Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,044)

Search Parameters:
Keywords = electronic system design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1457 KB  
Article
Luminescent Imidazo[1,5-a]pyridine Cores and Corresponding Zn(II) Complexes: Structural and Optical Tunability
by G. Volpi, A. Giordana, E. Priola, R. Rabezzana and E. Diana
Inorganics 2025, 13(9), 283; https://doi.org/10.3390/inorganics13090283 (registering DOI) - 25 Aug 2025
Abstract
A new series of luminescent Zn(II) complexes based on mono- and bis-imidazo[1,5-a]pyridine ligands was synthesized to investigate the correlation between structural modifications and photophysical behaviour. Systematic variations in substituent groups, coordination geometry, and π-conjugation extent enabled precise tuning of absorption and [...] Read more.
A new series of luminescent Zn(II) complexes based on mono- and bis-imidazo[1,5-a]pyridine ligands was synthesized to investigate the correlation between structural modifications and photophysical behaviour. Systematic variations in substituent groups, coordination geometry, and π-conjugation extent enabled precise tuning of absorption and emission properties. Spectroscopic analysis revealed that Zn(II) coordination enhances molecular rigidity and induces a conformational change in the ligands, resulting in improved quantum yields (up to 37%) and significant blue shifts in emission. Notably, in bis-ligand systems, each imidazo[1,5-a]pyridine unit retains its distinct emissive signature upon complexation, demonstrating their optical and electronic independence. This modular behaviour confirms that individual emissive centres can be predictably manipulated without mutual interference, offering a powerful design strategy for multichromophoric materials. Structural, vibrational, and mass spectrometric characterizations further corroborate the stability and coordination patterns of the synthesized complexes. These insights lay the groundwork for engineering efficient and tunable Zn(II)-based luminophores for applications in optoelectronics, sensing, and bioimaging. Full article
(This article belongs to the Section Organometallic Chemistry)
16 pages, 4253 KB  
Article
Tailoring the Electronic and Structural Properties of Lead-Free A2ZrX6 “Defect” Perovskites: A DFT Study on A-Site Cation and Halogen Substitutions
by Christina Kolokytha, Demeter Tzeli and Nektarios N. Lathiotakis
Materials 2025, 18(17), 3976; https://doi.org/10.3390/ma18173976 (registering DOI) - 25 Aug 2025
Abstract
Lead-free A2ZrX6 “defect” perovskites hold significant potential for many optoelectronic applications due to their stability and tunable properties. Extending a previous work, we present a first-principles density functional theory (DFT) study, utilizing PBE and HSE06 functionals, to systematically investigate the [...] Read more.
Lead-free A2ZrX6 “defect” perovskites hold significant potential for many optoelectronic applications due to their stability and tunable properties. Extending a previous work, we present a first-principles density functional theory (DFT) study, utilizing PBE and HSE06 functionals, to systematically investigate the impact of A-site cation and X-site halogen substitutions on the structural and electronic properties of these materials. We varied the A-site cation, considering ammonium, methylammonium, dimethylammonium, trimethylammonium, and phosphonium, and the X-site halogen, trying Cl, Br, and I. Our calculations reveal that both these substitutions significantly affect the band gap and the lattice parameters. Increasing A-site cation size generally enlarges the unit cell, while halogen electronegativity directly correlates with the band gap, yielding the lowest values for iodine-containing systems. We predict a broad range of band gaps (from ~4.79 eV for (PH4)2ZrCl6 down to ~2.11 eV for MA2ZrI6 using HSE06). The (PH4)2ZrX6 compounds maintain cubic crystal symmetry, unlike the triclinic of the ammonium-derived systems. Finally, our calculations show that the MA cation yields the smallest band gap among the ones studied, a result that is attributed to its size and the charges of the hydrogen atoms attached to nitrogen. Thus, our findings offer crucial theoretical insights into A2ZrX6 structure–property relationships, demonstrating how A-site cation and halogen tuning enables control over electronic and structural characteristics, thus guiding future experimental efforts for tailored lead-free perovskite design. Full article
Show Figures

