Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,605)

Search Parameters:
Keywords = environmentally respectful practices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1743 KB  
Article
Deep Reinforcement Learning Approaches the MILP Optimum of a Multi-Energy Optimization in Energy Communities
by Vinzent Vetter, Philipp Wohlgenannt, Peter Kepplinger and Elias Eder
Energies 2025, 18(17), 4489; https://doi.org/10.3390/en18174489 - 23 Aug 2025
Viewed by 50
Abstract
As energy systems transition toward high shares of variable renewable generation, local energy communities (ECs) are increasingly relevant for enabling demand-side flexibility and self-sufficiency. This shift is particularly evident in the residential sector, where the deployment of photovoltaic (PV) systems is rapidly growing. [...] Read more.
As energy systems transition toward high shares of variable renewable generation, local energy communities (ECs) are increasingly relevant for enabling demand-side flexibility and self-sufficiency. This shift is particularly evident in the residential sector, where the deployment of photovoltaic (PV) systems is rapidly growing. While mixed-integer linear programming (MILP) remains the standard for operational optimization and demand response in such systems, its computational burden limits scalability and responsiveness under real-time or uncertain conditions. Reinforcement learning (RL), by contrast, offers a model-free, adaptive alternative. However, its application to real-world energy system operation remains limited. This study explores the application of a Deep Q-Network (DQN) to a real residential EC, which has received limited attention in prior work. The system comprises three single-family homes sharing a centralized heating system with a thermal energy storage (TES), a PV installation, and a grid connection. We compare the performance of MILP and RL controllers across economic and environmental metrics. Relative to a reference scenario without TES, MILP and RL reduce energy costs by 10.06% and 8.78%, respectively, and both approaches yield lower total energy consumption and CO2-equivalent emissions. Notably, the trained RL agent achieves a near-optimal outcome while requiring only 22% of the MILP’s computation time. These results demonstrate that DQNs can offer a computationally efficient and practically viable alternative to MILP for real-time control in residential energy systems. Full article
(This article belongs to the Special Issue Smart Energy Management and Sustainable Urban Communities)
Show Figures

Figure 1

25 pages, 3350 KB  
Article
Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling
by Yanan Sun, Huayu Zhong, Huanjie Cai, Jiatun Xu and Zhijun Li
Agronomy 2025, 15(9), 2026; https://doi.org/10.3390/agronomy15092026 - 23 Aug 2025
Viewed by 45
Abstract
Optimizing aeration, fertilization, and irrigation is vital for improving greenhouse tomato production while mitigating soil greenhouse gas (GHG) emissions. This study investigated the combined effects of three aeration levels (A1: single Venturi, A2: double Venturi, CK: no aeration), two fertilization rates (F1: 180 [...] Read more.
Optimizing aeration, fertilization, and irrigation is vital for improving greenhouse tomato production while mitigating soil greenhouse gas (GHG) emissions. This study investigated the combined effects of three aeration levels (A1: single Venturi, A2: double Venturi, CK: no aeration), two fertilization rates (F1: 180 kg/ha, F2: 240 kg/ha), and two irrigation levels (I1: 0.8 Epan, I2: 1.0 Epan) on tomato yield, CO2, N2O, and CH4 emissions, net GHG emissions, net global warming potential (NGWP), and GHG intensity (GHGI) across Spring–Summer and Autumn–Winter seasons. Results showed that aeration and fertilization significantly increased CO2 and N2O emissions but reduced CH4 emissions. Warmer conditions in Spring–Summer elevated all GHG emissions and yield compared to Autumn–Winter seasons. Tomato yield, net GHG emissions, NGWP, and GHGI were 12.05%, 24.3%, 14.46%, and 2.37% higher, respectively, in Spring–Summer. Combining the Maximal Information Coefficient and TOPSIS models, the optimal practice was A1-F1-I1 in Spring–Summer and A2-F1-I1 in Autumn–Winter seasons. These results provide a theoretical basis for selecting climate-smart management strategies that enhance yield and environmental sustainability in greenhouse tomato systems. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Figure 1

