Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = endangered cultivars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2146 KiB  
Review
Unraveling the Intricacies of Powdery Mildew: Insights into Colonization, Plant Defense Mechanisms, and Future Strategies
by Chun-Mei Gan, Ting Tang, Zi-Yu Zhang, Mei Li, Xiao-Qiong Zhao, Shuang-Yu Li, Ya-Wen Yan, Mo-Xian Chen and Xiang Zhou
Int. J. Mol. Sci. 2025, 26(8), 3513; https://doi.org/10.3390/ijms26083513 - 9 Apr 2025
Cited by 2 | Viewed by 1329
Abstract
Powdery mildew, a debilitating phytopathogen caused by biotrophic fungi within the order Erysiphales, endangers crop yields and global food security. Although traditional approaches have largely emphasized resistant cultivar development and chemical control, novel strategies are necessary to counter the advent of challenges, [...] Read more.
Powdery mildew, a debilitating phytopathogen caused by biotrophic fungi within the order Erysiphales, endangers crop yields and global food security. Although traditional approaches have largely emphasized resistant cultivar development and chemical control, novel strategies are necessary to counter the advent of challenges, such as pathogen adaptation and climate change. This review fully discusses three principal areas of pathogen effector functions, e.g., the reactive oxygen species (ROS)-suppressive activity of CSEP087, and host susceptibility factors, like vesicle trafficking regulated by Mildew Locus O (MLO). It also briefly mentions the transcriptional regulation of resistance genes mediated by factors, like WRKY75 and NAC transcription factors, and post-transcriptional regulation via alternative splicing (As). In addition, this discussion discusses the intricate interactions among powdery mildew, host plants, and symbiotic microbiomes thereof, highlighting the mechanism through which powdery mildew infections disrupt the foliar microbiota balance. Lastly, we present a new biocontrol approach that entails synergistic microbial consortia, such as combinations of Bacillus and Trichoderma, to induce plant immunity while minimizing fungicide dependency. Through the study of combining knowledge of molecular pathogenesis with ecological resilience, this research offers useful insights towards climate-smart crop development and sustainable disease-management strategies in the context of microbiome engineering. Full article
(This article belongs to the Special Issue The Molecular Basis of Plant–Microbe Interactions)
Show Figures

Figure 1

35 pages, 2264 KiB  
Review
Development and Applications of Somatic Embryogenesis in Grapevine (Vitis spp.)
by Angela Carra, Akila Wijerathna-Yapa, Ranjith Pathirana and Francesco Carimi
Plants 2024, 13(22), 3131; https://doi.org/10.3390/plants13223131 - 7 Nov 2024
Cited by 1 | Viewed by 3408
Abstract
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a [...] Read more.
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method. The paper provides a comprehensive overview of the different steps involved in the grapevine SE process, including callus induction, maintenance of embryogenic cultures, and the production of plantlets. Additionally, the review explores the development of high-health plant material through SE; the molecular and biochemical mechanisms underlying SE, including the regulation of gene expression, hormone signaling pathways, and metabolic pathways; as well as its use in crop improvement programs. The review concludes by highlighting the future directions for grapevine SE research, including the development of new and improved protocols, the integration of SE with other plant tissue culture techniques, and the application of SE for the production of elite grapevine cultivars, for the conservation of endangered grapevine species as well as for cultivars with unique traits that are valuable for breeding programs. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

