Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = entire displacement response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4919 KB  
Article
Integrating BIM Forward Design with CFD Numerical Simulation for Wind Turbine Blade Analysis
by Shaonan Sun, Mengna Li, Yifan Shi, Chunlu Liu and Ailing Wang
Energies 2025, 18(15), 3989; https://doi.org/10.3390/en18153989 - 25 Jul 2025
Viewed by 444
Abstract
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. [...] Read more.
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. A universal BIM modeling framework is developed for rapid blade modeling, which is compatible with ANSYS Workbench 2022 R1 through intermediate format conversion. The influence of wind load on the blades under various wind speed conditions is analyzed, and the results indicate a significant correlation between wind load intensity and blade structural response. The maximum windward pressure reaches 4.96 kPa, while the leeward suction peaks at −6.28 kPa. The displacement at the tip and middle part of the blades significantly increases with the increase in wind speed. The growth rate of displacement between adjacent speeds rises from 1.20 to 1.94, and the overall increase rate within the entire range rises from 1.02 to 4.16. These results demonstrate the feasibility of using BIM forward design in accurate performance analysis, and also extends the value of BIM in wind energy. Furthermore, a bidirectional information flow is established, where BIM provides geometry for CFD, and simulation results will inform BIM design refinement. Full article
(This article belongs to the Special Issue Wind Generators Modelling and Control: 2nd Edition)
Show Figures

Figure 1

25 pages, 8652 KB  
Article
Performance Improvement of Seismic Response Prediction Using the LSTM-PINN Hybrid Method
by Seunggoo Kim, Donwoo Lee and Seungjae Lee
Biomimetics 2025, 10(8), 490; https://doi.org/10.3390/biomimetics10080490 - 24 Jul 2025
Viewed by 503
Abstract
Accurate and rapid prediction of structural responses to seismic loading is critical for ensuring structural safety. Recently, there has been active research focusing on the application of deep learning techniques, including Physics-Informed Neural Networks (PINNs) and Long Short-Term Memory (LSTM) networks, to predict [...] Read more.
Accurate and rapid prediction of structural responses to seismic loading is critical for ensuring structural safety. Recently, there has been active research focusing on the application of deep learning techniques, including Physics-Informed Neural Networks (PINNs) and Long Short-Term Memory (LSTM) networks, to predict the dynamic behavior of structures. While these methods have shown promise, each comes with distinct limitations. PINNs offer physical consistency but struggle with capturing long-term temporal dependencies in nonlinear systems, while LSTMs excel in learning sequential data but lack physical interpretability. To address these complementary limitations, this study proposes a hybrid LSTM-PINN model, combining the temporal learning ability of LSTMs with the physics-based constraints of PINNs. This hybrid approach allows the model to capture both nonlinear, time-dependent behaviors and maintain physical consistency. The proposed model is evaluated on both single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structural systems subjected to the El-Centro ground motion. For validation, the 1940 El-Centro NS earthquake record was used, and the ground acceleration data were normalized and discretized for numerical simulation. The proposed LSTM-PINN is trained under the same conditions as the conventional PINN models (e.g., same optimizer, learning rate, and loss structure), but with fewer training epochs, to evaluate learning efficiency. Prediction accuracy is quantitatively assessed using mean error and mean squared error (MSE) for displacement, velocity, and acceleration, and results are compared with PINN-only models (PINN-1, PINN-2). The results show that LSTM-PINN consistently achieves the most stable and precise predictions across the entire time domain. Notably, it outperforms the baseline PINNs even with fewer training epochs. Specifically, it achieved up to 50% lower MSE with only 10,000 epochs, compared to the PINN’s 50,000 epochs, demonstrating improved generalization through temporal sequence learning. This study empirically validates the potential of physics-guided time-series AI models for dynamic structural response prediction. The proposed approach is expected to contribute to future applications such as real-time response estimation, structural health monitoring, and seismic performance evaluation. Full article
Show Figures