25 pages, 8057 KB  
Article
Experimental and Numerical Investigations on the Influences of Target Porosity and w/c Ratio on Strength and Permeability of Pervious Concrete
by Fei Liu, Zhe Li, Bowen Liu, Zhuohui Yu, Zetong Li, Mengyuan Zhu, Yanjie Wang and Xizhou Ding
Materials 2025, 18(17), 3951; https://doi.org/10.3390/ma18173951 - 22 Aug 2025
Viewed by 445
Abstract
Pervious concrete is a promising sustainable pavement material for sponge city construction. The incorporation of Steel Slag Aggregate (SSA) as a substitute for natural aggregates has the double role of clean production with significant economic and environmental benefits. While the strength and permeability, [...] Read more.
Pervious concrete is a promising sustainable pavement material for sponge city construction. The incorporation of Steel Slag Aggregate (SSA) as a substitute for natural aggregates has the double role of clean production with significant economic and environmental benefits. While the strength and permeability, known as two critical design parameters of pervious concrete, are closely linked to its porosity, there is limited research on the influence of the porosity on the mechanical properties of pervious concrete. In this paper, both experimental and numerical investigations were performed, focusing on the influence of target porosity on the strength and permeability of pervious concrete with and without SSA. Three different target porosities (15%, 20%, and 25%), five distinct water-to-cement (w/c) ratios (0.25, 0.28, 0.30, 0.33, and 0.35), and five SSA replacement ratios (0, 25%, 50%, 75%, and 100%) were considered in this study. A two-dimensional (2D) finite-element (FE) model was developed, with which the failure mode and the strength variation of pervious concrete under different target porosities were analyzed and verified with the experimental results. The results showed that the porosity had a significant influence on both the strength and permeability of pervious concrete, while the influence of the w/c ratio is marginal. There existed an optimal w/c ratio of 0.3, for which pervious concrete with porosities of 15%, 20%, and 25% achieved 28-day compressive strengths of 27.8, 20.6, and 15.6 MPa and permeability coefficients of 0.32, 0.58, and 1.02 cm/s, respectively. Specifically, at the lowest porosity of 15%, the replacement of 100% SSA resulted in the largest improvement in the compressive strength up to 37.86%. Based on the regression analysis, a series of empirical equations correlating the porosity, strength and permeability of pervious concrete was formulated and validated against the experimental data. The findings presented herein are expected to provide references to the practical evaluation of the optimal mix proportion of previous concrete, considering specific and demanding engineering requirements. Full article
Show Figures

Figure 1

25 pages, 14212 KB  
Article
Optimization of Composting Locations for Livestock Manure in Bangladesh: Spatial Analysis-Based Potential Environmental Benefits Assessment
by Zinat Mahal, Helmut Yabar and Md Faisal Abedin Khan
Clean Technol. 2025, 7(3), 72; https://doi.org/10.3390/cleantechnol7030072 - 22 Aug 2025
Viewed by 426
Abstract
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to [...] Read more.
For sustainable livestock manure management, composting is a common practice for supplying nutrients to crops. Therefore, optimizing plant locations for composting from livestock manure is essential in Bangladesh. This study performed a land suitability analysis using Geographic Information System (GIS) spatial modeling to identify suitable sites for composting plants, which was optimized through network analysis. After spatial analysis, 15, 42, and 147 locations were identified for large-scale, medium-scale, and small-scale manure-based compost production, respectively, across different scenarios. As a result, approximately 1537.74 kilotons/year of compost can be generated from 2703.86 kilotons of livestock manure, replacing about 44.31% of synthetic fertilizer use in Bangladesh in 2024. The potential reduction in greenhouse gas (GHG) emissions was assessed at 1986.76 gigagrams CO2eq/year, with nutrient leaching reduction potentials of 15.11 and 10.98 kilotons/year for nitrogen and phosphorus, respectively. Additionally, around 4.51 million tons of livestock manure can be disposed of annually by establishing composting plants. However, assessing the potential environmental benefits by optimizing composting plant locations can support the development of strategies to produce organic fertilizer by utilizing natural resources in Bangladesh. Full article
Show Figures