17 pages, 2509 KiB  
Review
In Situ and Ex Situ Conservation of Ornamental Geophytes in Poland
by Dariusz Sochacki, Przemysław Marciniak, Małgorzata Zajączkowska, Jadwiga Treder and Patrycja Kowalicka
Sustainability 2024, 16(13), 5375; https://doi.org/10.3390/su16135375 - 25 Jun 2024
Cited by 4 | Viewed by 1718
Abstract
The protection of biological diversity in nature and in agriculture, including the production of ornamental crops, has become increasingly important in Poland as well as worldwide. The Convention on Biological Diversity, signed in 1992 at the Earth Summit of the UN in Rio [...] Read more.
The protection of biological diversity in nature and in agriculture, including the production of ornamental crops, has become increasingly important in Poland as well as worldwide. The Convention on Biological Diversity, signed in 1992 at the Earth Summit of the UN in Rio de Janeiro and ratified by the Polish government in 1995, imposed new regulations related to the protection of nature and the genetic resources of cultivated crops in Poland. The conservation of the genera, varieties and cultivars of ornamental geophytes—a group of plants of great interest from a botanical and physiological, but also a horticultural point of view—takes place in situ (both in nature and in the places of cultivation) and through the establishment of ex situ gene banks and collections. The natural genetic resources of ornamental geophytes include species from the genera Allium, Fritillaria, Gladiolus, Iris, Leucojum, Lilium and Muscari, among others, and more than a dozen species are protected by law due to varying degrees of threats. Botanical gardens play an essential role in the conservation of endangered species. Their activities focus on genus monitoring, managing ex situ gene banks (including National Collections), developing propagation methods and carrying out their reintroduction. In order to protect the national genetic resources of cultivated plants, the National Centre for Plant Genetic Resources at the Plant Breeding and Acclimatisation Institute—National Research Institute, under the auspices of the Ministry of Agriculture and Rural Development, was established. Concerning ornamental geophytes, the National Centre coordinates two field collections of cultivars of the genera Gladiolus, Lilium, Narcissus and Tulipa, which are of great economic importance and have a long tradition of breeding in Poland. The first one is located at the National Institute of Horticultural Research in Skierniewice (central Poland), and the second one is at the Experimental Substation of Variety Testing in Lisewo (northern Poland). The history of tulip collections in Poland dates back to the 1960s. At that time, the first breeding work for this species began. The collection of bulbous crops in Skierniewice is currently one of the largest in Poland, with a total of 934 accessions. Most of them are tulips (522) and lilies (222). Other plants in the collection in Skierniewice are gladiolus and narcissus. The most valuable accessions are grown under special protection (tunnels with dense nets) to guard against insects and maintain a mild climate inside. The genetic resources of the ornamental bulb plant collection in Lisewo currently consist of 611 accessions, mainly tulips (358), daffodils (121) and gladioli (132). All bulbous crops in both collections (Skierniewice and Lisewo) are grown in accordance with all principles of agrotechnics (negative field selection, fertilisation, soil maintenance). A particularly important task of botanical gardens, universities, research institutes and the National Centre is leading research on the methods of storage for survival organs, in vitro cultures and cryopreservation. We have discovered that the various activities for the species conservation of ornamental geophytes require a great deal of constantly deepening knowledge and extraordinary measures, including frequent monitoring of the effects of the applied measures. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

19 pages, 2073 KiB  
Systematic Review
Bacterial Endophytes and Their Contributions to Alleviating Drought and Salinity Stresses in Wheat: A Systematic Review of Physiological Mechanisms
by Fayha Al-Hawamdeh, Jamal Y. Ayad, Kholoud M. Alananbeh and Muhanad W. Akash
Agriculture 2024, 14(5), 769; https://doi.org/10.3390/agriculture14050769 - 16 May 2024
Cited by 12 | Viewed by 3639
Abstract
Drought and salinity stresses significantly threaten global wheat productivity, limiting growth and reducing yields, thus endangering food security worldwide. These stresses disrupt physiological processes, impair photosynthesis, and hinder optimal growth and yield by diminishing water uptake, causing osmotic stress, ion toxicity, and oxidative [...] Read more.
Drought and salinity stresses significantly threaten global wheat productivity, limiting growth and reducing yields, thus endangering food security worldwide. These stresses disrupt physiological processes, impair photosynthesis, and hinder optimal growth and yield by diminishing water uptake, causing osmotic stress, ion toxicity, and oxidative stress. In response, various mitigation strategies have been explored, including breeding for stress-tolerant cultivars, improved irrigation techniques, and the application of exogenous osmoprotectants and soil amendments. Among these strategies, the emergence of rhizospheric and endophytic growth-promoting microorganisms has attracted significant attention. Therefore, a systematic review was undertaken to illustrate the role of endophytic bacteria in enhancing wheat tolerance to drought and salinity stresses. This review analyzes physiological mechanisms and research trends, identifies gaps, and discusses implications for sustainable agriculture. An analysis of the literature related to endophytic bacteria in wheat was conducted using databases of major publishers from 2004 to 2023. The review explores their mechanisms, such as phytohormone production and stress-responsive gene induction, emphasizing their contribution to plant growth and stress resilience. The current research trends indicate a growing interest in utilizing endophytic bacteria to mitigate these stresses in wheat cultivation, with studies focusing on understanding their physiological responses and interactions with wheat plants. Future research should concentrate on elucidating the role of endophytic bacteria in enhancing host plant tolerance to multiple stressors, as well as aspects like endophytic mechanism of action, endophytic lifestyle, and transmission pathways. Overall, endophytic bacteria offer promising avenues for sustainable agricultural practices, aiding in crop resilience and food security amid environmental challenges. Full article
(This article belongs to the Special Issue The Role of Plant Growth-Promoting Bacteria in Crop Improvement)
Show Figures

