Paweł Treichel, Anita Dardzińska, Agata Majcherczak, Anastazja Pilichowicz, Maciej Szota, Bartłomiej Szymczak, Ewa Alska, Justyna Przybyszewska and Zbigniew Bartuzi
Curr. Issues Mol. Biol. 2025, 47(2), 89; https://doi.org/10.3390/cimb47020089 - 31 Jan 2025
Cited by 1 | Viewed by 1720
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other [...] Read more.
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

12 pages, 4352 KiB  
Article
The Development of a Human Respiratory Mucosa-on-a-Chip Using Human Turbinate-Derived Mesenchymal Stem Cells
by Do Hyun Kim, Sang Hi Park, Mi-Yeon Kwon, Chae-Yoon Lim, Sun Hwa Park, David W. Jang, Se Hwan Hwang and Sung Won Kim
Medicina 2024, 60(11), 1741; https://doi.org/10.3390/medicina60111741 - 24 Oct 2024
Cited by 1 | Viewed by 1858
Abstract
Background and Objectives: This study aimed to investigate the influence of a respiratory mucosa-on-a-chip on the respiratory epithelial differentiation potential of human nasal inferior turbinate-derived stem cells (hNTSCs). Materials and Methods: After isolating hNTSCs from five patients, we divided the samples [...] Read more.
Background and Objectives: This study aimed to investigate the influence of a respiratory mucosa-on-a-chip on the respiratory epithelial differentiation potential of human nasal inferior turbinate-derived stem cells (hNTSCs). Materials and Methods: After isolating hNTSCs from five patients, we divided the samples from the patients into the study group with a mucosa-on-a-chip and the control group with conventional differentiation (using conventional differentiation methods). The respiratory epithelial differentiation potential of hNTSCs was analyzed by histology and gene expression. Results: In the quantitative analysis, PCR showed that the hNTSCs expressed the cytokeratin genes (KRT13, 14), transformation-related protein P63 (TP63), and vimentin of basal cells in the airway epithelium at higher levels, but cytokeratin genes (KRT6) at lower levels, in the mucosa-on-a-chip than in conventional differentiation. In the cytokine analysis (GM-CSF, IFNr, IL-1a, IL-1b, IL-4, IL-5, IL-10, IL-12(p70), IL-13, IL-17A, IL-17E/IL-25, RANTES, TNFa, IL-6, and IL-8), the expressions of IFNr, IL-13, RANTES, TNFa, IL-6, and IL-8 were significantly upregulated in the mucosa-on-a-chip than in conventional differentiation. Conclusions: We conclude that the human respiratory mucosa-on-a-chip using human turbinate-derived mesenchymal stem cells allows the respiratory differentiation of hNTSCs and shows the difference in gene and cytokine expression, which could serve as an alternative to conventional differentiation for the production of functionally competent hNTSCs for future clinical applications. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

15 pages, 4199 KiB  
Article
Exposure of Colon-Derived Epithelial Monolayers to Fecal Luminal Factors from Patients with Colon Cancer and Ulcerative Colitis Results in Distinct Gene Expression Patterns
by Maria K. Magnusson, Anna Bas Forsberg, Alexandra Verveda, Maria Sapnara, Julie Lorent, Otto Savolainen, Yvonne Wettergren, Hans Strid, Magnus Simrén and Lena Öhman
Int. J. Mol. Sci. 2024, 25(18), 9886; https://doi.org/10.3390/ijms25189886 - 13 Sep 2024
Viewed by 1607
Abstract
Microbiota and luminal components may affect epithelial integrity and thus participate in the pathophysiology of colon cancer (CC) and inflammatory bowel disease (IBD). Therefore, we aimed to determine the effects of fecal luminal factors derived from patients with CC and ulcerative colitis (UC) [...] Read more.
Microbiota and luminal components may affect epithelial integrity and thus participate in the pathophysiology of colon cancer (CC) and inflammatory bowel disease (IBD). Therefore, we aimed to determine the effects of fecal luminal factors derived from patients with CC and ulcerative colitis (UC) on the colonic epithelium using a standardized colon-derived two-dimensional epithelial monolayer. The complex primary human stem cell-derived intestinal epithelium model, termed RepliGut® Planar, was expanded and passaged in a two-dimensional culture which underwent stimulation for 48 h with fecal supernatants (FS) from CC patients (n = 6), UC patients with active disease (n = 6), and healthy subjects (HS) (n = 6). mRNA sequencing of monolayers was performed and cytokine secretion in the basolateral cell culture compartment was measured. The addition of fecal supernatants did not impair the integrity of the colon-derived epithelial monolayer. However, monolayers stimulated with fecal supernatants from CC patients and UC patients presented distinct gene expression patterns. Comparing UC vs. CC, 29 genes were downregulated and 33 genes were upregulated, for CC vs. HS, 17 genes were downregulated and five genes were upregulated, and for UC vs. HS, three genes were downregulated and one gene was upregulated. The addition of FS increased secretion of IL8 with no difference between the study groups. Fecal luminal factors from CC patients and UC patients induce distinct colonic epithelial gene expression patterns, potentially reflecting the disease pathophysiology. The culture of colonic epithelial monolayers with fecal supernatants derived from patients may facilitate the exploration of IBD- and CC-related intestinal microenvironmental and barrier interactions. Full article
Show Figures

