Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Fe-Doped Microporous Sodium Zirconosilicate Sorbent
2.2. Adsorption Assessment
3. Results and Discussion
3.1. Characterization of the Synthesized Materials
3.2. Adsorptive Properties of the Synthesized Materials
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Chukanov, N.V.; Pekov, I.V.; Rastsvetaeva, R.K. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements. Russ. Chem. Rev. 2004, 73, 227–246. [Google Scholar] [CrossRef]
- Turchkova, A.G.; Pekov, I.V.; Bryzgalov, I.A. Cation-exchange properties of natural zeolite-like sodium zirconosilicates: An experimental study in aqueous solutions at 80–90 °C and 1 atm. In Proceedings of the 19th General Meet of IMA, Kobe, Japan, 23–28 July 2006. [Google Scholar]
- Grigor’eva, A.A.; Zubkova, N.V.; Pekov, I.V.; Kolitsch, U.; Pushcharovsky, D.Y.; Vigasina, M.F.; Giester, G.; Ðorðevic, T.; Tillmanns, E.; Chukanov, N.V. Crystal chemistry of elpidite from Khan Bogdo (Mongolia) and its K-and Rb-exchanged forms. Crystallogr. Rep. 2011, 56, 832–841. [Google Scholar] [CrossRef]
- Neronova, N.N.; Belov, N.V. Crystal structure of elpidite, Na2ZrSi6O15. (H2O)3. Sov. Phys. Crystallogr. 1964, 9, 700–705. [Google Scholar]
- Cannillo, E.; Rossi, G.; Ungaretti, L. The crystal structure of elpidite. Am. Mineral. 1973, 58, 106–109. [Google Scholar]
- Zubkova, N.V.; Ksenofontov, D.A.; Kabalov, Y.K.; Chukanov, N.V.; Nedel’ko, V.V. Dehydration-induced structural transformations of the microporous zirconosilicate elpidite. Inorg. Mater. 2011, 47, 506–512. [Google Scholar] [CrossRef]
- Cametti, G.; Armbruster, T.; Nagashima, M. Dehydration and thermal stability of elpidite: An in-situ single crystal X-ray di_raction study. Microporous Mesoporous Mater. 2016, 227, 81–87. [Google Scholar] [CrossRef]
- Nedelko, V.V.; Chukanov, N.V.; Pekov, I.V. Dehydration kinetics of the microporous zirconosilicate elpidite. Inorg. Mater. 2011, 47, 502–505. [Google Scholar] [CrossRef]
- Agakhanov, A.A.; Pautov, L.A.; Karpenko, V.Y.; Sokolova, E.; Abdu, Y.A.; Hawthorne, F.C.; Pekov, I.V.; Siidra, I.O.; Yusupovite, O.I. Na2Zr(Si6O15)(H2O)3, a new mineral species from the Darai-Pioz alkaline massif and its implications as a new microporous filter for large ions. Am. Mineral. 2015, 100, 1502–1508. [Google Scholar] [CrossRef]
- Rocha, J.; Ferreira, P.; Lin, Z.; Agger, J.R.; Anderson, M.W. Synthesis and characterisation of a microporous zirconium silicate with the structure of petarasite. Chem. Commun. 1998, 1969–1970. [Google Scholar] [CrossRef]
- Jale, S.R.; Ojo, A.; Fitch, F.R. Synthesis of microporous zirconosilicates containing ZrO6 octahedra and SiO4 tetrahedra. Chem. Commun. 1999, 41, 411–412. [Google Scholar] [CrossRef]
- Grigorieva, A.A.; Pekov, I.V.; Bryzgalov, I.A. Ion-exchange properties of natural sodium zirconosilicate terskite. In Minerals as Advanced Materials I; Krivovichev, S.V., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Berry, F.J.; Eadon, D.; Holloway, J.; Smart, L.E. Iron-doped zirconium silicate; Part 1.-The location of iron. J. Muter. Chem. 1996, 6, 221–225. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Seleim, S.M.; Abouelanwar, M.E. Solvent free microwave synthesis of nano polyaniline-zirconium silicate nanocomposite for removal of nitro derivatives. J. Ind. Eng. Chem. 2019, 77, 371–384. [Google Scholar] [CrossRef]
- Frondel, C.; Collette, R.L. Hydrothermal synthesis of zircon, thorite and huttonite. Am. Mineral. 1959, 42, 759–765. [Google Scholar]
- Sapozhnikov, A.N.; Kashaev, A.A. The crystal structure of calcined Ca-containing elpidite. Sov. Phys. Crystallogr. 1980, 25, 357–359. [Google Scholar]
- Moosavi, A.; Aghaei, A. Comparison of solution combustion and co-precipitation methods in synthesis of iron zircon coral pigment. Pigment Resin Technol. 2010, 39, 203–207. [Google Scholar] [CrossRef]