Figure 1

14 pages, 1425 KB  
Article
Design-Informed Evaluation and Fretting Damage Mapping of Additive-Manufactured Ti-6Al-4V Components
by Ahmad Sadeghian and Saeed Adibnazari
Designs 2025, 9(5), 100; https://doi.org/10.3390/designs9050100 - 25 Aug 2025
Abstract
This paper experimentally investigates the fretting fatigue behavior of metal additive-manufactured Ti-6Al-4V alloy specimens fabricated using the selective laser melting (SLM) method, focusing on damage characterization and fatigue life assessment. Based on the ASTM E466 standard, the test components were manufactured using metal [...] Read more.
This paper experimentally investigates the fretting fatigue behavior of metal additive-manufactured Ti-6Al-4V alloy specimens fabricated using the selective laser melting (SLM) method, focusing on damage characterization and fatigue life assessment. Based on the ASTM E466 standard, the test components were manufactured using metal 3D printing technology. Fretting fatigue tests were conducted under varying axial stress levels and contact loads, followed by microscopic examinations using scanning electron microscopy (SEM) to analyze damage mechanisms. A fretting map was developed based on SEM observations, providing insights into damage evolution under different loading conditions. These findings contribute to a better understanding of the relationship between fretting fatigue parameters and failure mechanisms. The developed fretting map and experimental observations provide a foundation for further studies aimed at enhancing the fretting fatigue life assessment of standard specimens for different test parameters. Finally, this paper includes design-oriented evaluation frameworks that can guide engineers in integrating AM components into safety-critical systems under fretting fatigue conditions. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

18 pages, 4777 KB  
Article
Battery-Free Innovation: An RF-Powered Implantable Microdevice for Intravesical Chemotherapy
by Obidah Alsayed Ali and Evren Degirmenci
Appl. Sci. 2025, 15(17), 9304; https://doi.org/10.3390/app15179304 - 24 Aug 2025
Abstract
This study presents the development of an innovative battery-free, RF-powered implantable microdevice designed for intravesical chemotherapy delivery. The system utilizes a custom-designed RF energy harvesting module that enables wireless energy transfer through biological tissue, eliminating the need for internal power sources. Mechanical and [...] Read more.
This study presents the development of an innovative battery-free, RF-powered implantable microdevice designed for intravesical chemotherapy delivery. The system utilizes a custom-designed RF energy harvesting module that enables wireless energy transfer through biological tissue, eliminating the need for internal power sources. Mechanical and electronic components were co-optimized to achieve full functionality within a compact, biocompatible housing suitable for intravesical implantation. The feasibility of the device was validated through simulation studies and ex vivo experiments using biological tissue models. The results demonstrated successful energy transmission, storage, and sequential actuator activation within a biological environment. The proposed system offers a promising platform for minimally invasive, wirelessly controlled drug delivery applications in oncology and other biomedical fields. Full article
Show Figures

Figure 1

37 pages, 900 KB  
Review
Implicit Solvent Models and Their Applications in Biophysics
by Yusuf Bugra Severoglu, Betul Yuksel, Cagatay Sucu, Nese Aral, Vladimir N. Uversky and Orkid Coskuner-Weber
Biomolecules 2025, 15(9), 1218; https://doi.org/10.3390/biom15091218 - 23 Aug 2025
Viewed by 59
Abstract
:Solvents represent the quiet majority in biomolecular systems, yet modeling their influence with both speed and ri:gor remains a central challenge. This study maps the state of the art in implicit solvent theory and practice, spanning classical continuum electrostatics (PB/GB; DelPhi, APBS), [...] Read more.
:Solvents represent the quiet majority in biomolecular systems, yet modeling their influence with both speed and ri:gor remains a central challenge. This study maps the state of the art in implicit solvent theory and practice, spanning classical continuum electrostatics (PB/GB; DelPhi, APBS), modern nonpolar and cavity/dispersion treatments, and quantum–continuum models (PCM, COSMO/COSMO-RS, SMx/SMD). We highlight where these methods excel and where they falter, namely, around ion specificity, heterogeneous interfaces, entropic effects, and parameter sensitivity. We then spotlight two fast-moving frontiers that raise both accuracy and throughput: machine learning-augmented approaches that serve as PB-accurate surrogates, learn solvent-averaged potentials for MD, or supply residual corrections to GB/PB baselines, and quantum-centric workflows that couple continuum solvation methods, such as IEF-PCM, to sampling on real quantum hardware, pointing toward realistic solution-phase electronic structures at emerging scales. Applications across protein–ligand binding, nucleic acids, and intrinsically disordered proteins illustrate how implicit models enable rapid hypothesis testing, large design sweeps, and long-time sampling. Our perspective argues for hybridization as a best practice, meaning continuum cores refined by improved physics, such as multipolar water, ML correctors with uncertainty quantification and active learning, and quantum–continuum modules for chemically demanding steps. Full article
(This article belongs to the Special Issue Protein Biophysics)
10 pages, 2442 KB  
Article
Design and Measurements of an Electrothermal Filter Using CMOS Technology
by Mariusz Jankowski, Michał Szermer and Marcin Janicki
Electronics 2025, 14(17), 3355; https://doi.org/10.3390/electronics14173355 - 23 Aug 2025
Viewed by 49
Abstract
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an [...] Read more.
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an essential part of temperature sensors, based on the measurement of material thermal diffusivity, in which the input signal of the filter is a square wave. However, the phase shift introduced by the filter depends on the signal frequency. Thus, the authors decided to explore this dependence in more detail by measuring filter response to sinusoidal input signals. The investigations presented in this paper were carried out for an electrothermal filter designed and manufactured in an ASIC using 3 µm CMOS technology. The obtained measurement results confirmed the hypothesis that both the gain and the phase shift in the filter strongly depend on the input signal frequency. Accurate data on the thermal impedance of filters is crucial for the optimization of their performance. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