Figure 1

21 pages, 2643 KB  
Article
Economic and Environmental Analysis of Using Recycled Ceramic Demolition Materials in Construction Projects
by Marcin Gajzler, Piotr Nowotarski and Maria Ratajczak
Sustainability 2025, 17(16), 7560; https://doi.org/10.3390/su17167560 - 21 Aug 2025
Viewed by 242
Abstract
This paper presents a comprehensive economic and environmental analysis of the utilization of recycled ceramic demolition materials in the construction sector, considering three distinct applications: erecting vertical partitions, constructing road bases, and producing decorative finishes. The findings demonstrate significant economic advantages when using [...] Read more.
This paper presents a comprehensive economic and environmental analysis of the utilization of recycled ceramic demolition materials in the construction sector, considering three distinct applications: erecting vertical partitions, constructing road bases, and producing decorative finishes. The findings demonstrate significant economic advantages when using recycled ceramic materials in structural applications, specifically vertical partitions and road base layers, with cost reductions of approximately 14.1% and 23.9%, respectively, compared to new materials. Conversely, the economic viability of using recycled materials for decorative finishes (“old brick”) proved limited due to high labor intensity and significant waste generation during processing, resulting in higher costs than using new materials. From an environmental perspective, the recycling of construction ceramics provides substantial benefits, notably in reducing carbon footprints. The greatest environmental benefit observed was a reduction in carbon footprint by about 90% in vertical partition applications, and about 70% for decorative finishes. Despite these benefits, practical implementation faces substantial technological and regulatory barriers, including labor-intensive recovery processes and the absence of unified quality standards. Overcoming these challenges requires further development of advanced sorting and processing technologies, clear regulations, unified quality standards, and educational efforts targeted at the construction industry and investors. Full article
Show Figures

Figure 1

25 pages, 1099 KB  
Article
Leadership in Energy and Environmental Design for Existing Buildings Version 4.1 (LEED-EB v4.1) Gold-Certified Office Space Projects in European and Mediterranean Countries: A Pairwise Comparative Analysis
by Svetlana Pushkar
Buildings 2025, 15(16), 2972; https://doi.org/10.3390/buildings15162972 - 21 Aug 2025
Viewed by 96
Abstract
There is a gap in the research on LEED-certified projects that has arisen from combining the “old” LEED system and “new” LEED version in green building practice. This study is focused on gold-certified office projects under LEED for Existing Buildings version 4.1 (LEED-EB [...] Read more.
There is a gap in the research on LEED-certified projects that has arisen from combining the “old” LEED system and “new” LEED version in green building practice. This study is focused on gold-certified office projects under LEED for Existing Buildings version 4.1 (LEED-EB v4.1). Wilcoxon–Mann–Whitney and Cliff’s δ tests were used to conduct a pairwise comparison of six countries (Sweden, Ireland, Germany, Spain, Italy, and Israel) in terms of five performance indicators (transportation, water, energy, waste, and indoor environmental quality). The results show that Sweden and Germany outperformed Italy (p = 0.002 and 0.018, respectively) in transportation performance. Ireland outperformed Italy and Israel (p = 0.015 and 0.032, respectively), and Germany outperformed Italy and Israel (p = 0.003 and 0.009, respectively) in water performance. Germany outperformed Sweden, Ireland, and Israel (p < 0.001, respectively) and Sweden, Spain, and Italy outperformed Israel (p < 0.001, p = 0.008, and p = 0.009, respectively) in energy performance. Italy outperformed Sweden, Ireland, Germany, and Israel (0.001 < p ≤ 0.013) and Spain outperformed Germany and Israel (p = 0.015 and p < 0.001, respectively) in waste performance. Israel outperformed Sweden, Germany, and Italy (p < 0.001, p < 0.001, and p = 0.006, respectively) and Spain, Ireland, and Italy outperformed Sweden (p < 0.001, p = 0.002, and p = 0.004, respectively) in indoor environmental quality performance. The findings of this study show that each of the six selected countries has an individual LEED-EB v4.1 certification strategy. This study contributes new knowledge that can support LEED professionals in developing LEED certification strategies for each country. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 3343 KB  
Article
Mechanical Behavior and Stress Mechanism of Roof Cutting Gob-Side Entry Retaining in Medium-Thick Coal Seams
by Dongping Zhang, Dongming Song, Longping Zhang and Bin Luo
Processes 2025, 13(8), 2649; https://doi.org/10.3390/pr13082649 - 21 Aug 2025
Viewed by 176
Abstract
In response to the complex challenges posed by gob-side entry retaining in medium-thick coal seams—specifically, severe stress concentrations and unstable surrounding rock under composite roof structures—this study presents a comprehensive field–numerical investigation centered on the 5-200 working face of the Dianping Coal Mine, [...] Read more.
In response to the complex challenges posed by gob-side entry retaining in medium-thick coal seams—specifically, severe stress concentrations and unstable surrounding rock under composite roof structures—this study presents a comprehensive field–numerical investigation centered on the 5-200 working face of the Dianping Coal Mine, China. A three-dimensional coupled stress–displacement model was developed using FLAC3D to systematically evaluate the mechanical behavior of surrounding rock under varying roof cutting configurations. The parametric study considered roof cutting heights of 6 m, 8 m, and 10 m and cutting angles of 0°, 15°, and 25°, respectively. The results indicate that a roof cutting height of 8 m combined with a 15° inclination provides optimal stress redistribution: the high-stress zone within the coal rib is displaced 2–3 m deeper into the coal body, and roof subsidence is reduced from 2500 mm (no cutting) to approximately 200–300 mm. Field measurements corroborate these findings, showing that on the return airway side with roof cutting, initial and periodic weighting intervals increased by 4.0 m and 5.5 m, respectively, while support resistance was reduced by over 12%. These changes suggest a delayed main roof collapse and decreased dynamic loading on supports, facilitating safer roadway retention. Furthermore, surface monitoring reveals that roof cutting significantly suppresses mining-induced ground deformation. Compared to conventional longwall mining at the adjacent 5-210 face, the roof cutting approach at 5-200 resulted in notably narrower (0.05–0.2 m) and shallower (0.1–0.4 m) surface cracks, reflecting effective attenuation of stress transmission through the overburden. Taken together, the proposed roof cutting and pressure relief strategy enables both stress decoupling and energy dissipation in the overlying strata, while enhancing roadway stability, reducing support demand, and mitigating surface environmental impact. This work provides quantitative validation and engineering guidance for intelligent and low-impact coal mining practices in high-stress, geologically complex settings. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