Figure 1

23 pages, 16208 KB  
Article
Low-Velocity Impact Response of Novel TPMS and Stochastic Lattice Cores of Sandwich Structures
by Alexandru Vasile, Dan Mihai Constantinescu, Iulian Constantin Coropețchi, Ștefan Sorohan and Andrei Ioan Indreș
Materials 2025, 18(12), 2889; https://doi.org/10.3390/ma18122889 - 18 Jun 2025
Viewed by 389
Abstract
This study explores the mechanical performance of triply periodic minimal surface (TPMS) and stochastic lattice structures subjected to low-velocity impact. Two structurally promising geometries—one TPMS-based and one stochastic—were tested and compared with the well-established gyroid. Specimens were fabricated using stereolithography (SLA) and subjected [...] Read more.
This study explores the mechanical performance of triply periodic minimal surface (TPMS) and stochastic lattice structures subjected to low-velocity impact. Two structurally promising geometries—one TPMS-based and one stochastic—were tested and compared with the well-established gyroid. Specimens were fabricated using stereolithography (SLA) and subjected to impact energies of 30 J and 40 J to assess the structural response and energy absorption capabilities. Experimental results show that the proposed TPMS structure exhibits higher impact forces compared with the gyroid, which are associated with significant impactor displacement and deep indentation. These samples demonstrated extensive damage, with cracking propagating through the entire core at higher energies, highlighting their susceptibility to structural failure despite their high initial strength. On the contrary, the stochastic structures allowed localized deformation in the impacted region, thus successfully avoiding catastrophic failure. The impact force efficiency was higher for both gyroid and stochastic geometries, with values ranging between 0.6 and 0.7, indicating effective energy absorption with reduced internal stress gradients. Furthermore, the evaluation of damping performance showed that most structures displayed high damping, as minimal energy was transferred back to the impactor. This work highlights the feasibility and functional versatility of TPMS and stochastic geometries for use in impact mitigation, vibration control, and related engineering applications. Full article
(This article belongs to the Special Issue Dynamic Behavior of Laminated and Sandwich Composite Materials)
Show Figures

Figure 1

18 pages, 3544 KB  
Article
The Effect of Stress Distribution on Tibial Implants with a Honeycomb Structure in Open-Wedge High Tibial Osteotomy
by Zengbo Xu, Chunhui Mu and Yi Xia
Appl. Sci. 2025, 15(12), 6467; https://doi.org/10.3390/app15126467 - 9 Jun 2025
Viewed by 538
Abstract
A tibial implant is necessary to provide mechanical support in open-wedge high tibial osteotomy (OWHTO) treatment of knee osteoarthritis. The pore structure and porosity of implants exert significant effect on tibia stress distribution and lower limb alignment stability. In this study, finite element [...] Read more.
A tibial implant is necessary to provide mechanical support in open-wedge high tibial osteotomy (OWHTO) treatment of knee osteoarthritis. The pore structure and porosity of implants exert significant effect on tibia stress distribution and lower limb alignment stability. In this study, finite element (FE) analysis and in vitro biomechanical experiments were utilized to evaluate the impact of different tibial implants on postoperative tibial stress distribution. The biomechanical experimental results of experiments on tibial implants exhibit similar mechanical response patterns to the established finite element model, whose maximum displacement error is 1.18% under 1500 N compressive load. The hybrid porous implant developed in this study demonstrated significant stress reductions in both tibial bone (19.97% and 15.33% lower than mono-porous configurations at 73% porosity) and implant body (31.60% and 11.83% reductions, respectively), while exhibiting diminished micromotion tendencies. This consistent performance pattern was maintained across the entire porosity spectrum (53–83%) in implanted specimens. In summary, the finite element model established using authentic tibial CT data can effectively guide the structural design of tibial implants, and optimized pore structure design can provide enhanced mechanical support effects for tibial implants. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