28 pages, 40313 KB  
Article
Colorectal Cancer Detection Through Sweat Volatilome Using an Electronic Nose System and GC-MS Analysis
by Cristhian Manuel Durán Acevedo, Jeniffer Katerine Carrillo Gómez, Gustavo Adolfo Bautista Gómez, José Luis Carrero Carrero and Rogelio Flores Ramírez
Cancers 2025, 17(17), 2742; https://doi.org/10.3390/cancers17172742 - 23 Aug 2025
Viewed by 77
Abstract
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, emphasizing the urgent need for early, non-invasive, and accessible diagnostic tools. This study aimed to evaluate the effectiveness of a microelectromechanical systems (MEMS)-based electronic nose (E-nose) in combination with [...] Read more.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, emphasizing the urgent need for early, non-invasive, and accessible diagnostic tools. This study aimed to evaluate the effectiveness of a microelectromechanical systems (MEMS)-based electronic nose (E-nose) in combination with gas chromatography–mass spectrometry (GC-MS) for CRC detection through sweat volatile organic compounds (VOCs). Methods: A total of 136 sweat samples were collected from 68 volunteer participants. Samples were processed using solid-phase microextraction (SPME) and analyzed by GC-MS, while a custom-designed E-nose system comprising 14 gas sensors captured real-time VOC profiles. Data were analyzed using multivariate statistical techniques, including PCA and PLS-DA, and classified with machine learning algorithms (LDA, LR, SVM, k-NN). Results: GC-MS analysis revealed statistically significant differences between CRC patients and healthy controls (COs). Cross-validation showed that the highest classification accuracy for GC-MS data was 81% with the k-NN classifier, whereas E-nose data achieved up to 97% accuracy using the LDA classifier. Conclusions: Sweat volatilome analysis, supported by advanced data processing and complementary use of E-nose technology and GC-MS, demonstrates strong potential as a reliable, non-invasive approach for early CRC detection. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

38 pages, 5256 KB  
Review
Carbon/High-Entropy Alloy Nanocomposites: Synergistic Innovations and Breakthrough Challenges for Electrochemical Energy Storage
by Li Sun, Hangyu Li, Yu Dong, Wan Rong, Na Zhou, Rui Dang, Jianle Xu, Qigao Cao and Chunxu Pan
Batteries 2025, 11(9), 317; https://doi.org/10.3390/batteries11090317 (registering DOI) - 23 Aug 2025
Viewed by 65
Abstract
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long [...] Read more.
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long cycle life. Carbon/high-entropy alloy nanocomposites provide an innovative solution through multi-component synergistic effects and cross-scale structural design: the “cocktail effect” of high-entropy alloys confers excellent redox activity and structural stability, while the three-dimensional conductive network of the carbon skeleton enhances charge transfer efficiency. Together, they achieve synergistic enhancement via interfacial electron coupling, stress buffering, and dual storage mechanisms. This review systematically analyzes the charge storage/attenuation mechanisms and performance advantages of this composite material in diverse energy-storage devices (lithium-ion batteries, lithium-sulfur batteries, etc.), evaluates the characteristics and limitations of preparation techniques such as mechanical alloying and chemical vapor deposition, identifies five major challenges (including complex and costly synthesis, ambiguous interfacial interaction mechanisms, lagging theoretical research, performance-cost trade-offs, and slow industrialization processes), and prospectively proposes eight research directions (including multi-scale structural regulation and sustainable preparation technologies, etc.). Through interdisciplinary perspectives, this review aims to provide a theoretical foundation for deepening the understanding of carbon/high-entropy alloy composite energy-storage mechanisms and guiding industrial applications, thereby advancing breakthroughs in electrochemical energy-storage technology under the energy transition. Full article
Show Figures

