Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = energy budget closure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11588 KiB  
Article
Optimization of Airflow Organization in Bidirectional Air Supply Data Centers in China
by Yixin Wu, Junwei Yan and Xuan Zhou
Appl. Sci. 2025, 15(10), 5711; https://doi.org/10.3390/app15105711 - 20 May 2025
Viewed by 446
Abstract
Optimizing airflow organization is essential for ensuring the energy-efficient and secure operation of data centers. To address common airflow distribution issues in air-cooled systems, such as uneven air supply and cooling capacity imbalance, this study investigates a bidirectional airflow data center room located [...] Read more.
Optimizing airflow organization is essential for ensuring the energy-efficient and secure operation of data centers. To address common airflow distribution issues in air-cooled systems, such as uneven air supply and cooling capacity imbalance, this study investigates a bidirectional airflow data center room located in a hot-summer and warm-winter region. A computational fluid dynamics (CFD) model was developed based on field-measured data to analyze the airflow distribution characteristics and evaluate the existing thermal conditions. Three optimization strategies were systematically examined: (1) Installation of rack blanking panels, (2) cold aisle containment with varying degrees of closure, and (3) combined implementations of these measures. Performance evaluation was conducted using three thermal metrics: the Return Temperature Index (RTI), Supply Heat Index (SHI), and Rack Cooling Index (RCIHI). The results demonstrate that among individual optimization strategies, rack blanking panels achieved the most significant improvement, reducing SHI by 42.61% while effectively eliminating local hotspots. For combined optimization strategies, the rack blanking panels and fully contained cold aisle containment showed optimal performance, improving cooling utilization efficiency by 88.26%. The optimal retrofit solution for this data center is the rack blanking panels with fully contained cold aisle containment. When considering budget constraints, the secondary option would be rack blanking panels with cold aisle top-only containment. These findings provide practical guidance for energy efficiency improvements in similar data center environments. Full article
Show Figures

Figure 1

15 pages, 14782 KiB  
Article
Quantifying the Contribution and Mobility of In Situ-Produced Helium in He-Retentive Minerals: A Case Study of the Salla-Kuolajarvi Metasomatic Rocks (Russia)
by Maria Andreevna Gannibal, Andrey Evgenievich Gannibal, Arkadii Avenirovich Kalinin, Tatiana Vladimirovna Kaulina and Vitalii Valentinovich Kolobov
Minerals 2024, 14(12), 1252; https://doi.org/10.3390/min14121252 - 9 Dec 2024
Viewed by 778
Abstract
An alternative approach to separating trapped and radiogenic helium, and assessing the mobility of the latter in He-retentive minerals implemented in the present work, has been developed on the basis of helium extraction patterns obtained via incremental heating of mineral samples. We used [...] Read more.
An alternative approach to separating trapped and radiogenic helium, and assessing the mobility of the latter in He-retentive minerals implemented in the present work, has been developed on the basis of helium extraction patterns obtained via incremental heating of mineral samples. We used these data both to estimate helium mobility in concentrates of various ore minerals (pyrite, magnetite, and hematite) and to assess the contribution of in situ-produced 4He in the total helium budget. The rocks of uranium-ore and gold mineralization of the Salla-Kuolajarvi belt (northern Karelia, Fennoscandian Shield) were used as test materials for the new approach. The method allowed such parameters as diffusivity, activation energy, closure temperature, and the contribution of the trapped helium to be obtained for all samples. The latter was used for the correction of apparent U-Th-He bulk ages. The interpretation of the calculated values was performed taking into account the closure temperatures of the U-Th-He system, as well as the peculiarities of each individual sample. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