25 pages, 14713 KB  
Review
From Flood Mitigation to Environmental and Socioeconomic Disruption: A Case Study of the Langue de Barbarie Sand Spit Breach
by Souleymane Fall
Hydrology 2025, 12(4), 97; https://doi.org/10.3390/hydrology12040097 - 19 Apr 2025
Viewed by 1323
Abstract
In October 2003, an artificial canal was dug across the Langue de Barbarie sand spit at the mouth of the Senegal River to prevent the city of Saint-Louis (Senegal) from being submerged by floods. This study aimed to explore the multiple facets of [...] Read more.
In October 2003, an artificial canal was dug across the Langue de Barbarie sand spit at the mouth of the Senegal River to prevent the city of Saint-Louis (Senegal) from being submerged by floods. This study aimed to explore the multiple facets of this sudden environmental change to provide a holistic overview of the situation and a better understanding of man-made alterations of coastal features, a crucial step for implementing efficient management of such situations and developing appropriate mitigation and adaptation policies. Satellite imagery from the US Geological Survey was used to show the historical evolution of the breach, and a comprehensive overview of the existing literature was conducted to explore its hydrological, geomorphological, ecological, and socioeconomic impacts. Although the canal facilitated the rapid evacuation of floodwaters and saved the city from a major flooding event, the breach widened considerably, becoming the new river mouth and resulted in unforeseen adverse consequences. Environmental consequences included the partial dismantling of the spit, increased tidal range, salinization of land and water, and loss of habitat and local biodiversity. Socioeconomic consequences were severe, including the loss of agricultural land and reduced yields, declining fishing productivity, the destruction of villages, the displacement of entire communities, and the forced migration of many young people. Affected communities developed resilience strategies, with women playing a leading role in these adaptive responses. This study highlights the need for integrated coastal management and policies that consider both environmental and human factors, as well as for future research that will help improve the management of coastal ecosystem alterations. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

20 pages, 60234 KB  
Article
Combining InSAR and Time-Series Clustering to Reveal Deformation Patterns of the Heifangtai Loess Terrace
by Hao Xu, Bao Shu, Qin Zhang, Guohua Xiong and Li Wang
Remote Sens. 2025, 17(3), 429; https://doi.org/10.3390/rs17030429 - 27 Jan 2025
Cited by 1 | Viewed by 1142
Abstract
The Heifangtai Loess terrace in northwest China is frequently affected by landslides due to hydrological factors, establishing it as a significant research area for loess landslides. Advanced time-series InSAR technology facilitates the retrieval of surface deformation information, thereby aiding in the monitoring of [...] Read more.
The Heifangtai Loess terrace in northwest China is frequently affected by landslides due to hydrological factors, establishing it as a significant research area for loess landslides. Advanced time-series InSAR technology facilitates the retrieval of surface deformation information, thereby aiding in the monitoring of landslide deformation status. However, existing methods that analyze deformation patterns do not fully exploit the displacement time series derived from InSAR, which hampers the exploration of potentially coexisting deformation patterns within the area. This study integrates InSAR with time-series clustering methods to reveal the surface deformation patterns and their spatial distribution characteristics in Heifangtai. Initially, utilizing the Sentinel-1 ascending and descending SAR data stack from January 2020 to June 2023, we optimize the interferometric phase based on distributed scatterer characteristics to reduce noise levels and obtain higher spatial density of measurement points. Subsequently, by combining the differential interferometric datasets from both ascending and descending orbits, the multidimensional small baseline subsets technique is employed to calculate the two-dimensional deformation time series. Finally, time-series clustering methods are utilized to extract the deformation patterns present and their spatial distribution from all measurement point time series. The results indicate that the deformation of the Heifangtai is primarily distributed around the surrounding area of the platform, with subsidence deformation being more intense than horizontal deformation. The entire terrace exhibits five deformation patterns: eastward subsidence, westward subsidence, vertical subsidence, westward movement, and eastward movement. The spatial distribution of these patterns suggests that the areas beneath the platform, namely Yanguoxia Town and Dangchuan Village, may be more susceptible to landslide threats in the future. Furthermore, wavelet analysis reveals the response relationship between rainfall and various deformation patterns, further enhancing the interpretability of these patterns. These findings hold significant implications for subsequent landslide monitoring, early warning, and risk prevention. Full article
Show Figures