31 pages, 3294 KB  
Article
Energy and Techno-Economic Assessment of Cooling Methods on Blue Hydrogen Production Processes
by William George Davies, Shervan Babamohammadi, Ilies Galloro, Mikhail Gorbounov, Francesco Coletti, Monomita Nandy and Salman Masoudi Soltani
Processes 2025, 13(8), 2638; https://doi.org/10.3390/pr13082638 - 20 Aug 2025
Viewed by 310
Abstract
Blue hydrogen is a promising low-carbon alternative to conventional fossil fuels. This technology has been garnering increasing attention with many technological advances in recent years, with a particular focus on the deployed materials and process configurations aimed at minimising the cost and CO [...] Read more.
Blue hydrogen is a promising low-carbon alternative to conventional fossil fuels. This technology has been garnering increasing attention with many technological advances in recent years, with a particular focus on the deployed materials and process configurations aimed at minimising the cost and CO2 emissions intensity of the process as well as maximising efficiency. However, less attention is given to the practical aspects of large-scale deployment, with the cooling requirements often being overlooked, especially across multiple locations. In particular, the literature tends to focus on CO2 emissions intensity of blue hydrogen production processes, with other environmental impacts such as water and electrical consumption mostly considered an afterthought. Notably, there is a gap to understand the impact of cooling methods on such environmental metrics, especially with technologies at a lower technology readiness level. Herein, two cooling methods (namely, air-cooling versus water-cooling) have been assessed and cross-compared in terms of their energy impact alongside techno-economics, considering deployment across two specific locations (United Kingdom and Saudi Arabia). A sorption-enhanced steam-methane reforming (SE-SMR) coupled with chemical-looping combustion (CLC) was used as the base process. Deployment of this process in the UK yielded a levelised cost of hydrogen (LCOH) of GBP 2.94/kg H2 with no significant difference between the prices when using air-cooling and water-cooling, despite the air-cooling approach having a higher electricity consumption. In Saudi Arabia, this process achieved a LCOH of GBP 0.70 and GBP 0.72 /kg H2 when using air- and water-cooling, respectively, highlighting that in particularly arid regions, air-cooling is a viable approach despite its increased electrical consumption. Furthermore, based on the economic and process performance of the SE-SMR-CLC process, the policy mechanisms and financial incentives that can be implemented have been discussed to further highlight what is required from key stakeholders to ensure effective deployment of blue hydrogen production. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Production Processes)
Show Figures

