Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,493)

Search Parameters:
Keywords = environmental restorative effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2543 KB  
Article
Multisensory Interactions in Greenway Plazas of Differing Openness and Effects on User Behaviors
by Zhaohui Peng, Wenping Liu, Mingjun Teng, Yangyang Zhang, Abdul Baess Keyhani and Pengcheng Wang
Urban Sci. 2026, 10(1), 60; https://doi.org/10.3390/urbansci10010060 (registering DOI) - 18 Jan 2026
Abstract
Spatial openness affects the subjective evaluation of soundscape, landscape, and thermal perceptions, leading to various restoration effects and recreational behaviors. However, the literature lacks studies investigating the effects of multisensory interactions under different levels of spatial openness in plazas on users’ behaviors in [...] Read more.
Spatial openness affects the subjective evaluation of soundscape, landscape, and thermal perceptions, leading to various restoration effects and recreational behaviors. However, the literature lacks studies investigating the effects of multisensory interactions under different levels of spatial openness in plazas on users’ behaviors in urban greenways. Thus, this study contributes to the enhancement of recreational experiences and the environmental design of urban greenways by examining the interaction between multisensory evaluations and recreational behaviors in greenway plazas with different levels of spatial openness. Three types of plazas (enclosed, semi-enclosed, open) were selected along an urban greenway to analyze interactions through in situ measurements, questionnaires, and behavior observation. The results showed that people rated the environment as the quietest and coolest in enclosed plazas, although the sound pressure level of these plazas was the highest. Furthermore, the visual evaluation (VE) was mostly correlated with acoustic evaluation (AE) in plazas with high openness, while the correlation effect between AE and thermal evaluation (TE) was only significant in enclosed plazas. In other words, AE was the key factor targeting the improvement in comfort in greenway plazas. Secondly, improving AE was more effective for stimulating the frequency of interactive activities in enclosed plazas, compared to improving TE. However, AE had a negative effect on the time that people were willing to spend on interactive activities in semi-enclosed plazas. Finally, these findings provide corresponding strategies for creating comfortable audio, visual, and thermal environments in greenway plazas with different levels of openness, as well as strategies for enhancing the recreational experiences of visitors. Full article
(This article belongs to the Section Urban Governance for Health and Well-Being)
Show Figures

Figure 1

15 pages, 2122 KB  
Article
Exogenous Trimethylamine N-Oxide (TMAO) Improves Apple Rootstock Drought Tolerance Through Physiological Modulation
by Xiaoci Liang, Pengda Cheng, Shuang Zhao, Ye Sun, Dehui Zhang, Jiale Wen, Fengwang Ma, Qingmei Guan, Xuewei Li and Yutian Zhang
Horticulturae 2026, 12(1), 101; https://doi.org/10.3390/horticulturae12010101 - 18 Jan 2026
Abstract
Drought stress represents a major constraint on global apple production, with the widely used semi-dwarfing rootstock ‘M.26’ being particularly vulnerable to water deficit. Although the osmolyte trimethylamine N-oxide (TMAO) has been shown to improve abiotic stress tolerance in the model plant Arabidopsis, its [...] Read more.
Drought stress represents a major constraint on global apple production, with the widely used semi-dwarfing rootstock ‘M.26’ being particularly vulnerable to water deficit. Although the osmolyte trimethylamine N-oxide (TMAO) has been shown to improve abiotic stress tolerance in the model plant Arabidopsis, its potential role in enhancing drought resilience in woody fruit trees remains largely unexplored. Under prolonged moderate drought stress, exogenous TMAO application significantly promoted plant growth, mitigating the drought-induced suppression of plant height by 5.3–12.2% compared to untreated drought-stressed controls and alleviating the decline in above-ground biomass. This improvement was underpinned by a substantial alleviation of root growth inhibition, with TMAO restoring total root length and biomass from 37% in the control to only 6.1–9.5%. TMAO also fine-tuned the root-to-shoot ratio to favor resource allocation to roots. Consequently, TMAO-treated plants maintained superior leaf water status, exhibiting higher relative water content (drought-induced reduction limited to ~17.5% with TMAO versus 26.3% in the control). Physiologically, TMAO alleviated the drought-induced stomatal limitation of photosynthesis, sustaining higher net photosynthetic rate, stomatal conductance, and transpiration rate. Crucially, under severe drought stress, TMAO pretreatment markedly enhanced ‘M.26’ survival rates from approximately 39% in the untreated control to 60–68%, representing a relative increase of approximately 74%. Collectively, this study demonstrates that exogenous application TMAO significantly enhances drought tolerance in apple rootstock ‘M.26’, highlighting its potential as an effective and environmentally safe plant growth regulator for more sustainable cultivation of fruit trees under irregular/erratic irrigation conditions. Full article
(This article belongs to the Special Issue Genetic Improvement and Stress Resistance Regulation of Fruit Trees)
Show Figures