- Ozel, E.; Turan, S. Production of coloured zircon pigments from zircon. J. Eur. Ceram. Soc. 2007, 27, 1751–1757. [Google Scholar] [CrossRef]
- Zubkova, N.V.; Nikolova, R.P.; Chukanov, N.V.; Kostov-Kytin, V.V.; Pekov, I.V.; Varlamov, D.A.; Larikova, T.S.; Kazheva, O.N.; Chervonnaya, N.A.; Shilov, G.V.; et al. Crystal chemistry and properties of elpidite and its exchanged forms. Minerals 2019, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Choia, D.W.; Choy, K.L. The electrochemical effect of various Si/Zr molar ratios on anode materials in lithium-ion batteries. Dalton Trans. 2017, 46, 14226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniazzi, C.; Guimarães de Castroa, E.; Anaissi, F.J. Zirconium oxide and iron zirconate obtained from citrus pectin and nitrates applied in the photo-fenton-like process. Orbital Electron. J. Chem. 2018, 10, 386–394. [Google Scholar] [CrossRef]
- Fujiwara, H.; Kuramochi, H.; Nomura, K.; Maeseto, T. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima. J. Environ. Radioact. 2017, 178–179, 290–296. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Bhattacharyya, A.; Manchanda, V.K. Selective separation of radio-cesium from acidic solutions using supported liquid membrane containing chlorinated cobalt dicarbollide (CCD) in phenyltrifluoromethyl sulphone (PTMS). J. Hazard. Mater. 2010, 181, 679–685. [Google Scholar] [CrossRef]
- Tag El-Din, A.F.; El-Khouly, M.E.; Elshehy, E.A.; El-Said, W.A. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Microporous Mesoporous Mater. 2018, 265, 211–218. [Google Scholar] [CrossRef]
- Tag El-Din, A.F.; Elshehy, E.A.; Abd El-Magied, M.O.; Atia, A.A.; El-Khouly, M.E. Decontamination of radioactive cesium ions using ordered mesoporous monetite. RSC Adv. 2018, 8, 19041–19050. [Google Scholar] [CrossRef] [Green Version]
- Awual, M.; Suzuki, S.; Taguchi, T.; Shiwaku, H.; Okamoto, Y.; Yaita, T. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate sorbent. Chem. Eng. J. 2014, 242, 127–135. [Google Scholar] [CrossRef]
- Awual, M.; Yaita, T.; Miyazaki, Y. A reliable hybrid sorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci. Rep. 2016, 6, 19937. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Z.; Tanaka, H.; Kawamoto, T.; Miyuki, A.; Chikako, F.; Haitao, N.; Masato, K.; Masayuki, W.; Makoto, A.; Takuya, N. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim. Acta 2013, 87, 119–125. [Google Scholar] [CrossRef]
- Kautsky, U.; Saetre, P.; Berglund, S.; Jaeschke, B. The impact of low and intermediate-level radioactive waste on humans and the environment over the next one hundred thousand years. J. Environ. Radioact. 2016, 151, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Magied, M.O.; Elshehy, E.A.; Manaa, E.A.; Tolba, A.A.; Atia, A.A. Kinetics and thermodynamics studies on the recovery of thorium ions using amino resins with magnetic properties. Ind. Eng. Chem. Res. 2016, 55, 11338–11345. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C.; Sanit, J. Kinetics of adsorption on carbon from solution. Eng. Div. 1963, 89, 31–60. [Google Scholar]
- Alamudy, H.A.; Cho, K. Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem. Eng. J. 2018, 349, 595–602. [Google Scholar] [CrossRef]
- Zheng, X.; Dou, J.; Yuan, J.; Qin, W.; Hong, X.; Ding, A. Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. J. Environ. Sci. 2017, 56, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wu, Z.; Li, W.; Liu, H.; Li, Q.; Qing, B.; Guo, M.; Ge, F. Rubidium and cesium ion adsorption by an ammonium molybdophosphate–calcium alginate composite adsorbent. Colloids Surf. A 2009, 342, 76–83. [Google Scholar] [CrossRef]
