Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = enzymatic conversion of lactose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2577 KiB  
Article
Expression and Characterization of L-Arabinose Isomerase and Its Enzymatic Recycling of the Expired Milk
by Zhou Chen, Yuhan Yan, Ziang Wu, Yanyin Song and Jiangqi Xu
Foods 2025, 14(11), 1873; https://doi.org/10.3390/foods14111873 - 25 May 2025
Cited by 2 | Viewed by 594
Abstract
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. [...] Read more.
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. BmAIase12 exhibited a specific activity of 10.7 U/mg and showed optimal performance at 50 °C and pH 7.0. Furthermore, it exhibited higher activity than most other L-arabinose isomerases. It converted D-galactose into D-tagatose with a high conversion ratio of 53.3% after 48 h at 50 °C. The conversion efficiency of expired milk to D-tagatose was recorded at 40.62%, resulting in a maximum tagatose yield of 1.625 g/L. This was accomplished through the incorporation of β-galactosidase (120 U/mL) and Saccharomyces cerevisiae (30 mg/mL) to hydrolyze lactose and metabolize glucose, followed by the addition of 3 U/mL of BmAIase12. Ultimately, following purification, the purity of tagatose was determined to be 98%, and the final yield was 29.8%. These results suggest that BmAIase12 may serve as a promising enzyme for D-tagatose production due to its high conversion yield. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

20 pages, 3550 KiB  
Article
Immobilisation of Cellobiose Dehydrogenase and Laccase on Chitosan Particles as a Multi-Enzymatic System for the Synthesis of Lactobionic Acid
by Justyna Sulej, Wiktoria Piątek-Gołda, Marcin Grąz, Katarzyna Szałapata, Piotr Waśko, Ewa Janik-Zabrotowicz and Monika Osińska-Jaroszuk
J. Funct. Biomater. 2023, 14(7), 383; https://doi.org/10.3390/jfb14070383 - 21 Jul 2023
Cited by 8 | Viewed by 2277
Abstract
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the [...] Read more.
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications. Full article
Show Figures

Figure 1

12 pages, 467 KiB  
Article
Inhibition of Galactooligosaccharide (GOS) Degradation in High-Heat-Treated Goat’s Milk as a Raw Material for Functional Dairy Products
by Dorota Cais-Sokolińska, Łukasz K. Kaczyński and Paulina Bielska
Appl. Sci. 2022, 12(22), 11639; https://doi.org/10.3390/app122211639 - 16 Nov 2022
Viewed by 1912
Abstract
The aim of this study was to analyze the inhibition of galactooligosaccharide (GOS) degradation in heat-treated milk with permeate obtained by microfiltration and concentrated by ultrafiltration. An attempt was made to obtain raw material with a designed composition and stability in terms of [...] Read more.
The aim of this study was to analyze the inhibition of galactooligosaccharide (GOS) degradation in heat-treated milk with permeate obtained by microfiltration and concentrated by ultrafiltration. An attempt was made to obtain raw material with a designed composition and stability in terms of GOS content for the production of fermented milk beverages. This study is important due to the versatile possibility of using milk and permeate with GOS in further processing and food production. During the heat treatment of goat’s milk, GOS degradation was approx. 16%. However, no changes in GOS content were observed in goat’s milk with permeate after 30 and 60 min of heating between 72 and 92 °C. Therefore, goat’s milk with permeate in terms of GOS content was stable for up to 60 min, regardless of the temperature. The addition of permeate effectively inhibits GOS degradation in milk. It has been shown that the produced raw material with a stable GOS content during heating can be further used for the production of kefir. Full article
Show Figures

Graphical abstract

14 pages, 1999 KiB  
Article
Membrane Bioreactor for Simultaneous Synthesis and Fractionation of Oligosaccharides
by Vanessa A. Botelho, Marília Mateus, José C. C. Petrus and Maria Norberta de Pinho
Membranes 2022, 12(2), 171; https://doi.org/10.3390/membranes12020171 - 31 Jan 2022
Cited by 11 | Viewed by 3249
Abstract
Galacto-oligosaccharides (GOS) are prebiotic sugars obtained enzymatically from lactose and used in food industry due to their nutritional advantages or technological properties. Selective mass transport and enzymatic synthesis were integrated and followed using a membrane bioreactor, so that selective removal of reaction products [...] Read more.
Galacto-oligosaccharides (GOS) are prebiotic sugars obtained enzymatically from lactose and used in food industry due to their nutritional advantages or technological properties. Selective mass transport and enzymatic synthesis were integrated and followed using a membrane bioreactor, so that selective removal of reaction products may lead to increased conversions of product-inhibited or thermodynamically unfavorable reactions. GOS syntheses were conducted on lactose solutions (150 g·L−1) at 40 °C and 10 Uβ-galactosidase.mL−1, and sugar fractionation was performed by cellulose acetate membranes. Effects of pressure (20; 24 bar) and crossflow velocity (1.7; 2.0; 2.4 m·s−1) on bioreactor performance were studied. Simultaneous GOS synthesis and production fractionation increased GOS production by 60%, in comparison to the same reactions promoted without permeation. The presence of a high-molecular-weight solute, the enzyme, in association with high total sugar concentration, leads to complex selective mass transfer characteristics. Without the enzyme, the membrane presented tight ultrafiltration characteristics, permeating mono- and disaccharides and retaining just 25% of trisaccharides. During simultaneous synthesis and fractionation, GOS-3 were totally retained, and GOS-2 and monosaccharides were retained at 80% and 40%, respectively. GOS synthesis—hydrolysis evolution was strongly dependent on crossflow velocity at 20 bar but became fairly independent at 24 bar. Full article
(This article belongs to the Special Issue Bioprocessing with Membranes: Filtration and Chromatography)
Show Figures