Figure 1

32 pages, 1920 KB  
Review
A Comparative Evaluation of Soil Amendments in Mitigating Soil Salinization and Modifying Geochemical Processes in Arid Land
by Amira Batool, Kun Zhang, Fakher Abbas, Arslan Akhtar and Jiefei Mao
Agronomy 2026, 16(2), 222; https://doi.org/10.3390/agronomy16020222 - 16 Jan 2026
Viewed by 38
Abstract
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding [...] Read more.
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding of their interaction with soil after mixture application and the geochemical processes and long-term sustainability that govern their effects. To address this knowledge gap, this review elucidated the effectiveness and sustainability of soil amendments, biochar, humic substances, and mineral additives in restoring saline and sodic soils of arid and semi-arid region to explore the geochemical processes that underlie their impact. A systematic search of 174 peer-reviewed studies was conducted across multiple databases (Web of Science, Google Scholar, and Scopus) using relevant keywords and the findings were converted into quantitative values to evaluate the effects of biochar, gypsum, zeolite, and humic substances on key soil properties. Biochar significantly improved cation exchange capacity, nutrient retention, microbial activity, and water retention by enhancing soil porosity and capillarity, thereby increasing plant-available water. Gypsum improved phosphorus availability, while zeolite facilitated the removal of sodium and supported microbial activity. Humic substances enhanced soil porosity, water retention, and aggregate stability. When applied together, these amendments improved soil health by regulating salinity, enhancing nutrient cycling, while also stabilizing soil conditions and ensuring long-term sustainability through improved geochemical balance and reduced environmental impacts. The findings highlight the critical role of multi-functional amendments in promoting climate-resilient agriculture and long-term soil health restoration in saline-degraded regions. Further research and field implementation are crucial to optimize their effectiveness and ensure sustainable soil management across diverse agricultural environments. Full article
Show Figures

Figure 1

32 pages, 3521 KB  
Review
A Systemic Approach for Assessing the Design of Circular Urban Water Systems: Merging Hydrosocial Concepts with the Water–Energy–Food–Ecosystem Nexus
by Nicole Arnaud, Manuel Poch, Lucia Alexandra Popartan, Marta Verdaguer, Félix Carrasco and Bernhard Pucher
Water 2026, 18(2), 233; https://doi.org/10.3390/w18020233 - 15 Jan 2026
Viewed by 113
Abstract
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper [...] Read more.
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper develops the Hydrosocial Resource Urban Nexus (HRUN) framework that integrates hydrosocial thinking with the Water–Energy–Food–Ecosystems (WEFE) nexus to guide UWS design. We conduct a structured literature review and analyse different configurations of circular interventions, mapping their synergies and trade-offs across socioeconomic and environmental functions of hydrosocial systems. The framework is operationalised through a typology of circular interventions based on their circularity purpose (water reuse, resource recovery and reuse, or water-cycle restoration) and management scale (from on-site to centralised), while greening degree (from grey to green infrastructure) and digitalisation (integration of sensors and control systems) are treated as transversal strategies that shape their operational profile. Building on this typology, we construct cause–effect matrices for each intervention type, linking recurring operational patterns to hydrosocial functionalities and revealing associated synergies and trade-offs. Overall, the study advances understanding of how circular interventions with different configurations can strengthen or weaken system resilience and sustainability outcomes. The framework provides a basis for integrated planning and for quantitative and participatory tools that can assess trade-offs and governance effects of different circular design choices, thereby supporting the transition to more resilient and just water systems. Full article
(This article belongs to the Special Issue Advances in Water Resource Management and Planning)
Show Figures