- Jang, S.-C.; Haldorai, Y.; Lee, G.-W.; Hwang, S.-K.; Han, Y.-K.; Roh, C.; Huh, Y.S. Porous three-dimensional grapheme foam/Prussian blue composite for efficient removal of radioactive 137Cs. Sci. Rep. 2015, 5, 17510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangvanich, T.; Sukwarotwat, V.; Wiacek, R.J.; Grudzien, R.M.; Fryxell, G.E.; Addleman, R.S.; Timchalk, C.; Yantasee, W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 2010, 182, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attallah, M.F.; Abd-Elhamid, A.I.; Ahmed, I.M.; Aly, H.F. Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J. Mol. Liq. 2018, 261, 379–386. [Google Scholar] [CrossRef]
- Attallah, M.F.; Hassan, H.S.; Youssef, M.A. Synthesis and sorption potential study of Al2O3ZrO2CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl. Radiat. Isot. 2019, 147, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Zhai, J.; Sun, L.; Zhao, Y.; Yu, H. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J. 2014, 246, 10–19. [Google Scholar] [CrossRef]
- Tag El-Din, A.; Elshehy, E.A.; El-Khouly, M. Cellulose Acetate/EDTA-Chelator Assisted Synthesis of Ordered Mesoporous HAp Microspheres for Efficient Removal of Radioactive Species from Seawater. J. Environ. Chem. Eng. 2018, 16, 5845. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Über die adsorption in losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.-M.; Jeon, E.-K.; Baek, K. Selective and irreversible adsorption mechanism of cesium on illite. Appl. Geochem. 2017, 85, 188–193. [Google Scholar] [CrossRef]
- Sherry, H.S. The ion exchange properties of a zeolites. In Ion Exchange, Aseries of Advances; Marinsky, J.A., Ed.; Marcel Dekker: New York, NY, USA, 1969; Volume 2, pp. 89–133. [Google Scholar]
Kinetic Models | Kinetic Parameters | |
---|---|---|
PFORE | q1 mg g−1 | 23.44 |
K1 min−1 | 0.076 | |
R2adj | 0.9785 | |
R2 | 0.989 | |
PSORE | q2 mg g−1 | 32.2 |
K2 mg−1 min−1 | 1.5 × 10−3 | |
R2adj | 0.9242 | |
R2 | 0.9546 | |
Liquid film diffusion | Kdf min−1 | 0.076 |
R2adj | 0.9785 | |
R2 | 0.9892 | |
Weber–Morris diffusion | Kip, mg g−1 min–0.5) | 3.37 |
X | −1.36 | |
R2adj | 0.9489 | |
R2 | 0.9744 | |
Elovich kinetic | β (g mg−1) | 0.185 |
α (mg g−1 min−1) | 5.14 | |
R2adj | 0.889 | |
R2 | 0.9335 | |
Bangham kinetic | Kb (mL g−1 L−1) | 2.29 |
α | 0.63 | |
R2adj | 0.9926 | |
R2 | 0.9955 |
Adsorbent | Contact Time (Min) | pH | S/L Ratio (g L–1) | Uptake, (mg g–1) | Ref. |
---|---|---|---|---|---|
Montmorillonite-prussian blue | 30 | 6.5–7.0 | 2 | 57.47 | [34] |
Ammonium-pillared MMT/Fe3O4 | 60 | 6.7 | 0.5 | 27.53 | [35] |
Ammonium molybdophosphate calcium alginate | 24 | 3.5–4.5 | 100 | 91.80 | [36] |
Graphene foam/prussian blue | 720 | Natural | 2.5 | 18.67 | [37] |
Copper(II) ferrocyanide-silica | 2 | 7.8 | 0.1 | 17.10 | |
Nano SiO2–Fe-CN | 60 | 5.5 | 10 | 32.26 | [38] |
Al2O3–ZrO2–CeO2 | 60 | 6.0 | 10 | 8.88 | [39] |
Mesoporous CaHPO4 | 90 | 9.5 | 1 | 60.33 | [25] |
PB/Fe3O4/GO/calcium alginate | 400 | 7.0 | - | 43.52 | [40] |
Ammonium-pillared MMT-CoFe2O4/calcium alginate | 120 | 6.7 | 1.0 | 86.46 | [41] |
Mesoporous HAp | 30 | 8.5 | 1.0 | 77.20 | [24] |
Mesoporous MgP | 20 | 8.5 | 1.0 | 64.00 | [42] |
F@SZS-5 | 40 | 8.0 | 1.0 | 21.50 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshehy, E. Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite. Surfaces 2021, 4, 41-53. https://doi.org/10.3390/surfaces4010007
Elshehy E. Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite. Surfaces. 2021; 4(1):41-53. https://doi.org/10.3390/surfaces4010007
Chicago/Turabian StyleElshehy, Emad. 2021. "Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite" Surfaces 4, no. 1: 41-53. https://doi.org/10.3390/surfaces4010007
APA StyleElshehy, E. (2021). Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite. Surfaces, 4(1), 41-53. https://doi.org/10.3390/surfaces4010007