Graphical abstract

42 pages, 15245 KB  
Article
Effect of Mixing Water Temperature on the Thermal and Microstructural Evolution of Cemented Paste Backfill in Underground Mining
by Amin Safari, Cody Tennant, Aliakbar Gholampour, Jeremy Palmer and Abbas Taheri
Minerals 2025, 15(9), 887; https://doi.org/10.3390/min15090887 - 22 Aug 2025
Viewed by 103
Abstract
Cemented paste backfill (CPB) gains strength through the hydration of the binder constituent of the CPB, where mix temperature is a key influencing factor. Both rate of strength development and ultimate strength are influenced by the overarching temperature conditions in which the binder [...] Read more.
Cemented paste backfill (CPB) gains strength through the hydration of the binder constituent of the CPB, where mix temperature is a key influencing factor. Both rate of strength development and ultimate strength are influenced by the overarching temperature conditions in which the binder hydration occurs. This study investigates the influence of mixing water temperature on the thermal behaviour, hydration kinetics, and microstructural development of CPB using a combination of thermal finite element modelling, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Five CPB mixtures were prepared, with water temperatures ranging from 5 °C to 50 °C, and tested under controlled conditions to isolate the effects of the initial thermal input. Results show that moderate mixing water temperatures (20–35 °C) optimize hydration and mechanical strength, while excessive temperatures (≥50 °C) increase the risk of thermal cracking due to generation of excessive heat. The thermal modelling results demonstrated that the highest temperatures were observed in the bottom section of the fill mass, in contact with the surrounding rock, where the combined effects of mix-generated heat and rock conduction were most pronounced. The 50 °C mix reached a peak internal temperature of 85.6 °C with a thermal gradient of 40.5 °C, while the 5 °C mix recorded a much lower peak of 55.7 °C and a gradient of 16.8 °C. These results highlight that higher mixing water temperatures accelerate early hydration reactions and significantly influence the internal thermal profile during the first 21 days of curing. Based on these findings, the design of paste plants can be improved by incorporating a heating/cooling system for the mixing water tank—firstly, to ensure the water temperature does not exceed 50 °C and secondly, to maintain water within an optimal temperature range, potentially reducing binder consumption. Full article
Show Figures

Figure 1

17 pages, 3371 KB  
Article
Band Engineering Induced by Sulphur Vacancies in MoS2/g-C3N4 or Selective CO2 Photoreduction to CH3OH
by Shicheng Liu, Junbo Yu, Xiangyu Chen, Na Li and Qulan Zhou
Nanomaterials 2025, 15(17), 1294; https://doi.org/10.3390/nano15171294 - 22 Aug 2025
Viewed by 222
Abstract
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient [...] Read more.
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient and selective CO2 photoreduction to CH3OH. The structural and photoelectronic characterisation of the system shows that the heterogeneous interface between MoS2 and g-C3N4 is in close contact. The introduction of SVs effectively modulates the electronic structure and surface activity of MoS2, which in turn enhances the CO2 reduction performance. Optical and electronic structure analyses reveal that the heterojunction promotes favourable band alignment and interfacial electric potential gradients, which together suppress charge recombination and enhance directional carrier separation. Under irradiation, the MoS2-SVs/g-C3N4 photocatalyst exhibited outstanding photocatalytic CH3OH production with a yield of 10.06 μmol·h−1·g−1, significantly surpassing the performance of control samples while demonstrating excellent product selectivity and remarkable stability. Mechanistic studies further verify that vacancy-induced energy band modulation with Fermi energy level enhancement significantly reduces the multi-electron transfer barrier, thus preferentially driving the CH3OH generation pathway. This work proposes a universal structural design strategy that synergistically coordinates vacancy engineering with band structure modulation, establishing both theoretical principles and practical methodologies for developing selective multi-electron CO2 reduction systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