Figure 1

13 pages, 1962 KB  
Article
Sediment and Salinity Thresholds Govern Natural Recruitment of Manila Clam in the Xiaoqing River Estuary: Toward a Predictive Management Framework
by Lulei Liu, Ang Li, Shoutuan Yu, Suyan Xue, Zirong Liu, Longzhen Liu, Ling Zhu, Jiaqi Li and Yuze Mao
Biology 2026, 15(2), 157; https://doi.org/10.3390/biology15020157 - 15 Jan 2026
Viewed by 128
Abstract
Natural recruitment of Manila clam (Ruditapes philippinarum) often persists in degraded estuaries, yet the environmental thresholds enabling this resilience remain quantitatively undefined. We employed binomial generalized additive model (GAM) coupled with field surveys (n = 168) in the Xiaoqing River [...] Read more.
Natural recruitment of Manila clam (Ruditapes philippinarum) often persists in degraded estuaries, yet the environmental thresholds enabling this resilience remain quantitatively undefined. We employed binomial generalized additive model (GAM) coupled with field surveys (n = 168) in the Xiaoqing River estuary (Laizhou Bay, China) to identify critical limits for adult occurrence, which served as a field-based proxy for recruitment potential. Sediment median grain size (D50), salinity (Sal) and dissolved inorganic nitrogen (DIN) were identified as the key factors, collectively explaining 79.30% of the deviance (AUC = 0.98). The probability of occurrence decreased sharply beyond two distinct thresholds: D50 > 95 μm and salinity < 17.50‰. While DIN had a positive effect, it did not offset the strong negative associations with coarse sediment or low salinity. These field-validated thresholds provide quantifiable criteria to guide habitat suitability mapping, activation of early-warning systems against salinity-driven mortality, and site prioritization for ecological restoration in the Xiaoqing River estuary. Our findings offer a framework for developing management strategies to support clam resilience under environmental stress. Full article
(This article belongs to the Section Marine and Freshwater Biology)
Show Figures

Figure 1

14 pages, 1854 KB  
Article
Patterns and Drivers of Mountain Meadow Communities Along an Altitudinal Gradient on the Southern Slope of Wutai Mountain, Northern China
by Xiaolong Zhang, Xianmeng Liu, Dingrou Yao, Yongji Wang, Junjie Niu and Yinbo Zhang
Ecologies 2026, 7(1), 9; https://doi.org/10.3390/ecologies7010009 - 15 Jan 2026
Viewed by 141
Abstract
Understanding how plant community characteristics and soil properties vary along altitudinal gradients is essential for ecosystem conservation, restoration, and for predicting ecosystem responses to global environmental change. This study investigated altitudinal patterns and their potential drivers in mountain meadow communities on the southern [...] Read more.
Understanding how plant community characteristics and soil properties vary along altitudinal gradients is essential for ecosystem conservation, restoration, and for predicting ecosystem responses to global environmental change. This study investigated altitudinal patterns and their potential drivers in mountain meadow communities on the southern slope of Wutai Mountain, Northern China. Community characteristics and soil physicochemical properties were measured along an altitudinal gradient ranging from 1800 to 3000 m a.s.l. Most community characteristics exhibited clear altitudinal trends. Species richness, Shannon–Wiener index, Simpson index, aboveground biomass and average plant height all declined significantly with increasing altitude. In contrast, vegetation cover showed a unimodal pattern, initially decreasing and then increasing at higher elevations. Soil physicochemical properties also varied significantly along the altitudinal gradient and were closely associated with changes in community characteristics. Variation partitioning analysis revealed that environmental factors, including altitude and soil properties, explained 71.9% of the total variation in mountain meadow communities. Altitude alone contributed more to community variation than soil factors, indicating its dominant role in shaping community structure. Nevertheless, specific soil properties, particularly soil depth, soil bulk density and soil pH, also exerted significant influences on community characteristics. Overall, our results demonstrate that altitude is a key driver of both vegetation and soil variation in mountain meadows on the southern slope of Wutai Mountain. In addition to altitudinal effects, soil physicochemical properties should be considered when developing conservation and management strategies for mountain meadow ecosystems. Full article
Show Figures