Figure 1

11 pages, 612 KiB  
Article
Agromorphological and Chemical Characterization of Pear Cultivars Grown in Central–West Iberian Peninsula
by Rodrigo Pérez-Sánchez and María Remedios Morales-Corts
Agronomy 2023, 13(12), 2993; https://doi.org/10.3390/agronomy13122993 - 5 Dec 2023
Cited by 3 | Viewed by 1767
Abstract
Seventeen traditional pear cultivars grown in the Central–Western Iberian Peninsula, all of them clearly in decline or close to extinction, have been characterized from the point of view of agromorphological and chemical. A total of twenty-one agromorphological and chemical traits, mainly defined by [...] Read more.
Seventeen traditional pear cultivars grown in the Central–Western Iberian Peninsula, all of them clearly in decline or close to extinction, have been characterized from the point of view of agromorphological and chemical. A total of twenty-one agromorphological and chemical traits, mainly defined by the International Union for the Protection of New Varieties of Plants, were used to describe the fruits during a 3-year period from 2020 to 2022. Some of the genotypes showed distinctive and interesting agronomical characteristics from a commercial point of view, such as high yields and fruit quality. This was the case of the pear cultivars called “Pera Temprana”, “Muslo de Dama”, and “Pera de Cristal de Peñacaballera”. Their fruits were quite heavy (125.32–142.56 g) and had a good sweetness/acidity balance (12.67–14.92° Brix/2.76–3.42 g malic acid/L). The rest of the pear cultivars, with the exception of the “Cermeños” group and “Pera Canela” genotype, also presented interesting commercial characteristics given that their fruits had equatorial diameters greater than 6 cm and total soluble solids levels close to or above 13° Brix. The results of the PCA and cluster analysis showed that agromorphological and chemical analysis can provide reliable information on the variability in pear cultivars. The loss of these traditional crops has enormous significance given that they have unique characteristics and are perfectly adapted to the edapho-climatic conditions of the region. This work constitutes an important step in the conservation of genetic pear resources in the Central–Western Iberian Peninsula. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 2715 KiB  
Article
Clonal Propagation and Assessment of Biomass Production and Saponin Content of Elite Accessions of Wild Paris polyphylla var. yunnanensis
by Mulan Wang, Weiqi Li, Qi Qiang, Junchao Ma, Jiaqi Chen, Xudong Zhang, Yanxia Jia, Tie Zhang and Liang Lin
Plants 2023, 12(16), 2983; https://doi.org/10.3390/plants12162983 - 18 Aug 2023
Cited by 4 | Viewed by 1673
Abstract
Paris polyphylla var. yunnanensis is an endangered medicinal plant endemic to China with great economic importance for the pharmaceutical industry. Two significant barriers to its commercial development are the long duration of its seed germination and the frequency of interspecific hybridization. We developed [...] Read more.
Paris polyphylla var. yunnanensis is an endangered medicinal plant endemic to China with great economic importance for the pharmaceutical industry. Two significant barriers to its commercial development are the long duration of its seed germination and the frequency of interspecific hybridization. We developed a method for clonal propagation of Paris polyphylla var. yunnanensis and successfully applied it to selected elite wild plants, which could become cultivar candidates based on their biomass production and saponin content. In comparison to the traditional method, somatic embryogenesis produced an average of 63 somatic embryos per gram of callus in just six weeks, saving 12 to 15 months in plantlet production. The produced in vitro plantlets were strong and healthy and 94% survived transplanting to soil. Using this method, four candidate cultivars with diverse morphologies and geographic origins were clonally reproduced from selected elite wild accessions. In comparison to those obtained with the traditional P. polyphylla propagation technique, they accumulated higher biomass and polyphyllin levels in rhizomes plus adventitious roots during a five-year period. In conclusion, somatic embryogenesis-based methods offer an alternate approach for the rapid and scaled-up production of P. polyphylla, as well as opening up species conservation options. Full article
Show Figures