Figure 1

21 pages, 7471 KB  
Article
Monitoring the Calibration Status of a Universal Testing Machine Through the Implementation of Acoustic Methods: Development of Equipment and a Suitable Interface
by Sharath P. Subadra, Roy Skaria, Andrea Hasselmann, Eduard Mayer and Shahram Sheikhi
NDT 2025, 3(1), 2; https://doi.org/10.3390/ndt3010002 - 2 Jan 2025
Viewed by 1387
Abstract
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of [...] Read more.
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of accuracy is then certified and the traceability of the measurements is determined. There are several internationally recognized standards that are used to calibrate the cross-head speed and displacement (ASTM E2658 and E2309, respectively), strain and load rate (ASTM E2309), measurement of tension, compression (ASTM E4) and dynamic force (ASTM E467). The current study aims to monitor the calibration status of UTMs through the implementation of acoustic methods. A methodology is developed whereby a reference sample is initially identified with suitable material properties, enabling it to be used continuously. The sample is used simultaneously with acoustic instruments to check its natural frequencies, which enables the monitoring of the UTM calibration status. An algorithm is developed that enables the user to interact with the system, thus forming an interface and helping the user to check the calibration status of the equipment. The entire system is validated to check if the equipment and the inbuilt algorithm can predict the calibration status of the machine. It was found that the geometric constraints imposed on the sample influence the output from the algorithm, and hence correct values should be fed to the system. Our sample never lost its elastic characteristics through continuous use, demonstrating that it can be used to continuously monitor the machine’s status. Full article
Show Figures

Graphical abstract

26 pages, 8072 KB  
Article
Hydrodynamic Response to Current and Wind on a Large Floating Interconnected Structure
by Sarat Chandra Mohapatra, Pouria Amouzadrad, Iuri Baldaconi da Silva Bispo and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(1), 63; https://doi.org/10.3390/jmse13010063 - 1 Jan 2025
Cited by 13 | Viewed by 1879
Abstract
A numerical hydrodynamic model for a moored interconnected floating large structure under the action of regular waves is presented to analyze the effect of current and wind. The floating structure consists of 20 hinged plates that are linked together and secured with mooring [...] Read more.
A numerical hydrodynamic model for a moored interconnected floating large structure under the action of regular waves is presented to analyze the effect of current and wind. The floating structure consists of 20 hinged plates that are linked together and secured with mooring lines along its edges. A brief discussion is provided on the multi-body hydrodynamics equations related to the numerical model definitions in both the frequency and time domains. Conversely, a concise overview of the experiment is given. The numerical model outcomes of vertical displacements and wave quantities are compared against the results obtained from model test data sets and numerical and analytical models in a recent publication. A high degree of accuracy has been noted in reflection and transmission coefficients with a certain value of current velocity. The numerical model simulating interconnected structures of 10 and 16 hinged plates is analyzed, and the resulting vertical displacements under the influence of current are compared to those of a 20-hinged structure. The impact of currents and winds on the hydrodynamic response of the structure is examined by studying various results, using stiffness values for both mooring and hinges. Further, the effect of wavelengths on the wave transmission on every side of the interconnected structure through contour diagrams, hydrodynamic diffraction for different incident angles, and wave quantities on current speed are analyzed. It is observed that as the current speed rises, the structural displacement also escalates; meanwhile, no impact of the wind on the floating interconnected structure is noted. It has been observed that as the wave direction shifts from 0° to 60°, the interconnected floating structure experiences a slight reduction in wave motion throughout the entire system. Full article
Show Figures