Graphical abstract

27 pages, 21198 KB  
Article
Impacts of Climate Change, Human Activities, and Their Interactions on China’s Gross Primary Productivity
by Yiwei Diao, Jie Lai, Lijun Huang, Anzhi Wang, Jiabing Wu, Yage Liu, Lidu Shen, Yuan Zhang, Rongrong Cai, Wenli Fei and Hao Zhou
Remote Sens. 2026, 18(2), 275; https://doi.org/10.3390/rs18020275 - 14 Jan 2026
Viewed by 142
Abstract
Gross Primary Productivity (GPP) plays a vital role in the terrestrial carbon cycle and ecosystem functioning. Understanding its spatio-temporal dynamics and driving mechanisms is critical for predicting ecosystem responses to climate change. China’s GPP has experienced complex responses due to heterogeneous climate, environment, [...] Read more.
Gross Primary Productivity (GPP) plays a vital role in the terrestrial carbon cycle and ecosystem functioning. Understanding its spatio-temporal dynamics and driving mechanisms is critical for predicting ecosystem responses to climate change. China’s GPP has experienced complex responses due to heterogeneous climate, environment, and human activities, yet their impacts and interactions across ecosystems remain unquantified. This study used the Mann–Kendall test and SHapley Additive exPlanations to quantify the contributions and interactions of climate, vegetation, topography, and human factors using GPP data (2001–2020). Nationally, GPP showed a significant upward trend, particularly in deciduous broadleaf forests, croplands, grasslands, and savannas. Leaf area index (LAI) is identified as the primary contributor to GPP variations, while climate factors exhibit nonlinear interactive effects on the modeled GPP. Ecosystem-specific sensitivities were evident: forest GPP is predominantly associated with climate–vegetation coupling. Additionally, in coniferous forests, the interaction between anthropogenic factors and topography shows a notable association with productivity patterns. Grassland GPP is primarily linked to topography, while cropland GPP is mainly related to management practices and environmental conditions. In contrast, the GPP of savannas and shrublands is less influenced by factor interactions. These findings high-light the necessity of ecosystem-specific management and restoration strategies and provide a basis for improving carbon cycle modeling and climate change adaptation planning. Full article
Show Figures

Figure 1

26 pages, 6265 KB  
Article
Impacts of Heatwaves on the Indoor Microclimate of Heritage Buildings Under Climate Change: A Case Study of the Malatestiana Library
by Kristian Fabbri, Antonella Mazzone and Paolo Zanfini
Sustainability 2026, 18(2), 842; https://doi.org/10.3390/su18020842 - 14 Jan 2026
Viewed by 135
Abstract
The IPCC has emphasised the increasing impacts of climate change across multiple sectors, including cultural heritage. In response, UNESCO launched the Policy Document on Climate Action for World Heritage in 2023, offering guidance on mitigation strategies for historic sites. Cultural heritage faces risks [...] Read more.
The IPCC has emphasised the increasing impacts of climate change across multiple sectors, including cultural heritage. In response, UNESCO launched the Policy Document on Climate Action for World Heritage in 2023, offering guidance on mitigation strategies for historic sites. Cultural heritage faces risks not only from sudden catastrophic events—such as floods, droughts, and wildfires—but also from the gradual deterioration of buildings and artefacts due to shifting environmental conditions. Climate change further affects the indoor microclimate of heritage sites, including museums, archives, and libraries, which are critical to the long-term preservation of cultural assets. Heritage, including heritage buildings and both tangible and intangible heritages, are subject to changes; therefore, their conservation should be assessed to identify sustainable approaches. This study investigates how climate change and microclimate alterations impact the conservation of historic buildings without modern climate control, using the Malatestiana Library—a UNESCO Memory of the World site—as a case study. The library has preserved a remarkably stable indoor environment for centuries, without the introduction of heating, cooling, or major restorations. A monitoring campaign during the summer of 2024 assessed the effects of extreme heat events on the library’s microclimate, comparing two internal spaces to examine the attic’s role in mitigating thermal stress. Data from the 2024 heatwave are also compared with similar data collected in 2013. Results show a marked shift toward a more tropical indoor climate over the past decade, signalling new threats to the preservation of historic materials. These findings highlight the urgent need for adaptive conservation strategies to address the evolving challenges posed by climate change. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