Figure 1

22 pages, 4048 KiB  
Article
Selection and Molecular Characterization of Promising Plum Rootstocks (Prunus cerasifera L.) among Seedling-Origin Trees
by Kubra Korkmaz, Ibrahim Bolat, Aydın Uzun, Muge Sahin and Ozkan Kaya
Life 2023, 13(7), 1476; https://doi.org/10.3390/life13071476 - 29 Jun 2023
Cited by 7 | Viewed by 2819
Abstract
The plum (Prunus cerasifera Ehrh) has been used worldwide both as a genetic source for breeding new rootstocks and as clonal rootstock for many Prunus species. Considering situations where wild relatives of plums are endangered, in-depth characterization of rootstock traits of genetic [...] Read more.
The plum (Prunus cerasifera Ehrh) has been used worldwide both as a genetic source for breeding new rootstocks and as clonal rootstock for many Prunus species. Considering situations where wild relatives of plums are endangered, in-depth characterization of rootstock traits of genetic diversity of plum germplasm of Turkey with many ecogeographical locations is crucial. In the present study, therefore, three steps were followed for the selection of rootstock candidates among the plum germplasm grown in the Middle Euphrates. This region is characterized by an extremely hot climate with extremely warm summers and very low precipitation in summers. Initially, 79 rootstock candidates were selected based on rootstocks traits, and Myrobalan 29C was also used for the control rootstock in all steps. Hardwood cuttings were taken from each rootstock candidate, and after the rooting process in rootstock candidates, 39 rootstock candidates outperforming other candidates were selected according to root characteristics. Based on rooting ability, forty rootstock candidates with the longest root length below 33.50 mm, root number below 3.00, and rooting cutting number below 30.00% were eliminated. The second step of the study focused on the dwarfing characteristics of 39 rootstock candidates, and 13 and Myrobalan 29C out of 39 rootstock candidates’ dwarfing traits showed value higher compared to the other 26 rootstock candidates. Results indicated that the vigor of rootstock candidates was usually found to be strong (26), intermediate (4), and weak (9). Moreover, 13 out of 39 rootstock candidates’ dwarfism trait was better than the other 26 rootstock candidates. In Step 3, some morphological, physiological, and molecular evaluations were conducted in 13 rootstock candidates and the Myrobalan 29C clone, and there were significant differences between both rootstock candidates and the parameters evaluated. PCA has also been indicated that the reference rootstock Myrobalan 29C was grouped with 63B62, 63B69, and 63B14. The highest genetic similarity was found between 63B11 and 63B16, as well as between 63B76 and 63B66, while the lowest genetic similarity was observed between 63B72 and 63B61 candidates. Overall, the findings presented here provide valuable information about the level of rootstock candidates that could potentially be superior among previously uncharacterized plum cultivars in this plum-growing region of Turkey. Full article
(This article belongs to the Special Issue Genetic Associated Plant Breeding)
Show Figures