18 pages, 6223 KiB  
Article
Distributions and Direct Radiative Effects of Different Aerosol Types in North China
by Nan Peng, Jing Su, Xinyi Han, Xingzhu Deng, Weiqi Lan and Jinyan Wang
Remote Sens. 2023, 15(23), 5511; https://doi.org/10.3390/rs15235511 - 27 Nov 2023
Cited by 2 | Viewed by 1775
Abstract
Different aerosol types exhibit distinct radiative effects in different regions, attributed to their unique optical characteristics and regional distributions. This study focuses on North China, which is impacted by both natural and anthropogenic aerosols with high concentrations and a variety of aerosol types. [...] Read more.
Different aerosol types exhibit distinct radiative effects in different regions, attributed to their unique optical characteristics and regional distributions. This study focuses on North China, which is impacted by both natural and anthropogenic aerosols with high concentrations and a variety of aerosol types. While many studies on aerosol direct radiative effects have been conducted in this region, the majority have focused on a specific type of aerosol or overall aerosol, leaving limited research on the direct radiative effects and contributions of different aerosol types. In this study, we use CALIPSO satellite data from 2011 to 2020 to investigate concentrations and distributions of different aerosol types. The results reveal that dust, polluted dust, polluted continental/smoke, and elevated smoke are the dominant aerosol types in North China. Based on the radiative closure experiment, we systematically calculate the radiative effects of different aerosol types and their corresponding contributions to the energy budget by combining satellite data with the Fu–Liou radiative transfer model. The annual average net aerosol direct radiative effect (ADRE) of North China is −6.1 and −13.43 W m−2 at the TOA and surface, respectively, causing a net warming effect of 7.33 W m−2 in the atmosphere. For each main aerosol type, dust contributes 93% to the shortwave ADRE in the western dust source region, while polluted dust mainly contributes 31% and 45% of the total ADRE, in Northwest China and North China Plain, respectively. Anthropogenic pollutant aerosols account for 58% of the total ADRE in Northeast China. This study holds great significance in elucidating the dominant aerosol types and their concentrations in North China, comprehending the impacts of different aerosol types on the local energy balance. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosol, Cloud and Their Interactions)
Show Figures

Figure 1

14 pages, 3683 KiB  
Technical Note
The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China
by Xuancheng Lu, Jun Wen, Dongxiao Wang, Wenhui Liu, Yue Yang, Hui Tian, Yueyue Wu and Yuqin Jiang
Remote Sens. 2023, 15(1), 220; https://doi.org/10.3390/rs15010220 - 30 Dec 2022
Viewed by 2322
Abstract
Near-surface energy budget closure has been a trending topic in land surface processes research, especially on the underlying surfaces of heterogeneous wetlands. In this investigation, the horizontal thermal advection caused by thermal inhomogeneity over the alpine wetland is calculated based on the eddy [...] Read more.
Near-surface energy budget closure has been a trending topic in land surface processes research, especially on the underlying surfaces of heterogeneous wetlands. In this investigation, the horizontal thermal advection caused by thermal inhomogeneity over the alpine wetland is calculated based on the eddy covariance data observed at the Flower Lake observation field and WRF modelling data over the Zoige alpine wetland, China. The contribution of horizontal thermal advection to the near-surface energy closure is analysed. The results show that the mean horizontal heat advection of the Zoige wetland is 20.2 W·m−2, and the maximum value reached 55.0 W·m−2 in the summer of 2017. After introducing thermal advection into the near-surface energy balance equation, the near-surface energy closure ratio increased from 72.3% to 81.0%. Full article
Show Figures

Figure 1

57 pages, 1502 KiB  
Review
Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges
by Mercedeh Taheri, Abdolmajid Mohammadian, Fatemeh Ganji, Mostafa Bigdeli and Mohsen Nasseri
Energies 2022, 15(4), 1264; https://doi.org/10.3390/en15041264 - 9 Feb 2022
Cited by 35 | Viewed by 4439
Abstract
The surface energy balance (SEB) model is a physically based approach in which aerodynamic principles and bulk transfer theory are used to estimate actual evapotranspiration. A wide range of different methods have been developed to parameterize the SEB equation; however, few studies addressed [...] Read more.
The surface energy balance (SEB) model is a physically based approach in which aerodynamic principles and bulk transfer theory are used to estimate actual evapotranspiration. A wide range of different methods have been developed to parameterize the SEB equation; however, few studies addressed solutions to the SEB considering the land surface temperature (LST). Therefore, in the current review, a clear and comprehensive classification is provided for energy-based approaches considering the key role of LST in solving the energy budget. In this regard, three general approaches are presented using LSTs derived by climate and land surface models (LSMs), satellite-based data, and energy balance closure. In addition, this review surveys the concepts, required inputs, and assumptions of energy-based LSMs and SEB algorithms in detail. The limitations and challenges of aforementioned approaches including land surface temperature, surface energy imbalance, and calculation of surface and aerodynamic resistance network are also assessed. According to the results, since the accuracy of resulting LSTs are affected by weather conditions, surface energy closure, and use of vegetation/meteorological information, all approaches are faced with uncertainties in determining ET. In addition, for further study, an interactive evaluation of water and energy conservation laws is recommended to improve the ET estimation accuracy. Full article
(This article belongs to the Topic Advances in Clean Energies)
Show Figures