17 pages, 33373 KB  
Article
Towards an Evolutionary Regeneration from the Coast to the Inland Areas of Abruzzo to Activate Transformative Resilience
by Donatella Radogna and Antonio Vasapollo
Sustainability 2026, 18(2), 827; https://doi.org/10.3390/su18020827 - 14 Jan 2026
Viewed by 102
Abstract
This paper addresses the problem of imbalance between coastal and inland areas and recognises the reuse of abandoned buildings as an evolutionary regeneration strategy which, through specific interventions linked by a system of routes for tourism and sport, can gradually trigger sustainable development [...] Read more.
This paper addresses the problem of imbalance between coastal and inland areas and recognises the reuse of abandoned buildings as an evolutionary regeneration strategy which, through specific interventions linked by a system of routes for tourism and sport, can gradually trigger sustainable development on a regional scale. It presents research conducted in recent years on behalf of local administrations and continued in national and European projects. The reference context is the Abruzzo region, where coastal, hilly and mountainous areas are a short distance apart and include both densely built-up and populated urban centres and small depopulated towns surrounded by landscapes of high environmental value. The objective is to define, through the responsible use of built resources, viable and sustainable strategies for regeneration and rebalancing oriented towards the concept of transformative resilience. The methodology adopted is divided into phases and includes both theoretical developments and case study applications according to an approach that networks building restoration and reuse interventions in the region. The key results consist of defining a reuse logic that considers the regional territory as a whole, linking different resources, functions and environments. This logic, which envisages the organisation of new functions on a regional scale, emphasises the capacity of building reuse to produce positive effects on the territory and trigger socio-economic development dynamics. This research forms part of the experience underlying a project of significant national interest (PRIN 2022 TRIALs), which will provide guidelines for activating the transformative resilience capacities of inland areas of central Italy. Full article
(This article belongs to the Special Issue Landscape Planning Between Coastal and Inland Areas)
Show Figures

Figure 1

17 pages, 2992 KB  
Article
Farnesol, a Dietary Sesquiterpene, Attenuates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Oxidative Stress, Inflammation, and Apoptosis via Mediation of Cell Signaling Pathways in Rats
by Lujain Bader Eddin, Seenipandi Arunachalam, Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Mouza Ali Hasan AlQaishi Alshehhi, Amar Mahgoub, Rami Beiram and Shreesh Ojha
Int. J. Mol. Sci. 2026, 27(2), 811; https://doi.org/10.3390/ijms27020811 - 14 Jan 2026
Viewed by 118
Abstract
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory [...] Read more.
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory properties reported in various in vivo models. To evaluate the efficacy of FSL in the management of PD, Wistar rats were injected with ROT (2.5 mg/kg, i.p) and pretreated with FSL. Immunohistochemical staining measured tyrosine hydroxylase-positive cells in the substantia nigra and striatum. Western blotting was employed to determine protein expression of inflammatory, apoptotic, and autophagic markers. Our results indicate that FSL significantly protected against ROT-induced inflammation by suppressing microglial and astrocytic activation through the downregulation of Toll-Like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inhibitor of kappa B (IkB), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX), matrix metalloproteinase-9 (MMP-9) expression. FSL has also demonstrated an antioxidant effect by enhancing the activity of superoxide dismutase and catalase while reducing the level of Malondialdehyde and nitric oxide. Moreover, it restored homeostasis in ROT-induced imbalance between pro- and anti-apoptotic proteins. Impaired autophagy observed in ROT-injected rats was corrected by FSL treatment, which upregulated phosphorylated mammalian target of rapamycin (p-mTOR) expression and downregulated P62, an autophagosome marker. The protective effect of FSL was further supported by preserving the brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase in the brain. These findings demonstrate the neuroprotective ability of FSL and its potential to be developed as a pharmaceutical or nutraceutical agent for the prevention and treatment of PD by mitigating neuropathological changes observed in dopaminergic neurodegeneration. Full article
Show Figures