Figure 1

10 pages, 2180 KiB  
Article
Bioconversion of Lactose into Glucose–Galactose Syrup by Two-Stage Enzymatic Hydrolysis
by Kristine Majore and Inga Ciprovica
Foods 2022, 11(3), 400; https://doi.org/10.3390/foods11030400 - 30 Jan 2022
Cited by 8 | Viewed by 4847
Abstract
Fermentation technology enables the better use of resources and the conversion of dairy waste into valuable food products. The aim of this study is to evaluate the conversion rate of glucose into fructose by immobilised glucose isomerase (GI) in sweet and acid whey [...] Read more.
Fermentation technology enables the better use of resources and the conversion of dairy waste into valuable food products. The aim of this study is to evaluate the conversion rate of glucose into fructose by immobilised glucose isomerase (GI) in sweet and acid whey permeates for glucose–galactose syrup production. The experiments demonstrated that the highest concentration of glucose and galacto-oligosaccharides (GOSs) in sweet and acid whey permeates was reached by GODO-YNL2 β-galactosidase, 32 ± 2% and 28 ± 1%, respectively. After glucose isomerisation, the highest fructose yield was 23 ± 0.3% and 13 ± 0.4% in sweet and acid whey permeates, where Ha-Lactase 5200 β-galactosidase was used for lactose hydrolysis in sweet and acid whey permeates. Finally, the results of this study highlight the potential for two-stage enzymatic hydrolysis to increase the sweetness of glucose–galactose syrup made from sweet and acid whey permeates. Full article
(This article belongs to the Special Issue Novel and Green Processing Technology Applied in Dairy Products)
Show Figures

Figure 1

16 pages, 2865 KiB  
Article
Continuous Production of Galacto-Oligosaccharides by an Enzyme Membrane Reactor Utilizing Free Enzymes
by Teng Cao, Melinda Pázmándi, Ildikó Galambos and Zoltán Kovács
Membranes 2020, 10(9), 203; https://doi.org/10.3390/membranes10090203 - 27 Aug 2020
Cited by 18 | Viewed by 4988
Abstract
Galacto-oligosaccharides (GOS) are prebiotic compounds widely used for their health-promoting effects. Conventionally, GOS is produced by the enzymatic conversion of lactose in stirred tank reactors (STR). The high operational costs associated with enzyme inactivation and removal might be reduced by the application of [...] Read more.
Galacto-oligosaccharides (GOS) are prebiotic compounds widely used for their health-promoting effects. Conventionally, GOS is produced by the enzymatic conversion of lactose in stirred tank reactors (STR). The high operational costs associated with enzyme inactivation and removal might be reduced by the application of enzyme membrane reactors (EMR). In this study, we aimed to assess the potential of continuous GOS production by EMR using soluble Biolacta N5, a Bacillus circulans-derived commercial enzyme preparation. The steady-state performance of the EMR equipped with an ultrafiltration module was investigated as function of residence time (1.1–2.8 h) and enzyme load (17–190 U·g−1) under fixed operational settings of temperature (50 °C), pH (6.0), lactose feed concentration (300 g·kg−1), and recirculation flow-rate (0.18 m3·h−1). Results indicate that the yield of oligosaccharides with higher degree of polymerization (DP3-6) in STR (approx. 38% on total carbohydrate basis) exceeds that measured in EMR (ranging from 24% to 33%). However, a stable catalytic performance without a significant deterioration in product quality was observed when operating the EMR for an extended period of time (>120 h). Approx. 1.4 kg of DP3-6 was produced per one gram of crude enzyme preparation over the long-term campaigns, indicating that EMR efficiently recovers enzyme activity. Full article
(This article belongs to the Special Issue Membranes: 10th Anniversary)
Show Figures