Figure 1

17 pages, 4284 KiB  
Article
Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland
by Qianguang Tu, Chunmei Cheng and Peng Qin
Water 2020, 12(2), 523; https://doi.org/10.3390/w12020523 - 13 Feb 2020
Cited by 2 | Viewed by 2944
Abstract
Extending instantaneous latent heat flux to daily, monthly, or even yearly evapotranspiration (ET) is a fundamental issue in using remote sensing to estimate ET at local and regional scales. In this study, the extending parameterizations of the surface energy balance of a mid-latitude [...] Read more.
Extending instantaneous latent heat flux to daily, monthly, or even yearly evapotranspiration (ET) is a fundamental issue in using remote sensing to estimate ET at local and regional scales. In this study, the extending parameterizations of the surface energy balance of a mid-latitude grassland with shallow water table (SWT) at diurnal and seasonal time scales are examined based on data measured by the eddy covariance system and automated weather station from Wageningen University from June 2014 to October 2018. The results show that the ratio of turbulent heat flux to available surface energy (often called budget closure rate) ranges between 0.86 and 0.93 for warm times (March to October), and between 0.59 and 0.77 for cold times (November to February the following year). The parameterization models used to approximate the surface albedo and evaporative fraction (EF) are also evaluated. Although obvious variation under clear skies during daytime are observed, the constant EF and albedo method provided an acceptable estimation of the daily scale ET with an underestimation of about 6–8% for the grassland with SWT and parameterization of diurnal correction shows little improvement in both the bias and RMSE. The progression of daily ET shows a seasonal cycle, which follows the variation of the net radiation flux. These results will be helpful for estimating ET at daily and long temporal scales based on satellite remote sensing. Full article
(This article belongs to the Special Issue Evapotranspiration and Plant Irrigation Strategies)
Show Figures

Figure 1

17 pages, 2395 KiB  
Article
Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters
by Jerry E. Moorhead, Gary W. Marek, Prasanna H. Gowda, Xiaomao Lin, Paul D. Colaizzi, Steven R. Evett and Seth Kutikoff
Agronomy 2019, 9(2), 99; https://doi.org/10.3390/agronomy9020099 - 20 Feb 2019
Cited by 38 | Viewed by 6602
Abstract
Evapotranspiration (ET) is an important component in the water budget and used extensively in water resources management such as water planning and irrigation scheduling. In semi-arid regions, irrigation is used to supplement limited and erratic growing season rainfall to meet crop water demand. [...] Read more.
Evapotranspiration (ET) is an important component in the water budget and used extensively in water resources management such as water planning and irrigation scheduling. In semi-arid regions, irrigation is used to supplement limited and erratic growing season rainfall to meet crop water demand. Although lysimetery is considered the most accurate method for crop water use measurements, high-precision weighing lysimeters are expensive to build and operate. Alternatively, other measurement systems such as eddy covariance (EC) are being used to estimate crop water use. However, due to numerous explicit and implicit assumptions in the EC method, an energy balance closure problem is widely acknowledged. In this study, three EC systems were installed in a field containing a large weighing lysimeter at heights of 2.5, 4.5, and 8.5 m. Sensible heat flux (H) and ET from each EC system were evaluated against the lysimeter. Energy balance closure ranged from 64% to 67% for the three sensor heights. Results showed that all three EC systems underestimated H and consequently overestimated ET; however, the underestimation of H was greater in magnitude than the overestimation of ET. Analysis showed accuracy of ET was greater than energy balance closure with error rates of 20%–30% for half-hourly values. Further analysis of error rates throughout the growing season showed that energy balance closure and ET accuracy were greatest early in the season and larger error was found after plants reached their maximum height. Therefore, large errors associated with increased biomass may indicate unaccounted-for energy stored in the plant canopy as one source of error. Summing the half-hourly data to a daily time-step drastically reduced error in ET to 10%–15%, indicating that EC has potential for use in agricultural water management. Full article
(This article belongs to the Special Issue Crop Evapotranspiration)
Show Figures

Figure 1

14 pages, 1579 KiB  
Article
Impact of Subgrid-Scale Modeling in Actuator-Line Based Large-Eddy Simulation of Vertical-Axis Wind Turbine Wakes
by Mahdi Abkar
Atmosphere 2018, 9(7), 257; https://doi.org/10.3390/atmos9070257 - 10 Jul 2018
Cited by 24 | Viewed by 5414
Abstract
A large-eddy simulation (LES) study of vertical-axis wind turbine wakes under uniform inflow conditions is performed. Emphasis is placed on exploring the effects of subgrid-scale (SGS) modeling on turbine loading as well as on the formation and development of the wind turbine wake. [...] Read more.
A large-eddy simulation (LES) study of vertical-axis wind turbine wakes under uniform inflow conditions is performed. Emphasis is placed on exploring the effects of subgrid-scale (SGS) modeling on turbine loading as well as on the formation and development of the wind turbine wake. In this regard, the validated LES framework coupled with an actuator-line parametrization is employed. Three different SGS models are considered: the standard Smagorinsky model, the Lagrangian scale-dependent dynamic (LSDD) model, and the anisotropic minimum dissipation (AMD) model. The results show that the SGS model has a negligible effect on the mean aerodynamic loads acting on the blades. However, the structure of the wake, including the mean velocity and turbulence statistics, is significantly affected by the SGS closure. In particular, the standard Smagorisnky model with its theoretical model coefficient (i.e., CS0.16) postpones the transition of the wake to turbulence and yields a higher velocity variance in the turbulent region compared to the LSDD and AMD models. This observation is elaborated in more detail by analyzing the resolved-scale turbulent kinetic energy budget inside the wake. It is also shown that, unlike the standard Smagorinsky model, which requires detailed calibrations of the model coefficient, the AMD can yield predictions similar to the LSDD model for the mean and turbulence characteristics of the wake without any tuning. Full article
(This article belongs to the Special Issue Large-Eddy Simulations (LES) of Atmospheric Boundary Layer Flows)
Show Figures

