Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = elpidite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4791 KiB  
Article
Zircon out, Elpidite in: Deformation-Driven Zirconosilicate Evolution in Peralkaline Granites: A Case Study of the Papanduva Pluton (Brazil)
by Larissa P. Grangeiro, Frederico C. J. Vilalva, Silvio R. F. Vlach and Armando L. S. de Oliveira
Minerals 2025, 15(7), 667; https://doi.org/10.3390/min15070667 - 20 Jun 2025
Viewed by 249
Abstract
The peralkaline granites of the Papanduva Pluton (South Brazil) display a remarkable facies dichotomy, with zircon dominant in massive facies and diverse zirconosilicates (Zr-Si) in foliated facies. This study employs petrography and mineral chemistry (major and trace elements) to elucidate the textural diversity [...] Read more.
The peralkaline granites of the Papanduva Pluton (South Brazil) display a remarkable facies dichotomy, with zircon dominant in massive facies and diverse zirconosilicates (Zr-Si) in foliated facies. This study employs petrography and mineral chemistry (major and trace elements) to elucidate the textural diversity and compositional evolution of these minerals. Three discrete zirconosilicate groups were identified: Na-rich elpidite (euhedral, vein-like, and granular varieties), Na-poor (Na,K)Zr-Si-I, and silica-rich (Na,K)Zr-Si-II. Contrary to the expected crystallization sequences, trace element data reveal that REE enrichment correlates with deformation intensity rather than paragenetic order, with vein-like aggregates along deformation features showing the highest REE concentrations. Statistical analysis demonstrates significant correlations between REE contents and alkali exchange patterns. We propose a three-stage evolutionary model involving magmatic crystallization, deformation-enhanced fluid interaction, and late-stage recrystallization, with a progressive evolution from Na-dominated to K-dominated conditions. This study provides new insights into closed-system fluid evolution in agpaitic environments and highlights deformation as a primary control on element mobility in peralkaline granitic systems. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 5522 KiB  
Review
Rare Earth Element Deposits in Mongolia
by Jaroslav Dostal and Ochir Gerel
Minerals 2023, 13(1), 129; https://doi.org/10.3390/min13010129 - 16 Jan 2023
Cited by 11 | Viewed by 11347
Abstract
In Mongolia, rare earth element (REE) mineralization of economic significance is related either to the Mesozoic carbonatites or to the Paleozoic peralkaline granitoid rocks. Carbonatites occur as part of alkaline silicate-carbonatite complexes, which are composed mainly of nepheline syenites and equivalent volcanic rocks. [...] Read more.
In Mongolia, rare earth element (REE) mineralization of economic significance is related either to the Mesozoic carbonatites or to the Paleozoic peralkaline granitoid rocks. Carbonatites occur as part of alkaline silicate-carbonatite complexes, which are composed mainly of nepheline syenites and equivalent volcanic rocks. The complexes were emplaced in the Gobi-Tien Shan rift zone in southern Mongolia where carbonatites usually form dikes, plugs or intruded into brecciated rocks. In mineralized carbonatites, REE occur mainly as fluorocarbonates (bastnäsite, synchysite, parisite) and apatite. Apatite is also present in the carbonatite-hosted apatite-magnetite (mostly altered to hematite) bodies. Alkaline silicate rocks and carbonatites show common geochemical features such as enrichment of light REE but relative depletion of Ti, Zr, Nb, Ta and Hf and similar Sr and Nd isotopic characteristics suggesting the involvement of the heterogeneous lithospheric mantle in the formation of both carbonatites and associated silicate rocks. Hydrothermal fluids of magmatic origin played an important role in the genesis of the carbonatite-hosted REE deposits. The REE mineralization associated with peralkaline felsic rocks (peralkaline granites, syenites and pegmatites) mainly occurs in Mongolian Altai in northwestern Mongolia. The mineralization is largely hosted in accessory minerals (mainly elpidite, monazite, xenotime, fluorocarbonates), which can reach percentage levels in mineralized zones. These rocks are the results of protracted fractional crystallization of the magma that led to an enrichment of REE, especially in the late stages of magma evolution. The primary magmatic mineralization was overprinted (remobilized and enriched) by late magmatic to hydrothermal fluids. The mineralization associated with peralkaline granitic rocks also contains significant concentrations of Zr, Nb, Th and U. There are promising occurrences of both types of rare earth mineralization in Mongolia and at present, three of them have already established significant economic potential. They are mineralization related to Mesozoic Mushgai Khudag and Khotgor carbonatites in southern Mongolia and to the Devonian Khalzan Buregtei peralkaline granites in northwestern Mongolia. Full article
Show Figures