Figure 1

12 pages, 2475 KiB  
Article
Herpes Simplex Virus Type 1 Infection of Human Periodontal Ligament
by Morgane Ortis, Marlène Chevalier, Charles-Vivien Olivieri, Sébastien Vitale, Adrien Paul, Lilit Tonoyan, Alain Doglio and Robert Marsault
Int. J. Mol. Sci. 2024, 25(15), 8466; https://doi.org/10.3390/ijms25158466 - 2 Aug 2024
Cited by 1 | Viewed by 1761
Abstract
The periodontal ligament (PDL) is a complex connective tissue that connects the tooth root to the dental alveolar bone and plays crucial mechanical roles. PDL also exhibits regenerative roles and regulatory functions to maintain periodontium integrity and homeostasis. While PDL exposure to oral [...] Read more.
The periodontal ligament (PDL) is a complex connective tissue that connects the tooth root to the dental alveolar bone and plays crucial mechanical roles. PDL also exhibits regenerative roles and regulatory functions to maintain periodontium integrity and homeostasis. While PDL exposure to oral microbial pathogens is common, virtually nothing is known regarding viral infections of PDL. In particular, human herpes simplex virus type 1 (HSV-1) persistently infects the oral cavity through infections of the oral epithelium, connective tissue and neurons. While the oral spread of HSV-1 is generally asymptomatic, this virus has also been implicated in various oral pathologies. In this study, using a primary cell model derived from PDL (PDL cells), and whole surgical fragments of PDL, we provide evidence supporting the efficient infection of PDL by HSV-1 and the promotion of cytopathic effects. Infection of PDL by HSV-1 was also associated with an acute innate inflammatory response, as illustrated by the production of antiviral interferons and pro-inflammatory cytokines. Furthermore, this inflammatory response to HSV-1 was exacerbated in the presence of bacterial-derived products, such as peptidoglycans. This work therefore highlights the ability of HSV-1 to infect mesenchymal cells from PDL, suggesting that PDL may serve as a viral reservoir for the periodontal spread of HSV-1. Moreover, this raises questions about HSV-1 oral pathogenesis, as HSV-1-associated cytopathic and inflammatory effects may contribute to profound alterations of PDL integrity and functioning. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 2731 KiB  
Article
Krüppel-like Factor-4-Mediated Macrophage Polarization and Phenotypic Transitions Drive Intestinal Fibrosis in THP-1 Monocyte Models In Vitro
by Takuya Kanno, Takahito Katano, Takaya Shimura, Mamoru Tanaka, Hirotada Nishie, Shigeki Fukusada, Keiji Ozeki, Isamu Ogawa, Takahiro Iwao, Tamihide Matsunaga and Hiromi Kataoka
Medicina 2024, 60(5), 713; https://doi.org/10.3390/medicina60050713 - 26 Apr 2024
Cited by 1 | Viewed by 2322
Abstract
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well [...] Read more.
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well as the interplay of KLF4 with various gut components. Materials and Methods: This study examined macrophage subtypes, their KLF4 expression, and the effects of KLF4 knockdown on macrophage polarization and cytokine expression using THP-1 monocyte models. Co-culture experiments with stromal myofibroblasts and a conditioned medium from macrophage subtype cultures were conducted to study the role of these cells in intestinal fibrosis. Human-induced pluripotent stem cell-derived small intestinal organoids were used to confirm inflammatory and fibrotic responses in the human small intestinal epithelium. Results: Each macrophage subtype exhibited distinct phenotypes and KLF4 expression. Knockdown of KLF4 induced inflammatory cytokine expression in M0, M2a, and M2c cells. M2b exerted anti-fibrotic effects via interleukin (IL)-10. M0 and M2b cells showed a high migratory capacity toward activated stromal myofibroblasts. M0 cells interacting with activated stromal myofibroblasts transformed into inflammatory macrophages, thereby increasing pro-inflammatory cytokine expression. The expression of IL-36α, linked to fibrosis, was upregulated. Conclusions: This study elucidated the role of KLF4 in macrophage polarization and the intricate interactions between macrophages, stromal myofibroblasts, and cytokines in experimental in vitro models of intestinal fibrosis. The obtained results may suggest the mechanism of fibrosis formation in clinical IBD. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