Figure 1

23 pages, 4823 KB  
Article
Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia
by Viata Viriezky, Dalhar Susanto and Miktha Farid Alkadri
Infrastructures 2025, 10(1), 5; https://doi.org/10.3390/infrastructures10010005 - 30 Dec 2024
Cited by 1 | Viewed by 1644
Abstract
The Indonesian population is projected to increase by 66.65 in 2035 due to the continuous rise in urbanization globally. The growth contributed to the growing housing backlog and limited availability of residential spaces. This led to the evolution of incremental housing construction as [...] Read more.
The Indonesian population is projected to increase by 66.65 in 2035 due to the continuous rise in urbanization globally. The growth contributed to the growing housing backlog and limited availability of residential spaces. This led to the evolution of incremental housing construction as an appropriate solution to residents’ needs. However, several factors hinder the implementation of incremental housing, including prolonged construction durations that delay the completion of an entire house, compromised quality of workmanship and materials, as well as poor flexibility. Conventional on-site construction, with concrete serving as the main material, led to prolonged construction time, difficult renovation, and untreatable waste. Preliminary studies have been conducted on incremental housing from urban development and financial perspectives, with none on alternative construction systems. Therefore, this study aimed to develop flexible and sustainable incremental housing with an assembly–disassembly system capable of reducing construction time and waste. This study experimented on the connection systems through digital simulations and prototypes leading to a construction system that combines frames and panels in a semi-volumetric system. It also combined a plug-and-play connection type to achieve the highest assembly–disassembly efficiency value (0.07), the lowest waste (below 25%), and a 30% shorter construction time. The result showed no displacement when tested with a load of up to 3 tons. This study contributed to the growing body of knowledge on alternative incremental house construction techniques, paving the way for more adaptable and environmentally responsible housing solutions in urban settings, particularly in rapidly urbanizing regions like Indonesia. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures, 3rd Edition)
Show Figures

Figure 1

19 pages, 7335 KB  
Article
Mechanical Behavior of Marine Soft Soil with Different Water Contents Under Cyclic Loading
by Yajun Liu, Heng Zhang, Yindong Sun, Ke Wu and Wenbin Xiao
J. Mar. Sci. Eng. 2024, 12(12), 2307; https://doi.org/10.3390/jmse12122307 - 15 Dec 2024
Viewed by 1072
Abstract
This study integrates macroscopic dynamic triaxial tests with microscopic discrete element simulations to comprehensively examine the dynamic deformation characteristics of marine soft soils under cyclic loading. Unlike previous research that typically focuses solely on experimental or numerical methods, this approach combines both techniques [...] Read more.
This study integrates macroscopic dynamic triaxial tests with microscopic discrete element simulations to comprehensively examine the dynamic deformation characteristics of marine soft soils under cyclic loading. Unlike previous research that typically focuses solely on experimental or numerical methods, this approach combines both techniques to enable a holistic analysis of soil behavior. The dynamic triaxial tests assessed macroscopic responses, including strain evolution and energy dissipation, under varying dynamic stress ratios, confining pressures, and water contents. Concurrently, discrete element simulations uncovered the microscopic mechanisms driving these behaviors, such as particle rearrangement, porosity variations, and shear zone development. The results show that (1) The strain range of marine soft soils increases significantly with higher dynamic stress ratios, confining pressures, and water contents; (2) Cumulative dynamic strain and particle displacement intensify at water contents of 50% and 55%. However, at a water content of 60%, the samples exhibit significant damage characterized by the formation of shear bands throughout the entire specimen; (3) As water content increases, energy dissipation in marine soft soils accelerates under lower confining pressures but increases more gradually under higher confining pressures. This behavior is attributed to enhanced particle packing and reduced pore space at elevated confining pressures. This integrated methodology not only enhances analytical capabilities but also provides valuable engineering insights into the dynamic response of marine soft soils. The findings offer essential guidance for the design and stabilization of marine soft soil infrastructure in coastal urban areas. Full article
Show Figures