Figure 1

38 pages, 4306 KB  
Article
A Study on the Prioritization of Reuse Models for Abandoned Quarries Based on Residents’ Demands: A Case Study of Jiawang District, Xuzhou City
by Shanshan Feng, Lu Hua, Ting Tian, Yi Zhang and Yuzheng Yao
Land 2026, 15(1), 157; https://doi.org/10.3390/land15010157 - 13 Jan 2026
Viewed by 137
Abstract
Globally, more than 60,000 abandoned open-pit mines have been identified. Most of these sites lack effective management or ecological restoration measures. As a result, they pose substantial environmental and socioeconomic challenges. Against this backdrop, the reuse of quarry wastelands has emerged as a [...] Read more.
Globally, more than 60,000 abandoned open-pit mines have been identified. Most of these sites lack effective management or ecological restoration measures. As a result, they pose substantial environmental and socioeconomic challenges. Against this backdrop, the reuse of quarry wastelands has emerged as a critical strategy for improving resource efficiency and promoting sustainable development in mining regions. Current domestic research mainly concentrates on ecological restoration techniques for abandoned quarry sites. However, systematic methods for prioritizing and ranking alternative reuse models remain limited. This study investigated four quarry reuse models: agricultural production, ecological protection, recreation-based education, and new energy development. The analysis integrated site suitability (U1) with residents’ demands (U2). Four representative quarry sites in Jiawang District, Xuzhou City, were selected as case studies. Based on coupled matching analysis, a priority identification method for quarry site reuse models was developed. Results indicated divergent prioritization between site suitability and resident demand. Site suitability composite values ranged from 3.9548 to 6.3094. Qishan and Kanshan sites demonstrated high suitability for recreation-based education and agricultural production, while the Dongshan site showed the highest ecological protection suitability. Suitability for emerging energy applications was generally low across all sites. Resident demand composite values showed significant variation across the four models. Recreation-based education demand (U2 ranging from 0.3273 to 0.3778) substantially exceeded the other three land use types, with residents generally harbouring a degree of reluctance towards new energy development models. After coupling these factors, the original site suitability rankings were restructured: Qishan and Dongshan were selected for the recreation-based education model; Kanshan for agricultural production; and Changshan for ecological protection. This study offers insights for the diversified utilization of abandoned quarries in rural areas and provides a reference for ecological restoration and transformative development in mining regions. Full article
Show Figures

Figure 1

21 pages, 2605 KB  
Article
In Vitro Accuracy Analysis of Intraoral Scanning Strategies: A Comparison of Two Contemporary IOS Systems
by Sabina-Ana Răuță, Vlad Gabriel Vasilescu, Lucian Toma Ciocan, Alexandra Popa, Ana-Maria Cristina Țâncu, Florin Octavian Froimovici, Bogdan Dimitriu, Silviu-Mirel Pițuru and Marina Imre
Dent. J. 2026, 14(1), 52; https://doi.org/10.3390/dj14010052 - 13 Jan 2026
Viewed by 118
Abstract
Background: Digital intraoral scanning has become an essential component of modern restorative dentistry, offering enhanced accuracy, workflow efficiency, and patient comfort compared to conventional impression techniques. Despite these advantages, the accuracy of intraoral scanners (IOS) can be affected by multiple parameters, among [...] Read more.
Background: Digital intraoral scanning has become an essential component of modern restorative dentistry, offering enhanced accuracy, workflow efficiency, and patient comfort compared to conventional impression techniques. Despite these advantages, the accuracy of intraoral scanners (IOS) can be affected by multiple parameters, among which scanning strategy and device design are particularly influential. Purpose: This study aimed to investigate the effect of different scanning strategies on scan accuracy and precision, focusing on two widely used intraoral scanners (Medit i700 and Trios 5) in a controlled in vitro environment. Materials and Methods: A standardized digital test object was created according to ISO 20896-1 specifications to ensure uniformity and comparability. The object was printed using a high-precision 3D printer and scanned multiple times with both IOS systems, employing distinct scanning strategies under identical environmental conditions. Data analysis was performed using descriptive and comparative statistics, including Mean, Median, Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE), Standard Deviation (SD), and Variance, to evaluate trueness and precision. Results: The Medit i700 consistently exhibited lower deviation values and greater precision compared with the Trios 5, reflecting higher trueness and precision. Scanning strategy influenced scan outcomes; structured, systematic scanning paths produced more stable and accurate datasets. The Trios 5 demonstrated higher variability, suggesting increased sensitivity to operator motion and scanning trajectory. Conclusions: Both the scanner type and scanning strategy substantially affect intraoral scan accuracy. The superior performance of the Medit i700 indicates greater robustness and operator-independent stability. Clinically, these results underscore the importance of standardized scanning protocols, as operator consistency may be a key determinant of digital impression accuracy and, consequently, of clinical outcomes. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Graphical abstract