Figure 1

14 pages, 2725 KiB  
Article
Variations of Energy Fluxes and Ecosystem Evapotranspiration in a Young Secondary Dry Dipterocarp Forest in Western Thailand
by Montri Sanwangsri, Phongthep Hanpattanakit and Amnat Chidthaisong
Atmosphere 2017, 8(8), 152; https://doi.org/10.3390/atmos8080152 - 17 Aug 2017
Cited by 9 | Viewed by 5406
Abstract
Deforestation, followed by abandonment and forest regeneration, has become one of the dominant types of land cover changes in the tropics. This study applied the eddy covariance (EC) technique to quantify the energy budget and evapotranspiration in a regenerated secondary dry dipterocarp forest [...] Read more.
Deforestation, followed by abandonment and forest regeneration, has become one of the dominant types of land cover changes in the tropics. This study applied the eddy covariance (EC) technique to quantify the energy budget and evapotranspiration in a regenerated secondary dry dipterocarp forest in Western Thailand. The mean annual net radiation was 126.69, 129.61, and 125.65 W m−2 day−1 in 2009, 2010, and 2011, respectively. On average, fluxes of this energy were disaggregated into latent heat (61%), sensible heat (27%), and soil heat flux (1%). While the number of energy exchanges was not significantly different between these years, there were distinct seasonal patterns within a year. In the wet season, more than 79% of energy fluxes were in the form of latent heat, while during the dry season, this was in the form of sensible heat. The energy closure in this forest ecosystem was 86% and 85% in 2010 and 2011, respectively, and varied between 84–87% in the dry season and 83–84% in the wet season. The seasonality of these energy fluxes and energy closure can be explained by rainfall, soil moisture, and water vapor deficit. The rates of evapotranspiration also significantly varied between the wet (average 6.40 mm day−1) and dry seasons (3.26 mm day−1). Full article
Show Figures

Figure 1

16 pages, 1465 KiB  
Article
Parameterization of Evapotranspiration Estimation for Two Typical East Asian Crops
by Peng Zhao and Johannes Lüers
Atmosphere 2017, 8(6), 111; https://doi.org/10.3390/atmos8060111 - 20 Jun 2017
Cited by 5 | Viewed by 5660
Abstract
Estimation of evapotranspiration plays an important role in understanding the water cycle on the earth, especially the water budget in agricultural ecosystems. The parameterization approach of the Penman-Monteith-Katerji-Perrier (PM-KP) model, accounting for the influence of meteorological variables and aerodynamic resistance on surface resistance, [...] Read more.
Estimation of evapotranspiration plays an important role in understanding the water cycle on the earth, especially the water budget in agricultural ecosystems. The parameterization approach of the Penman-Monteith-Katerji-Perrier (PM-KP) model, accounting for the influence of meteorological variables and aerodynamic resistance on surface resistance, was proposed in the literature, but it has not been applied to Asian croplands, and its error and sensitivity have not been reported yet. In this study, the estimation of evapotranspiration on half-hourly scale was carried out for two typical East Asian cropland research sites, and evaluated by using eddy-covariance measurements corrected with the energy-balance-closure concept. Sensitivity coefficients as well as systematic bias and random errors of the PM-KP approach were used to evaluate the model performance. Different distributions of the calibration coefficients between different crops were reported for the first time, indicating that the calibration of this model was more stable for the rice field than for the potato field. The commonly-used parameterization approach suggested by the Food and Agriculture Organization (FAO) was used as reference and was site-specifically optimized. The results suggest that the PM-KP approach would be a better alternative than the PM-FAO approach for estimating evapotranspiration for the flooded rice field, and an acceptable alternative for rain-fed croplands when the soil is well watered and the air is humid during the summer monsoon. Full article
Show Figures

Figure 1

Back to TopTop