Figure 1

18 pages, 1745 KB  
Article
Metagenomic Insight into the Impact of Soil Nutrients and Microbial Community Structure on Greenhouse Gas Emissions: A Case Study in Giant Rice–Fish Co-Cultured Mode
by Andong Wang, Dongsheng Zou, Manyun Zhang, Yinling Luo, Sunyang Li, Jingchen Zou, Xiaopeng Zhang and Bin Chen
Agronomy 2025, 15(8), 1982; https://doi.org/10.3390/agronomy15081982 - 18 Aug 2025
Viewed by 324
Abstract
This study investigates the impact of environmental changes induced by systematic manipulation of flooding depth and breeding density on greenhouse gas emissions in the field-based giant rice–fish hybrid farming model. Compared with traditional agricultural practices, increasing cultured density in giant rice–fish co-cultivation significantly [...] Read more.
This study investigates the impact of environmental changes induced by systematic manipulation of flooding depth and breeding density on greenhouse gas emissions in the field-based giant rice–fish hybrid farming model. Compared with traditional agricultural practices, increasing cultured density in giant rice–fish co-cultivation significantly alleviated the adverse consequences of flooding on soil nutrient dynamics, microbial activity community structure, and greenhouse gas emissions. Relative to the traditional alternating wet and dry irrigation, the soil concentrations of ammonium, total nitrogen, and phosphate significantly increased. Cultured fish had significantly increased soil microbial biomass carbon, nitrogen, and phosphorus contents and improved soil β-glucosidase and aryl-sulfatase activates relative to flooding alone. Cultured fish increased the relative abundances of Actinobacteria, Nitrospirae, Planctomycetes, Verrucomicrobia, and Aminicenantes. An increasing cultured fish density reduced cumulative methane and nitrous oxide emissions and GWP (global warming potential). Relative to the continuous flooding throughout the growing period, cumulative methane emissions and GWP in the flooding with high-density cultured fish were reduced by 5.32% and 1.48%, respectively. Notably, this co-cultivation strategy has the potential to transform traditional practices for sustainable agriculture. Nevertheless, it is imperative to remain vigilant about the potential consequences of greenhouse gas emissions associated with these innovative practices. Continuous monitoring and refinement are essential to ensure the long-term sustainability and viability of this agricultural approach. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 3437 KB  
Article
Sustainable Acrylic Thermoplastic Composites via Vacuum-Assisted Resin Infusion Molding: Evaluation and Comparison of Fabrics and Recycled Non-Woven Carbon Fiber as Reinforcement
by Sara Taherinezhad Tayebi, Tommaso Pini, Bruno Caruso, Matteo Sambucci, Irene Bavasso, Fabrizio Sarasini, Jacopo Tirillò and Marco Valente
J. Compos. Sci. 2025, 9(8), 441; https://doi.org/10.3390/jcs9080441 - 17 Aug 2025
Viewed by 262
Abstract
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other [...] Read more.
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other hand, utilizing recovered reinforcing phases, such as recycled carbon fiber (rCF), has attracted tremendous attention. In this framework, the aim of this research is to investigate the performance of acrylic-based FRTPs (Elium® resin developed by Arkema). Woven virgin carbon fiber (vCF) and non-woven recycled carbon fiber (rCF) fabrics were used as reinforcement architectures for the fabrication of composites via resin infusion. The optimized formulation selected for the matrix showed flexural modulus and flexural strength of 5 GPa and 78 MPa, respectively. Composites prepared with woven vCF reached 36 GPa and 620 MPa values of flexural modulus and strength, respectively. The study of non-woven fabric is of particular interest, because the web is composed of recycled carbon fibers obtained from end-of-life (EoL) thermoset composite components. The results were promising; the flexural modulus reached 8 GPa, and the flexural strength was 113 MPa. Improvements are anticipated, especially in the parameters and conditions of the molding process. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