Figure 1

11 pages, 497 KiB  
Review
The Role of Home Gardens in Promoting Biodiversity and Food Security
by Helena Korpelainen
Plants 2023, 12(13), 2473; https://doi.org/10.3390/plants12132473 - 28 Jun 2023
Cited by 29 | Viewed by 9271
Abstract
Plant genetic resources provide the basis for sustainable agricultural production, adaptation to climate change, and economic development. Many present crop plants are endangered due to extreme environmental conditions induced by climate change or due to the use of a limited selection of plant [...] Read more.
Plant genetic resources provide the basis for sustainable agricultural production, adaptation to climate change, and economic development. Many present crop plants are endangered due to extreme environmental conditions induced by climate change or due to the use of a limited selection of plant materials. Changing environmental conditions are a challenge for plant production and food security, emphasizing the urgent need for access to a wider range of plant genetic resources than what are utilized today, for breeding novel crop varieties capable of resilience and adaptation to climate change and other environmental challenges. Besides large-scale agricultural production, it is important to recognize that home gardens have been an integral component of family farming and local food systems for centuries. It is remarkable how home gardens have allowed the adaptation and domestication of plants to extreme or specific ecological conditions, thus contributing to the diversification of cultivated plants. Home gardens can help in reducing hunger and malnutrition and improve food security. In addition, they provide opportunities to broaden the base of cultivated plant materials by harboring underutilized crop plants and crop wild relative species. Crop wild relatives contain a wide range of genetic diversity not available in cultivated crops. Although the importance of home gardens in conserving plant genetic resources is well recognized, there is a risk that local genetic diversity will be lost if traditional plant materials are replaced by high-yielding modern cultivars. This paper provides an overview of home gardens and their present role and future potential in conserving and utilizing plant genetic resources and enhancing food and nutritional security under global challenges. Full article
Show Figures

Figure 1

7 pages, 1522 KiB  
Brief Report
Optimization of the In Vitro Proliferation of an Ancient Pear Tree Cultivar (‘Decana d’inverno’) through the Use of Neem Oil
by Luca Regni, Simona Lucia Facchin, Daniel Fernandes da Silva, Primo Proietti, Cristian Silvestri and Maurizio Micheli
Plants 2023, 12(8), 1593; https://doi.org/10.3390/plants12081593 - 10 Apr 2023
Cited by 1 | Viewed by 2200
Abstract
In vitro culture, ensuring rapid multiplication and production of plant material under aseptic conditions, represents an excellent tool for ex-situ conservation of tree species biodiversity and can be used for the conservation, among others, of endangered and rare crops. Among the Pyrus communis [...] Read more.
In vitro culture, ensuring rapid multiplication and production of plant material under aseptic conditions, represents an excellent tool for ex-situ conservation of tree species biodiversity and can be used for the conservation, among others, of endangered and rare crops. Among the Pyrus communis L. cultivars that have been abandoned over the years due to changed cultivation requirements, but which are still used today in breeding programs, there is the ‘Decana d’inverno’. Pear is generally considered a recalcitrant species for in vitro propagation due to weak multiplication rate, hyperhydricity, and susceptibility to phenolic oxidation. Therefore, the use of natural substances like neem oil (although little explored) represents one of the options to improve the in vitro plant’s tissue culture. In this context, the aim of the present work was to evaluate the effect of adding neem oil (0.1 and 0.5 m L L−1) to the growth substrate in order to optimise the in vitro culture of the ancient pear tree cultivar ‘Decana d’inverno’. The neem oil addition resulted in an increase in the number of shoots produced especially at both concentrations used. On the contrary, an increase in length of proliferated shoots was observed only with the addition of 0.1 mL L−1. The neem oil addition did not affect the explants viability, fresh and dry weights. Therefore, the present study demonstrated for the first time the possibility of using neem oil to optimise the in vitro culture of an ancient pear tree cultivar. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Figure 1