23 pages, 5099 KB  
Article
A Digital Twin Approach Integrating IoT and AI for Monitoring and Assessing Roof Degradation in Historic Buildings
by Margherita Valentini, Paolo Brotto, Paolo Campana, Miguel Capponi, Matteo Colli, Andrea Rapuzzi, Paolo Rosso, Sara Zani and Rita Vecchiattini
Intell. Infrastruct. Constr. 2026, 2(1), 2; https://doi.org/10.3390/iic2010002 - 13 Jan 2026
Viewed by 140
Abstract
The EN-HERITAGE project aims to define and prototype an integrated digital platform for the management of virtual models of buildings belonging to the historic built heritage, with a particular focus on slate roofing systems. The platform integrates IoT technologies for environmental monitoring, architectural [...] Read more.
The EN-HERITAGE project aims to define and prototype an integrated digital platform for the management of virtual models of buildings belonging to the historic built heritage, with a particular focus on slate roofing systems. The platform integrates IoT technologies for environmental monitoring, architectural surveys carried out using laser scanning and photogrammetry, HBIM models, and artificial intelligence algorithms for the analysis of degradation phenomena. The pilot application was conducted on the Albergo dei Poveri complex in Genoa, providing a replicable methodology for the planned conservation of the historic built environment. Preliminary results highlight the effectiveness of the platform in integrating heterogeneous data, providing stakeholders involved in the management of extensive architectural heritage with concrete support for decision-making processes and greater efficiency in planning maintenance and restoration interventions on historic buildings. Full article
Show Figures

Figure 1

44 pages, 3186 KB  
Article
Social Responsibility of Science in the Sustainable Development of Mining and Post-Mining Areas
by Lucyna Florkowska and Izabela Bryt-Nitarska
Appl. Sci. 2026, 16(2), 776; https://doi.org/10.3390/app16020776 - 12 Jan 2026
Viewed by 172
Abstract
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable [...] Read more.
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable Development Goals (SDGs). It identifies key responsibilities for science, including the development of sustainable extraction technologies, innovative land reclamation and ecosystem restoration strategies, and equitable frameworks for resource distribution that prioritize affected communities. The study emphasizes the importance of interdisciplinary approaches, the concept of Responsible Research and Innovation (RRI), and effective knowledge dissemination to minimize adverse impacts while enhancing mining’s contribution to renewable energy transitions. By exploring the interplay between mining, renewable energy, and sustainable development, this study underscores the transformative potential of science to balance humanity’s resource needs with ecological preservation and social equity. The findings offer actionable insights for aligning mining practices with sustainability principles, fostering resilience and equity in mining-impacted regions. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

18 pages, 3907 KB  
Article
Climate Change and Ecological Restoration Synergies Shape Ecosystem Services on the Southeastern Tibetan Plateau
by Xiaofeng Chen, Qian Hong, Dongyan Pang, Qinying Zou, Yanbing Wang, Chao Liu, Xiaohu Sun, Shu Zhu, Yixuan Zong, Xiao Zhang and Jianjun Zhang
Forests 2026, 17(1), 102; https://doi.org/10.3390/f17010102 - 12 Jan 2026
Viewed by 179
Abstract
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex [...] Read more.
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex alpine landscapes. This study aims to clarify whether multi-factor interactions produce nonlinear enhancements in ES explanatory power and how these driver–response relationships vary across heterogeneous terrains. We quantified spatiotemporal patterns of four key ecosystem services—water yield (WY), soil conservation (SC), carbon sequestration (CS), and habitat quality (HQ)—across the southeastern Tibetan Plateau from 2000 to 2020 using multi-source remote sensing data and spatial econometric modeling. Our analysis reveals that SC increased by 0.43 t·hm−2·yr−1, CS rose by 1.67 g·m−2·yr−1, and HQ improved by 0.09 over this period, while WY decreased by 3.70 mm·yr−1. ES variations are predominantly shaped by potent synergies, where interactive explanatory power consistently surpasses individual drivers. Hydrothermal coupling (precipitation ∩ potential evapotranspiration) reached 0.52 for WY and SC, while climate–vegetation synergy (precipitation ∩ normalized difference vegetation index) achieved 0.76 for CS. Such climate–restoration synergies now fundamentally shape the region’s ESs. Geographically weighted regression (GWR) further revealed distinct spatial dependencies, with southeastern regions experiencing strong negative effects of land use type and elevation on WY, while northwestern areas showed a positive elevation associated with WY but negative effects on SC and HQ. These findings highlight the critical importance of accounting for spatial non-stationarity in driver–ecosystem service relationships when designing conservation strategies for vulnerable alpine ecosystems. Full article
Show Figures

Figure 1

Back to TopTop