12 pages, 9661 KiB  
Review
Multifactorial Causes and Consequences of TLSP Production, Function, and Release in the Asthmatic Airway
by Danica L. Brister, Hafsa Omer, Christiane E. Whetstone, Maral Ranjbar and Gail M. Gauvreau
Biomolecules 2024, 14(4), 401; https://doi.org/10.3390/biom14040401 - 26 Mar 2024
Cited by 6 | Viewed by 2756
Abstract
Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate [...] Read more.
Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate to the inhaled trigger can exacerbate airway diseases such as asthma. Allergens inhaled into previously sensitized airways are known to drive a T2 inflammatory response through the polarization of T cells by dendritic cells mediated by TSLP. Harmful compounds found within air pollution, microbes, and viruses are also triggers causing airway epithelial cell release of TSLP in asthmatic airways. The release of TSLP leads to the development of inflammation which, when unchecked, can result in asthma exacerbations. Genetic and inheritable factors can contribute to the variable expression of TSLP and the risk and severity of asthma. This paper will review the various triggers and consequences of TSLP release in asthmatic airways. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Airway Diseases)
Show Figures

Figure 1

18 pages, 2383 KiB  
Article
Validating Enteroid-Derived Monolayers from Murine Gut Organoids for Toxicological Testing of Inorganic Particles: Proof-of-Concept with Food-Grade Titanium Dioxide
by Yann Malaisé, Eva Casale, Aurélie Pettes-Duler, Christel Cartier, Eric Gaultier, Natalia Martins Breyner, Eric Houdeau, Lauris Evariste and Bruno Lamas
Int. J. Mol. Sci. 2024, 25(5), 2635; https://doi.org/10.3390/ijms25052635 - 23 Feb 2024
Cited by 3 | Viewed by 1710
Abstract
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro [...] Read more.
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro approach should enable a rapid and reliable assessment of the effects of ingested chemicals on the gut. However, this remains to be validated for inorganic substances. In our study, a transcriptomic analysis and immunofluorescence staining were performed to compare the effects of food-grade TiO2 (fg-TiO2) on enteroid-derived monolayers (EDMs) from murine intestinal organoids to the known impacts of TiO2 on intestinal epithelium. After their ability to respond to a pro-inflammatory cytokine cocktail was validated, EDMs were exposed to 0, 0.1, 1, or 10 µg fg-TiO2/mL for 24 h. A dose-related increase of the muc2, vilin 1, and chromogranin A gene markers of cell differentiation was observed. In addition, fg-TiO2 induced apoptosis and dose-dependent genotoxicity, while a decreased expression of genes encoding for antimicrobial peptides, and of genes related to tight junction function, was observed. These results validated the use of EDMs as a reliable model for the toxicity testing of foodborne NPs likely to affect the intestinal barrier. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3864 KiB  
Review
Fibrous Remodeling in Eosinophilic Esophagitis: Clinical Facts and Pathophysiological Uncertainties
by Laura Arias-González, Leticia Rodríguez-Alcolado, Emilio J. Laserna-Mendieta, Pilar Navarro, Alfredo J. Lucendo and Elena Grueso-Navarro
Int. J. Mol. Sci. 2024, 25(2), 927; https://doi.org/10.3390/ijms25020927 - 11 Jan 2024
Cited by 6 | Viewed by 3644
Abstract
Eosinophilic esophagitis (EoE) is a chronic, progressive, type 2 inflammatory disease with increasing global prevalence. An eosinophil-predominant inflammation that permeates the epithelium and deeper esophageal layers characterizes the disease. Several cytokines, mainly derived from inflammatory T-helper 2 (Th2) cells and epithelial cells, are [...] Read more.
Eosinophilic esophagitis (EoE) is a chronic, progressive, type 2 inflammatory disease with increasing global prevalence. An eosinophil-predominant inflammation that permeates the epithelium and deeper esophageal layers characterizes the disease. Several cytokines, mainly derived from inflammatory T-helper 2 (Th2) cells and epithelial cells, are involved in perpetuating inflammatory responses by increasing surface permeability and promoting tissue remodeling characterized by epithelial–mesenchymal transition (EMT) and collagen deposition. This leads to esophageal strictures and narrow caliber esophagi, which are proportional a patient’s age and untreated disease length. Pathophysiological mechanisms leading to EoE have been described in recent years, and transforming growth factor beta (TGF)-beta have been involved in fibrotic phenomena in EoE. However, evidence on the dependence of these phenomena on TGF-beta is scarce and contradictory. This review provides state-of-the art knowledge on intimate mechanisms of esophageal fibrosis in EoE and its clinical consequences. Full article
Show Figures

Figure 1

Back to TopTop