Figure 1

28 pages, 625 KB  
Review
A Risk Management Approach to Global Pandemics of Infectious Disease and Anti-Microbial Resistance
by Annie Sparrow, Meghan Smith-Torino, Samuel M. Shamamba, Bisimwa Chirakarhula, Maranatha A. Lwaboshi, Christine Stabell Benn and Konstantin Chumakov
Trop. Med. Infect. Dis. 2024, 9(11), 280; https://doi.org/10.3390/tropicalmed9110280 - 18 Nov 2024
Cited by 3 | Viewed by 3948
Abstract
Pandemics of infectious disease and growing anti-microbial resistance (AMR) pose major threats to global health, trade, and security. Conflict and climate change compound and accelerate these threats. The One Health approach recognizes the interconnectedness of human, animal, and environmental health, but is grounded [...] Read more.
Pandemics of infectious disease and growing anti-microbial resistance (AMR) pose major threats to global health, trade, and security. Conflict and climate change compound and accelerate these threats. The One Health approach recognizes the interconnectedness of human, animal, and environmental health, but is grounded in the biomedical model, which reduces health to the absence of disease. Biomedical responses are insufficient to meet the challenges. The COVID-19 pandemic is the most recent example of the failure of this biomedical model to address global threats, the limitations of laboratory-based surveillance, and the exclusive focus on vaccination for disease control. This paper examines the current paradigm through the lens of polio and the global campaign to eradicate it, as well as other infectious threats including mpox and drug-resistant tuberculosis, particularly in the context of armed conflict. Decades before vaccines became widely available, public health measures—ventilation, chlorination, nutrition and sanitation— led to longer, healthier, and even taller lives. Chlorine, our primary tool of public health, conquered cholera and transformed infection control in hospitals. The World Health Organization (WHO), part of the One Health alliance, focuses mainly on antibiotics and vaccines to reduce deaths due to superbugs and largely ignores the critical role of chlorine to control water-borne diseases (including polio) and other infections. Moreover, the One Health approach ignores armed conflict. Contemporary wars are characterized by indiscriminate bombing of civilians, attacks targeting healthcare, mass displacement and lack of humanitarian access, conditions which drive polio outbreaks and incubate superbugs. We discuss the growing trend of attacks on healthcare and differentiate between types: community-driven attacks targeting vaccinators in regions like Pakistan, and state-sponsored attacks by governments such as those of Syria and Russia that weaponize healthcare to deliberately harm whole populations. Both fuel outbreaks of disease. These distinct motivations necessitate tailored responses, yet the WHO aggregates these attacks in a manner that hampers effective intervention. While antimicrobial resistance is predictable, the escalating pandemic is the consequence of our reliance on antibiotics and commitment to a biomedical model that now borders on pathological. Our analysis reveals the international indenture to the biomedical model as the basis of disease control is the root driver of AMR and vaccine-derived polio. The unique power of vaccines is reduced by vaccination-only strategy, and in fact breeds vaccine-derived polio. The non-specific effects of vaccines must be leveraged, and universal vaccination must be supplemented by international investment in water chlorination. This will reduce health costs and strengthen global health security. While vaccines are an important weapon to combat pandemics and AMR, they must be accompanied by the entire arsenal of public health interventions. Full article
Show Figures

Figure 1

19 pages, 6390 KB  
Article
Study on Dynamic Response Characteristics and Monitoring Indicators of High-Speed Railway Subgrade in Karst Areas
by Mingzhou Bai, Ling Yang, Yanfeng Wei and Hongyu Liu
Appl. Sci. 2024, 14(19), 8715; https://doi.org/10.3390/app14198715 - 27 Sep 2024
Cited by 1 | Viewed by 1068
Abstract
The impact of karst collapses on railway engineering spans the entire lifecycle of railway construction and operation, with train loads being a significant factor in inducing such collapses. To study the dynamic response characteristics of subgrades in karst areas and to select appropriate [...] Read more.
The impact of karst collapses on railway engineering spans the entire lifecycle of railway construction and operation, with train loads being a significant factor in inducing such collapses. To study the dynamic response characteristics of subgrades in karst areas and to select appropriate monitoring points and indicators for long-term effective monitoring, a numerical simulation method was employed to analyze the vibration response characteristics of the subgrade. A three-dimensional finite element model coupling the high-speed train, ballastless track, and subgrade foundation was established to study the vibration responses of subgrades when the train passes over a subgrade with an underlying soil hole and one without a soil hole. The results indicate that when there was a soil hole, both the dynamic displacement amplitude and vibration acceleration amplitude decreased, while the dominant frequency slightly increased, with the dominant frequency being higher at locations closer to the soil hole. The vibration response at the soil hole location showed significant attenuation, with the attenuation coefficient of dynamic displacement amplitude being higher than that of the vibration acceleration amplitude. Monitoring points were arranged at positions 0 m to 10 m from the toe of the slope, with vertical dynamic displacement, vertical vibration acceleration, the dominant frequency of vertical vibration acceleration, and corresponding amplitude selected as monitoring indicators. These indicators effectively reflect whether soil holes exist within the subgrade and help identify the locations of defects. This study summarizes the dynamic response characteristics of subgrades in karst areas under different conditions, providing a basis for the design and monitoring of railway subgrades in regions prone to karst collapse. Full article
Show Figures