Figure 1

19 pages, 4489 KiB  
Article
Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes
by Julia A. Mikhailova, Yakov A. Pakhomovsky, Galina O. Kalashnikova and Sergey M. Aksenov
Minerals 2022, 12(11), 1460; https://doi.org/10.3390/min12111460 - 18 Nov 2022
Cited by 5 | Viewed by 2124
Abstract
Eudialyte-group minerals (EGMs) are typical accessory or rock-forming minerals of the Lovozero peralkaline massif (Kola Peninsula, Russia). The EGM grains in the rocks of the massif are often replaced by an association of various secondary minerals such as lovozerite and wöhlerite group minerals, [...] Read more.
Eudialyte-group minerals (EGMs) are typical accessory or rock-forming minerals of the Lovozero peralkaline massif (Kola Peninsula, Russia). The EGM grains in the rocks of the massif are often replaced by an association of various secondary minerals such as lovozerite and wöhlerite group minerals, as well as terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-(Ce). However, EGMs in the Lovozero massif can be not only pseudomorphized, but also partially or completely dissolved. The partial dissolution of eudialyte grains was simulated in three series of experiments, and the results obtained were compared with natural samples. Observations in natural samples and experimental studies have shown that the partial dissolution of eudialyte-group minerals occurs in two stages: (1) loss of sodium and hydration; (2) loss of other cations not included in the zirconosilicate framework. This process proceeds most intensively in acidic hydrothermal solutions and may be responsible for the appearance of new mineral species in the eudialyte group. Full article
(This article belongs to the Special Issue Study of the Eudialyte Group Minerals)
Show Figures

Figure 1

14 pages, 857 KiB  
Article
New Insights into the Crystal Chemistry of Elpidite, Na2Zr[Si6O15]·3H2O and (Na1+YCax1−X−Y)Σ=2Zr[Si6O15]·(3−X)H2O, and Ab Initio Modeling of IR Spectra
by Alexander Bogdanov, Ekaterina Kaneva and Roman Shendrik
Materials 2021, 14(9), 2160; https://doi.org/10.3390/ma14092160 - 23 Apr 2021
Cited by 9 | Viewed by 2120
Abstract
Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray [...] Read more.
Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Studies of Solids)
Show Figures

Graphical abstract

13 pages, 4265 KiB  
Article
Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite
by Emad Elshehy
Surfaces 2021, 4(1), 41-53; https://doi.org/10.3390/surfaces4010007 - 10 Feb 2021
Cited by 3 | Viewed by 3262
Abstract
Decontamination of water from radionuclides contaminants is a key priority in environmental cleanup and requires intensive effort to be cleared. In this paper, a microporous iron-doped zeolite-like sodium zirconosilicate (F@SZS) was designed through hydrothermal synthesis with various Si/Zr ratios of 5, 10, and [...] Read more.
Decontamination of water from radionuclides contaminants is a key priority in environmental cleanup and requires intensive effort to be cleared. In this paper, a microporous iron-doped zeolite-like sodium zirconosilicate (F@SZS) was designed through hydrothermal synthesis with various Si/Zr ratios of 5, 10, and 20, respectively. The synthesized materials of F@SZS materials were well characterized by various techniques such as XRD, SEM, TEM, and N2 adsorption–desorption measurements. Furthermore, the F@SZS-5 and F@SZS-10 samples had a crystalline structure related to the Zr–O–Si bond, unlike the F@SZS-20 which had an overall amorphous structure. The fabricated F@SZS-5 nanocomposite showed a superb capability to remove cesium ions from ultra-dilute concentrations, and the maximum adsorption capacity was 21.5 mg g–1 at natural pH values through an ion exchange mechanism. The results of cesium ions adsorption were found to follow the pseudo-first-order kinetics and the Langmuir isotherm model. The microporous iron-doped sodium zirconosilicate is described as an adsorbent candidate for the removal of ultra-traces concentrations of Cs(I) ions. Full article
Show Figures