12 pages, 2161 KB  
Article
Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion
by Zhaoning Yang, Zihao Yang, Xiaoxin Shu, Wenshuai Chen, Jiaolong Liu, Keqing Chen and Yanmin Jia
ChemEngineering 2025, 9(4), 90; https://doi.org/10.3390/chemengineering9040090 - 15 Aug 2025
Viewed by 245
Abstract
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and [...] Read more.
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and hydroxyl radicals, respectively, to generate reactive oxygen species to degrade organic pollutants. Currently, while organic piezoelectric catalysts theoretically offer significant advantages such as low cost and high processability, there has been a notable lack of research in this area, which presents an innovative opportunity for the exploration of new organic piezoelectric catalytic materials. In this study, new research using natural nanocellulose (FC) suspension as an efficient organic piezoelectric catalyst is reported for the first time. The experimental results showed that the catalyst exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W): the degradation rates reached 95.4%, 72.4%, and 31.2%, respectively, for 150 min, and the corresponding first-order reaction kinetic constants were 0.0205, 0.00858, and 0.00249 min−1, respectively. It is noteworthy that the RhB solution can achieve the optimal degradation efficiency without adjustment under neutral initial pH conditions, which significantly enhances the practical application feasibility. The experimental results showed that the catalyst, with a measurable piezoelectric coefficient (d33 = 4.4 pm/V), exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W). This organic piezoelectric catalyst, based on renewable biomass, innovatively converts mechanical vibration energy in the environment into the power to degrade pollutants. It not only expands the application boundaries of organic piezoelectric materials but also provides a new solution for sustainable water treatment technology, demonstrating extremely promising application prospects in the field of green and environmentally friendly water treatment. Full article
Show Figures

Figure 1

21 pages, 1222 KB  
Article
Classification for Hyperthermal Environments Based on a Comprehensive Score Index
by Shuai Zhang, Qingqin Wang, Haizhu Zhou, Tianyang Wang and Guanguan Jia
Buildings 2025, 15(16), 2886; https://doi.org/10.3390/buildings15162886 - 14 Aug 2025
Viewed by 233
Abstract
Working in hyperthermal environments can lead to heat-related illnesses. Evaluating and predicting high-temperature environments can effectively reduce heat risks and hazards. However, there is still a lack of corresponding high-temperature environment assessment methods and indicators in existing research. Moreover, traditional evaluation indicators and [...] Read more.
Working in hyperthermal environments can lead to heat-related illnesses. Evaluating and predicting high-temperature environments can effectively reduce heat risks and hazards. However, there is still a lack of corresponding high-temperature environment assessment methods and indicators in existing research. Moreover, traditional evaluation indicators and prediction methods have shortcomings in objectivity, accuracy, and practicality. To fill these gaps, a climate chamber was constructed to simulate different environmental conditions, and human labor experiments with 98 subjects were conducted. The ambient temperatures were set to 34 °C, 36 °C, 38 °C, and 40 °C, and the relative humidity was set to 60%, 70%, 80%, and 90%, respectively. During the experiments, the subjects’ oral temperatures, heart rates, skin temperatures, and subjective perceptions were recorded. Based on the obtained parameters of the subjects, two principal components with an explained variance of 92.131% were extracted by principal component analysis, and with the determination of weightings, a comprehensive evaluation index (F) was established and the F-score was calculated. According to the F-score, 16 different hyperthermal environments were classified into three categories through hierarchical clustering analysis and discriminant analysis, with the corresponding F-score ranges of 28.14–39.76, 39.17–45.21, and 44.13–52.39. An analysis was conducted on the value of physiological and subjective indicators to test the nature of classification. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 4101 KB  
Article
Investigation into the Impact of Enclosure Retrofit on Thermal Comfort in Semi-Open University Space
by Jian Ge, Jiahong Zhao, Ziyu Wu and Honghu Zhang
Buildings 2025, 15(16), 2883; https://doi.org/10.3390/buildings15162883 - 14 Aug 2025
Viewed by 183
Abstract
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This [...] Read more.
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This study integrated field measurements, occupant surveys, and AirPak simulations to develop a three-tier evaluation framework covering environmental parameters, subjective thermal perception, and simulation-based validation. Focusing on teaching buildings at Zhejiang University’s Zijingang Campus, the analysis revealed that the retrofit increased the daily mean air temperature by 2.1 °C and decreased the relative humidity by 3.6% in winter. The peak thermal comfort indices PET and PMV improved by 4.4 °C and 0.98, respectively, with a neutral PET identified at 13.3 °C. PMV showed a stronger correlation with TSV (p = 0.94, R2 = 0.81) than PET. Simulations further validated the retrofit’s effectiveness in stabilizing the indoor thermal environment and reducing airflow discomfort. These findings provide both theoretical insights and practical guidance for the climate-responsive, energy-efficient retrofitting of campus buildings in hot summer and cold winter (HSCW) zones. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 3877 KB  
Article
Ship Voyage Route Waypoint Optimization Method Using Reinforcement Learning Considering Topographical Factors and Fuel Consumption
by Juhyang Lee, Youngseo Park, Jeongon Eom, Hungyu Hwang and Sewon Kim
J. Mar. Sci. Eng. 2025, 13(8), 1554; https://doi.org/10.3390/jmse13081554 - 13 Aug 2025
Viewed by 360
Abstract
As the IMO and the EU strengthen carbon emission regulations, eco-friendly voyage planning is increasingly recognized by ship owners as one of the most important performance factors of the vessel fleet. The eco-friendly voyage planning aims to reduce carbon emissions and fuel consumption [...] Read more.
As the IMO and the EU strengthen carbon emission regulations, eco-friendly voyage planning is increasingly recognized by ship owners as one of the most important performance factors of the vessel fleet. The eco-friendly voyage planning aims to reduce carbon emissions and fuel consumption while satisfying voyage constraints. In this study, a novel route waypoint optimization method is proposed, which combines a fuel consumption forecasting model based on the Transformer and a Proximal Policy Optimization (PPO) algorithm for adaptive waypoint planning. The developed framework suggests a multi-objective methodology unlike the traditional approaches where a single objective is sought after, which characterizes fuel efficiency against navigational safety and operational simplicity. The methodology consists of three sequential phases. First, the transformer model is employed to predict ship fuel consumption using navigational and environmental data. Next, the predicted consumption values are utilized as a reward function in a PPO-based reinforcement learning framework to generate fuel-efficient routes. Finally, the number and placement of waypoints are further optimized with respect to terrain and bathymetric constraints, improving the practicality and safety of the navigational plan. The results show that the proposed method could decrease average fuel consumption by up to 11.33% across three real-world case studies: Busan–Rotterdam, Busan–Los Angeles, and Mokpo–Houston, compared to AIS-based routes. The transformer model outperformed Long Short-Term Memory (LSTM) and Random Forest baselines with the highest prediction accuracy, achieving an R2 score of 86.75%. This study is the first to incorporate transformer-based forecasting into reinforcement learning for maritime route planning and demonstrates how the method adaptively controls waypoint density in response to environmental and geographical conditions. These results support the practical application of the approach in smart ship navigation systems aligned with IMO’s decarbonization goals. Full article
(This article belongs to the Special Issue Intelligent Solutions for Marine Operations)
Show Figures