Figure 1

27 pages, 17843 KB  
Article
A Study on Historical Big Data Analysis of Surface Ecological Damage in the Coal Mining Area of Lvliang City Based on Two Mining Modes
by Quanzhi Li, Zhenqi Hu, Fan Zhang, Yanwen Guo and Yusheng Liang
Land 2024, 13(9), 1411; https://doi.org/10.3390/land13091411 - 1 Sep 2024
Cited by 3 | Viewed by 1509
Abstract
Coal mining inevitably causes damage to the surface ecological environment. In response to the characteristics of multiple factors, wide scope, and long time series of surface ecological environment damage in coal mining subsidence areas, how to integrate multiple data sources and monitoring methods [...] Read more.
Coal mining inevitably causes damage to the surface ecological environment. In response to the characteristics of multiple factors, wide scope, and long time series of surface ecological environment damage in coal mining subsidence areas, how to integrate multiple data sources and monitoring methods to achieve monitoring and trend analysis of ecological damage throughout the entire mining cycle still needs to be studied. In addition, the 110 mining method provides an innovative method for underground coal mining to reduce its surface ecological damage, but the differences in surface damage between the two mining modes and the effectiveness of the 110 method in realizing surface ecological damage-reducing mining still need to be studied in depth. Therefore, this study takes the surface ecological damage in the mining area of Lvliang City, a typical resource city in Shanxi Province, China, as the object. It establishes a four-in-one “Satellite–UAV–Ground–Underground” information monitoring method, proposes a historical big data evolution analysis method, constructs three spatial scales of historical big databases, clarifies the current situation and development trend of damage in coal mining areas in Lvliang City and explores the differences in surface ecological environment damage characteristics in coal mining areas based on the 121 and 110 mining methods. The results show that: (1) The existing coal mining subsidence area in Lvliang City is as high as 92,191.47 hectares, and it is expected to continue to increase to 130,739.55 hectares in the future 2035, with a growth rate of 41.812%, which realizes the goals of mapping the current situation, retracing the history and predicting the future of the ecological damage of the surface in Lvliang City. (2) The surface NDVI of the 110 working face is restored to the average level of the mining area faster than that of the 121 working face. The surface crack width, step displacement, length, distribution density, and surface settlement height of the 110 working face are all smaller than those of the 121 working face. It has been verified that the unique top-cutting and swelling filling effect of the 110 methods can effectively reduce the ecological damage caused by coal mining subsidence. And its widespread application can effectively realize the ecological environmental protection of the coal mine area and contribute to the high-quality development of the coal industry in Lvliang City. Full article
Show Figures