15 pages, 5167 KiB  
Article
Polyploid Induction and Karyotype Analysis of Dendrobium officinale
by Yang Liu, Shan-De Duan, Yin Jia, Li-Hong Hao, Di-Ying Xiang, Duan-Fen Chen and Shan-Ce Niu
Horticulturae 2023, 9(3), 329; https://doi.org/10.3390/horticulturae9030329 - 2 Mar 2023
Cited by 10 | Viewed by 4624
Abstract
Dendrobium officinale Kimura et Migo is an orchid with both medicinal and edible values and a high economic value. The wild resources of D. officinale are in an endangered state. Compared with the wild D. officinale, cultivated D. officinale exhibits inferior quality [...] Read more.
Dendrobium officinale Kimura et Migo is an orchid with both medicinal and edible values and a high economic value. The wild resources of D. officinale are in an endangered state. Compared with the wild D. officinale, cultivated D. officinale exhibits inferior quality and a low content of medicinal components. Polyploid induction is a conventional breeding tool for genome doubling of species, which can effectively increase the total amount of plant components to improve the medicinal efficacy of D. officinale. In this study, D. officinale tetraploids were generated by treating the protocorms with colchicine. Morphological observations showed that tetraploids exhibited decreased plant size and leaf shape index and increased stem diameter. Cytological observations showed that the polyploid plants had larger stomata and a lower number of stomata per unit area compared with normal plants. The highest stomata variation of 30.00% was observed when the plant was treated with 0.3% colchicine for 24 h. Chromosomal observations showed that treatment of plants with 0.2% colchicine for 48 h resulted in the highest tetraploid induction rate of 10.00%. A total of 10 tetraploids were successfully obtained by inducing plant protoplasts with colchicine. The number of diploid D. officinale chromosomes was 38 with a base number of 19, and the karyotype formula was 2n = 2x = 38 = 24m + 14sm with a karyotype asymmetry coefficient of 60.59%, belonging to type 2B. The number of tetraploid D. officinale chromosomes was 76 with a base number of 19, and the karyotype formula was 2n = 4x = 76 = 58m + 18sm with a karyotype asymmetry coefficient of 60.04%, belonging to type 2B. This study determined the optimal mutagenesis treatment based on the chromosome observation results, investigated the relationship between the phenotype and ploidy level, and generated the polyploid germplasm of D. officinale, thereby laying the foundation for the breeding of new D. officinale cultivars enriched with compounds of medicinal value. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

13 pages, 3154 KiB  
Article
Taxonomic Uncertainty and Its Conservation Implications in Management, a Case from Pyrus hopeiensis (Rosaceae)
by Xian-Yun Mu, Jiang Wu and Jun Wu
Diversity 2022, 14(6), 417; https://doi.org/10.3390/d14060417 - 24 May 2022
Cited by 6 | Viewed by 2815
Abstract
Improved taxonomies and phylogenies are essential for understanding the evolution of organisms, the development of conservation plans, and the allocation of funds and resources, especially for threatened species with uncertain identities. Pears are an economically and nutritionally important fruit, and wild pear species [...] Read more.
Improved taxonomies and phylogenies are essential for understanding the evolution of organisms, the development of conservation plans, and the allocation of funds and resources, especially for threatened species with uncertain identities. Pears are an economically and nutritionally important fruit, and wild pear species are highly valued and protected because of their utility for the development of cultivars. Pyrus hopeiensis is an endangered species endemic to North China, which is sympatric with and difficult to distinguish from the widely distributed and morphologically similar species P. ussuriensis. To clarify its taxonomic identity, principal coordinate analysis was performed using 14 quantitative and qualitative characters from P. hopeiensis, P. ussuriensis, and P. phaeocarpa, and phylogenomic analysis was performed based on whole-genome resequencing and whole plastome data. Pyrus hopeiensis was synonymized with P. ussuriensis based on morphological and phylogenetic evidence, as well as our long-term field studies. Pyrus hopeiensis is proposed to be excluded from the list of local key protected wild plants. Given that the holotype of P. ussuriensis was not designated, a lectotype was designated in this work. Integrative evidence-based taxonomic study including museomics is suggested for organisms with uncertain identities, which will contribute to biodiversity conservation. Full article
(This article belongs to the Special Issue Ecology, Evolution and Diversity of Plants)
Show Figures