Graphical abstract

17 pages, 2820 KiB  
Article
Rietveld Analysis of Elpidite Framework Flexibility Using in Situ Powder XRD Data of Thermally Treated Samples
by Vladislav V. Kostov-Kytin and Thomas N. Kerestedjian
Minerals 2020, 10(7), 639; https://doi.org/10.3390/min10070639 - 19 Jul 2020
Cited by 2 | Viewed by 2913
Abstract
The present study demonstrates the capabilities of the Rietveld procedure to track the structural transformations and framework flexibility on the example of the natural water-containing zirconosilicate elpidite, subjected (in bulk) to thermal treatment from room temperature to 300 °C. The methodological approach to [...] Read more.
The present study demonstrates the capabilities of the Rietveld procedure to track the structural transformations and framework flexibility on the example of the natural water-containing zirconosilicate elpidite, subjected (in bulk) to thermal treatment from room temperature to 300 °C. The methodological approach to the performed refinements and the obtained results are in accordance with the previously reported data from in situ single crystal X-ray diffraction studies on heated samples of the same mineral. More light has been drawn on the temperature interval in which the non-reconstructive topotactic phase transition occurs upon partial dehydration. The framework flexibility observed as a response to the water loss and subsequent thermal expansion was evaluated in terms of intentionally introduced set of geometric parameters characterizing the spatial orientation of symmetrically related zirconium octahedra in the structure, the coordination polyhedra volumes, their distortion indices, and bond angle variances. Full article
(This article belongs to the Special Issue The Rietveld Method in Geomaterials Characterisation)
Show Figures

Graphical abstract

16 pages, 6422 KiB  
Article
Crystal Chemistry and Properties of Elpidite and Its Ag-Exchanged Forms
by Natalia V. Zubkova, Rositsa P. Nikolova, Nikita V. Chukanov, Vladislav V. Kostov-Kytin, Igor V. Pekov, Dmitry A. Varlamov, Tatiana S. Larikova, Olga N. Kazheva, Nadezhda A. Chervonnaya, Gennadiy V. Shilov and Dmitry Yu. Pushcharovsky
Minerals 2019, 9(7), 420; https://doi.org/10.3390/min9070420 - 10 Jul 2019
Cited by 10 | Viewed by 3253
Abstract
Elpidite from the Lovozero alkaline complex, Kola Peninsula, Russia, and Ag-exchanged forms of elpidite from two different localities (Lovozero and Khan Bogdo, Mongolia) were studied by means of single-crystal X-ray diffraction, electron microprobe analysis, thermogravimetry and IR spectroscopy. All studied samples retain the [...] Read more.
Elpidite from the Lovozero alkaline complex, Kola Peninsula, Russia, and Ag-exchanged forms of elpidite from two different localities (Lovozero and Khan Bogdo, Mongolia) were studied by means of single-crystal X-ray diffraction, electron microprobe analysis, thermogravimetry and IR spectroscopy. All studied samples retain the heteropolyhedral framework consisting of double Si6O15 chains (ribbons) and isolated ZrO6 octahedra. Zeolitic cavities in the initial elpidite from Lovozero (space group Pbm2, a = 14.6127(7), b = 7.3383(4), c = 7.1148(3) Å, V = 762.94(6) Å3) are occupied by Na+ cations and H2O molecules. Both Ag-exchanged forms are characterized by evident distortions of the heteropolyhedral framework and a strongly disordered arrangement of extra-framework cations which results in the appearance of the 14-14-14 Å unit cell (a = 14.1755(7), b = 14.6306(9), c = 14.2896(7) Å, V = 2963.6(3) Å3 for the Ag-exchanged form of elpidite from Lovozero and a = 14.1411(5), b = 14.5948(4), c = 14.3035(5) Å, V = 2952.04(17) Å3 for the Ag-exchanged form of elpidite from Khan Bogdo) and space group Cmce. Elpidite from both localities demonstrates a high exchange capacity to Ag. Exchanged Ag+ cations preferably occupy the sites that are close to the Na sites in the initial elpidite. The paper also contains a review of crystal chemical data on elpidite and its laboratory-modified forms. Full article
(This article belongs to the Special Issue Zr-minerals)
Show Figures

Figure 1

Back to TopTop