Figure 1

24 pages, 9018 KB  
Article
Improved State-Space Approach Based on Lumped Mass Matrix for Transient Analysis of Large-Scale Locally Nonlinear Structures
by Baoyin Sun, Jiaheng Xuan, Long Gao, Kai Wang and Jinping Ou
Buildings 2024, 14(9), 2735; https://doi.org/10.3390/buildings14092735 - 31 Aug 2024
Cited by 1 | Viewed by 1227
Abstract
Due to the assumption of acceleration variation in traditional step-by-step integration methods such as Newmark, sufficiently small time steps are required to ensure numerical stability and accuracy in dynamic systems. In contrast, the state-space approach, based on piecewise interpolation of discrete load functions, [...] Read more.
Due to the assumption of acceleration variation in traditional step-by-step integration methods such as Newmark, sufficiently small time steps are required to ensure numerical stability and accuracy in dynamic systems. In contrast, the state-space approach, based on piecewise interpolation of discrete load functions, does not rely on predetermined acceleration assumptions and has demonstrated high efficiency in terms of stability and accuracy. The original state-space method requires the calculation of the inverse of the structural mass in the transition matrix. However, when a lumped mass matrix is used, this computation renders the entire mass matrix singular, resulting in an invalid solution expression. To address this issue, this study proposes an improved state-space approach for the transient analysis of large-scale structural systems with local nonlinearities. In this approach, a nonlinear force corrector is introduced as an external force term applied to the linear elastic system to account for the nonlinear behavior of locally yielding components. Consequently, the original nonlinear dynamic system can be transformed into an equivalent linear elastic transient system. Furthermore, based on the lumped mass matrix, a first-order ordinary differential state-space equation for such an equivalent linear elastic transient system is derived. Simulation results from three transient system examples show that the state-space approach outperforms the Newmark method in terms of accuracy and stability for dynamic systems characterized by high frequency and low damping. The prediction results show that the state-space approach appears to be insignificantly affected by the choice of the consistent or lumped mass matrix. The numerical results show that the root-mean-square errors between the consistent and lumped matrices in the top displacement time histories of a 15-storey plane frame under various seismic intensities are all less than 1%, and in the base reaction time histories responses the discrepancies are only about 0.5%, indicating that the use of lumped mass matrices is quite reliable. When many nodes or degrees of freedom have no assigned mass, the dimensionality of the state-space equation can be significantly reduced using the lumped mass approach. Therefore, the simulation of large-scale systems can be simplified by employing the improved state-space approach with lumped mass matrices, yielding results nearly identical to those obtained using traditional methods. In conclusion, the improved state-space approach has great potential for the simulation of transient behavior in large-scale systems with local nonlinearities. Full article
Show Figures

Figure 1

14 pages, 6686 KB  
Article
Development of Simplified Methods for Levitation Force Distribution in Maglev Vehicles Using Frequency Ratio Tests
by Wen Ji, Weihua Ma, Shihui Luo, Guofeng Zeng, Feng Ye and Mingbo Liu
Sensors 2024, 24(17), 5527; https://doi.org/10.3390/s24175527 - 26 Aug 2024
Viewed by 987
Abstract
Maglev vehicles apply the entire vehicle load uniformly onto bridges through levitation forces. In assessing the dynamic characteristics of the maglev train–bridge coupling system, it is reasonable to simplify the distributed levitation force as a concentrated force. This article theoretically derives the analytical [...] Read more.
Maglev vehicles apply the entire vehicle load uniformly onto bridges through levitation forces. In assessing the dynamic characteristics of the maglev train–bridge coupling system, it is reasonable to simplify the distributed levitation force as a concentrated force. This article theoretically derives the analytical response of bridge dynamics under the action of a single constant force and conducts numerical simulations for a moving single constant force and a series of equally spaced constant forces passing over simply supported beams and two-span continuous beams, respectively. The topic of discussion is the response of bridge dynamics when different degrees of force concentration are involved. High-precision displacement and acceleration sensors were utilized to conduct tests on the Shanghai maglev line to verify the accuracy of the simulation results. The results indicate that when simplifying the distributed levitation force into a concentrated force model, a frequency ratio can be used to analyze the conditions for resonance between the train and the bridge and to calculate the critical speed of the train; the levitation distribution force of a high-speed maglev vehicle can be simplified into four groups of concentrated forces based on the number of levitation frames to achieve sufficient accuracy, with the dynamic response of the bridge being close to that under distributed loads. Full article
(This article belongs to the Special Issue Emerging Sensing Technologies for Machine Health State Awareness)
Show Figures

Figure 1

Back to TopTop