Graphical abstract

21 pages, 2696 KiB  
Article
The Effect of Abiotic Stresses on the Protein Composition of Four Hungarian Wheat Varieties
by Dalma Nagy-Réder, Zsófia Birinyi, Marianna Rakszegi, Ferenc Békés and Gyöngyvér Gell
Plants 2022, 11(1), 1; https://doi.org/10.3390/plants11010001 - 21 Dec 2021
Cited by 12 | Viewed by 3781
Abstract
Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties [...] Read more.
Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties of wheat grain protein content and composition. This reduces the value of grain, as these factors significantly reduce end-use quality. In this study, four Hungarian bread wheat cultivars (Triticum aestivum ssp. aestivum) with different drought and heat tolerance were examined. Changes in the size- and hydrophobicity-based distribution of the total proteins of the samples have been monitored by SE- and RP-HPLC, respectively, together with parallel investigations of changes in the amounts of the R5 and G12 antibodies related to celiac disease immunoreactive peptides. Significant difference in yield, protein content and composition have been observed in each cultivar, altering the amounts of CD-related gliadin, as well as the protein parameters directly related to techno-functional properties (Glu/Gli ratio, UPP%). The extent of changes largely depended on the timing of the abiotic stress. The severity of the negative effect depended on the growth stage in which abiotic stress occurred. Full article
(This article belongs to the Special Issue Plants Response to Temperature Extremes)
Show Figures

Figure 1

15 pages, 649 KiB  
Article
Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines
by Eleonora Truzzi, Stefania Benvenuti, Davide Bertelli, Enrico Francia and Domenico Ronga
Molecules 2021, 26(20), 6157; https://doi.org/10.3390/molecules26206157 - 12 Oct 2021
Cited by 15 | Viewed by 3319
Abstract
In recent years, it has been shown that biostimulants can efficiently enhance plant metabolic processes, leading to an increased production of essential oil (EO) in aromatic plants. The present study aimed to evaluate the effects of two different commercial biostimulants composed of amino [...] Read more.
In recent years, it has been shown that biostimulants can efficiently enhance plant metabolic processes, leading to an increased production of essential oil (EO) in aromatic plants. The present study aimed to evaluate the effects of two different commercial biostimulants composed of amino acids and seaweed extract, normally used for food organic crops, on the production and composition of EO and hydrosol of Lavandula x intermedia, cultivar “Grosso”. The products were applied during 2020 growing season on lavender crops in three different locations of the Northern Italian (Emilia-Romagna Region) Apennines. Plants were harvested and EOs extracted by steam distillation and analyzed by gas chromatography. Both biostimulants affected the yield of EO per plant (+11% to +49% depending on the treatment/farm combination) without significantly changing the chemical composition of EOs and hydrosols. Conversely, the composition of EOs and hydrosols are related to the location, and the main compounds of “Grosso” cultivar, limonene, 1,8-cineole, cis-ocimene, linalool, camphor, borneol, terpinen-4-ol, and linalyl acetate, show different ratios at the experimental test sites. The differences might be due to the sunlight exposure and various maintenance of the crops over the years. In conclusion, these results suggest that the employment of biostimulants on lavandin crops do not endanger the quality of the EO while increasing biomass production and promoting the sustainability of the crop. Full article
Show Figures