Figure 1

22 pages, 793 KB  
Article
Ecotoxicological Risk Assessment and Monitoring of Pesticide Residues in Soil, Surface Water, and Groundwater in Northwestern Tunisia
by Khaoula Toumi, Abir Arbi, Nafissa Soudani, Anastasia Lomadze, Dalila Haouas, Terenzio Bertuzzi, Alessandra Cardinali, Lucrezia Lamastra, Ettore Capri and Nicoleta Alina Suciu
Water 2025, 17(16), 2387; https://doi.org/10.3390/w17162387 - 12 Aug 2025
Viewed by 538
Abstract
Pesticides play a significant role in agriculture, but their leaching into soil and water poses serious environmental risks. This study examines pesticide contamination in surface and groundwater in northern Tunisia, specifically in Kef governorate, involving a survey of 140 farmers to gather data [...] Read more.
Pesticides play a significant role in agriculture, but their leaching into soil and water poses serious environmental risks. This study examines pesticide contamination in surface and groundwater in northern Tunisia, specifically in Kef governorate, involving a survey of 140 farmers to gather data on agricultural practices and pesticide use. Twenty-four pesticides were monitored and utilized within the Pesticide Environmental Risk Indicator (PERI) model to evaluate environmental risk scores for each substance. Soil and water samples were analyzed using a multi-residue method and liquid chromatography–tandem mass spectrometry. Results showed that 50% of the pesticides assessed had an Environmental Risk Score of 5 or higher. Contamination was identified in water and soil, with 18 and 15 pesticide residues, respectively. Notable concentrations included 7.8 µg/L of linuron and flupyradifurone in water and 1718.4 µg/kg of linuron in soil. Commonly detected substances included the insecticide acetamiprid and fungicides like cyflufenamid and penconazole in water, while soil contamination was linked to fungicides metalaxyl and metalaxyl-m, as well as herbicides linuron and s-metolachlor. Factors such as proximity to treated water points and poor packaging management were discussed as risks. The findings emphasize the need for better monitoring and sustainable agricultural practices to mitigate contamination. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Graphical abstract

Back to TopTop