Graphical abstract

12 pages, 2026 KiB  
Article
Interfacial Biocatalytic Performance of Nanofiber-Supported β-Galactosidase for Production of Galacto-Oligosaccharides
by Mailin Misson, Bo Jin, Sheng Dai and Hu Zhang
Catalysts 2020, 10(1), 81; https://doi.org/10.3390/catal10010081 - 6 Jan 2020
Cited by 11 | Viewed by 3171
Abstract
Molecular distribution, structural conformation and catalytic activity at the interface between enzyme and its immobilising support are vital in the enzymatic reactions for producing bioproducts. In this study, a nanobiocatalyst assembly, β-galactosidase immobilized on chemically modified electrospun polystyrene nanofibers (PSNF), was synthesized for [...] Read more.
Molecular distribution, structural conformation and catalytic activity at the interface between enzyme and its immobilising support are vital in the enzymatic reactions for producing bioproducts. In this study, a nanobiocatalyst assembly, β-galactosidase immobilized on chemically modified electrospun polystyrene nanofibers (PSNF), was synthesized for converting lactose into galacto-oligosaccharides (GOS). Characterization results using scanning electron microscopy (SEM) and fluorescence analysis of fluorescein isothiocyanat (FITC) labelled β-galactosidase revealed homogenous enzyme immobilization, thin layer structural conformation and biochemical functionalities of the nanobiocatalyst assembly. The β-galactosidase/PSNF assembly displayed enhanced enzyme catalytic performance at a residence time of around 1 min in a disc-stacked column reactor. A GOS yield of 41% and a lactose conversion of 88% was achieved at the initial lactose concentration of 300 g/L at this residence time. This system provided a controllable contact time of products and substrates on the nanofiber surface and could be used for products which are sensitive to the duration of nanobiocatalysis. Full article
(This article belongs to the Special Issue Application of Immobilized Enzyme as Catalysts in Chemical Synthesis)
Show Figures

Graphical abstract

26 pages, 414 KiB  
Review
Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease
by Eirini Dimidi, Selina Rose Cox, Megan Rossi and Kevin Whelan
Nutrients 2019, 11(8), 1806; https://doi.org/10.3390/nu11081806 - 5 Aug 2019
Cited by 566 | Viewed by 102786
Abstract
Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of [...] Read more.
Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted. Full article
(This article belongs to the Special Issue Food and Diet for Gut Function and Dysfunction)
11 pages, 1613 KiB  
Article
Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples
by Iria Bravo, Mónica Revenga-Parra, Félix Pariente and Encarnación Lorenzo
Sensors 2017, 17(1), 144; https://doi.org/10.3390/s17010144 - 13 Jan 2017
Cited by 40 | Viewed by 8296
Abstract
Lactic acid is a relevant analyte in the food industry, since it affects the flavor, freshness, and storage quality of several products, such as milk and dairy products, juices, or wines. It is the product of lactose or malo-lactic fermentation. In this work, [...] Read more.
Lactic acid is a relevant analyte in the food industry, since it affects the flavor, freshness, and storage quality of several products, such as milk and dairy products, juices, or wines. It is the product of lactose or malo-lactic fermentation. In this work, we developed a lactate biosensor based on the immobilization of lactate oxidase (LOx) onto N,N′-Bis(3,4-dihydroxybenzylidene) -1,2-diaminobenzene Schiff base tetradentate ligand-modified gold nanoparticles (3,4DHS–AuNPs) deposited onto screen-printed carbon electrodes, which exhibit a potent electrocatalytic effect towards hydrogen peroxide oxidation/reduction. 3,4DHS–AuNPs were synthesized within a unique reaction step, in which 3,4DHS acts as reducing/capping/modifier agent for the generation of stable colloidal suspensions of Schiff base ligand–AuNPs assemblies of controlled size. The ligand—in addition to its reduction action—provides a robust coating to gold nanoparticles and a catalytic function. Lactate oxidase (LOx) catalyzes the conversion of l-lactate to pyruvate in the presence of oxygen, producing hydrogen peroxide, which is catalytically oxidized at 3,4DHS–AuNPs modified screen-printed carbon electrodes at +0.2 V. The measured electrocatalytic current is directly proportional to the concentration of peroxide, which is related to the amount of lactate present in the sample. The developed biosensor shows a detection limit of 2.6 μM lactate and a sensitivity of 5.1 ± 0.1 μA·mM−1. The utility of the device has been demonstrated by the determination of the lactate content in different matrixes (white wine, beer, and yogurt). The obtained results compare well to those obtained using a standard enzymatic-spectrophotometric assay kit. Full article
(This article belongs to the Special Issue Recent Advances in Biosensors Based Screen Printed Platforms)
Show Figures

Figure 1

Back to TopTop