Graphical abstract

12 pages, 2518 KiB  
Article
Propagation Methods for the Conservation and Preservation of the Endangered Whorled Sunflower (Helianthus verticillatus)
by Robert N. Trigiano, Sarah L. Boggess, Christopher R Wyman, Denita Hadziabdic and Sandra Wilson
Plants 2021, 10(8), 1565; https://doi.org/10.3390/plants10081565 - 30 Jul 2021
Cited by 9 | Viewed by 4790
Abstract
Helianthus verticillatus Small, the whorled sunflower, is a perennial species only found at a few sites in the southeastern United States and was declared federally (USA) endangered in 2014. The species spreads locally via rhizomes and can produce copious seeds when sexually compatible [...] Read more.
Helianthus verticillatus Small, the whorled sunflower, is a perennial species only found at a few sites in the southeastern United States and was declared federally (USA) endangered in 2014. The species spreads locally via rhizomes and can produce copious seeds when sexually compatible genotypes are present. Vegetative propagation of the species via cuttings and the optimum conditions for seed germination have not been determined. To investigate asexual propagation via cuttings, stem sections were harvested in late May, June, and July in Knoxville, Tennessee (USA) and trimmed to a minimum of two nodes. The base of the cuttings was treated with either auxin or water, and grown in a Promix BX potting medium with intermittent mist and 50% shade for one month. Seeds were harvested from a population of multiple genotypes in Maryville, Tennessee and used to determine viability and the range of temperatures suitable for germination. A clonal population was developed and used for three years to assess sexual compatibility at three locations in Knoxville, Tennessee. Ninety-five percent of the cuttings from May rooted in two-to-three weeks and formed more than 20 adventitious roots per cutting with auxin and 18 with water treatments. The ability of cuttings to root decreased in June to about 20%, and none rooted in July with either water or auxin pretreatments. Pre-germination tetrazolium tests indicated that about 91% of seeds (achenes) were viable. Subsequent germination tests revealed high germination at varying temperatures (96 to 99% of seeds (achenes) germinated at 22/11, 27/15, and 29/19 °C), whereas germination was significantly inhibited by 33/24 °C. Fifty percent of the seeds germinated at 22/11 °C in 7.5 days, whereas only 2.0 to 2.5 days were required for 50% germination at 27/15, 29/19, and 33/24 °C. Seeds were not produced at any of the clonal planting locations during the three years. Vegetative propagation via rooted cuttings was successful in the mid-spring, seed germination was possible over a wide range of temperatures, and self-incompatibility was evident in this species. The results of this study will permit fast and efficient propagation of multiple and selected genotypes for conservation, commerce, and breeding of elite cultivars with disease resistance or other desirable attributes. Full article
(This article belongs to the Special Issue Systematics and the Conservation of Plant Diversity)
Show Figures

Figure 1

19 pages, 1010 KiB  
Article
Agromorphological Characterization and Nutritional Value of Traditional Almond Cultivars Grown in the Central-Western Iberian Peninsula
by Rodrigo Pérez-Sánchez and María Remedios Morales-Corts
Agronomy 2021, 11(6), 1238; https://doi.org/10.3390/agronomy11061238 - 18 Jun 2021
Cited by 16 | Viewed by 3312
Abstract
In this study, 24 traditional almond cultivars grown in the central-western Iberian Peninsula, all of them clearly in decline or close to extinction, were characterized from the agromorphological and chemical points of view. A total of 40 agromorphological and chemical descriptors, mainly defined [...] Read more.
In this study, 24 traditional almond cultivars grown in the central-western Iberian Peninsula, all of them clearly in decline or close to extinction, were characterized from the agromorphological and chemical points of view. A total of 40 agromorphological and chemical descriptors, mainly defined by the IPGRI and the UPOV, were used to describe the flowers, leaves, fruits and the trees themselves over three consecutive years (2015–2017). Some of the cultivars showed distinctive and interesting agronomical characteristics from a commercial point of view, such as high yields and high quality fruit. This was the case of the almond cultivars called “Gorda José” and “Marcelina”. Their fruits were quite heavy (nuts: >9.1 g; kernels: >1.9 g), with very low percentages of double kernels (<3%) and high nutritional value (>50% lipids; >21% proteins). The results of the PCA and cluster analysis showed that agromorphological and chemical analysis can provide reliable information on the variability in almond genotypes. This work constitutes an important step in the conservation of genetic almond resources in the central-western Iberian Peninsula. Full article
(This article belongs to the Special Issue Old Germplasm for New Needs: Managing Crop Genetic Resources)
Show Figures

Figure 1

Back to TopTop