19 pages, 4456 KB  
Article
Numerical Analysis on Thermal and Flow Performance of Honeycomb-Structured Microchannel Cooling Plate for IGBT
by Guangtao Zhai, Hao Yang, Wu Gong, Fan Wu, Junxiong Zeng, Xiaojin Fu and Tieyu Gao
Energies 2025, 18(16), 4455; https://doi.org/10.3390/en18164455 - 21 Aug 2025
Viewed by 201
Abstract
In high-power insulated gate bipolar transistor (IGBT) module thermal management, the structural design of microchannel cooling plates plays a crucial role in determining heat dissipation efficiency and temperature uniformity. This study focuses on the effects of honeycomb-structured unit dimensions and arrangements, as well [...] Read more.
In high-power insulated gate bipolar transistor (IGBT) module thermal management, the structural design of microchannel cooling plates plays a crucial role in determining heat dissipation efficiency and temperature uniformity. This study focuses on the effects of honeycomb-structured unit dimensions and arrangements, as well as inlet/outlet configurations of the cooling plate on its thermal and flow performance. Additionally, the influence of different coolant inlet velocities and temperatures is investigated. Under constant coolant flow rate and boundary conditions, four design configurations with varying pore widths and channel spacings were evaluated numerically. The results indicate that the optimized honeycomb structure can reduce the module’s peak temperature by approximately 8.7 K while significantly improving temperature uniformity and maintaining a moderate pressure drop. Moreover, increasing the number of inlets and outlets effectively lowers the pressure drop and enhances thermal uniformity. Although increasing the coolant flow rate and reducing the inlet temperature can further improve cooling performance, these measures also lead to notable increases in energy consumption and pressure loss. Therefore, a trade-off between thermal enhancement and system energy efficiency must be considered in practical applications. The findings of this study provide practical guidance for the design optimization of high-efficiency microchannel liquid cooling systems in power electronic applications. Full article
Show Figures

Figure 1

33 pages, 6314 KB  
Review
Gel-Type Electrofluorochromic Devices for Advanced Optoelectronic Applications
by Xuecheng Wang, Lijing Wen, Jinxia Ren, Yonghen Wen, Yonghua Li, Yizhou Zhang and Kenneth Yin Zhang
Gels 2025, 11(8), 673; https://doi.org/10.3390/gels11080673 - 21 Aug 2025
Viewed by 267
Abstract
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, [...] Read more.
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, enabling a high-contrast, flexible, and multifunctional operation. This review provides a comprehensive overview of gel-based EFC technologies, outlining fundamental working principles, device architectures, and key performance metrics such as contrast ratio, switching time, and cycling stability. Gel matrices are categorized into ionogels, organogels, and hydrogels, and their physicochemical properties are discussed in relation to EFC device performance. Recent advances are highlighted across applications ranging from flexible displays and rewritable electronic paper to strain and biosensors, data encryption, smart windows, and hybrid energy-interactive systems. Finally, current challenges and emerging strategies are analyzed to guide the design of next-generation adaptive, intelligent, and energy-efficient optoelectronic platforms. Full article
Show Figures

Graphical abstract

19 pages, 3295 KB  
Article
Structure Design and Performance Study of Bionic Electronic Nasal Cavity
by Pu Chen, Zhipeng Yin, Shun Xu, Pengyu Wang, Lianjun Yang and You Lv
Biomimetics 2025, 10(8), 555; https://doi.org/10.3390/biomimetics10080555 - 21 Aug 2025
Viewed by 133
Abstract
A miniaturised bionic electronic nose system was developed to solve the problems of expensive equipment and long response time for soil pesticide residue detection. The structure of the bionic electronic nasal cavity is designed based on the spatial structure and olfactory principle of [...] Read more.
A miniaturised bionic electronic nose system was developed to solve the problems of expensive equipment and long response time for soil pesticide residue detection. The structure of the bionic electronic nasal cavity is designed based on the spatial structure and olfactory principle of the sturgeon nasal cavity. Through experimental study, the structure of the nasal cavity of the sturgeon was extracted and analyzed. The 3D model of the bionic electronic nasal cavity was constructed and verified by Computational Fluid Dynamics (CFD) simulation. The results show that the gas flow distribution in the bionic chamber is more uniform than that in the ordinary chamber. The airflow velocity near the sensor in the bionic chamber is lower than in the ordinary chamber. The eddy current intensity near the bionic chamber sensor is 2.29 times that of the ordinary chamber, further increasing the contact intensity between odor molecules and the sensor surface and shortening the response time. The 10-fold cross-validation method of K-Nearest Neighbor (K-NN), Random Forest (RF) and Support Vector Machine (SVM) was used to compare the recognition performance of the bionic electronic nasal cavity with that of the ordinary electronic nasal cavity. The results showed that, when the bionic electronic nose detection system identified the concentration of pesticide residues in soil, the recognition rate of the above three recognition algorithms reached 97.3%, significantly higher than that of the comparison chamber. The bionic chamber electronic nose system can improve the detection performance of electronic noses and has a good application prospect in soil pesticide residue detection. Full article
(This article belongs to the Special Issue Biomimetics in Intelligent Sensor: 2nd Edition)
Show Figures

Figure 1

37 pages, 1588 KB  
Review
Enhancing Thermal Efficiency in Power Electronics: A Review of Advanced Materials and Cooling Methods
by Tahmid Orville, Monem Tajwar, Raghav Bihani, Parnab Saha and Mohammed Abdul Hannan
Thermo 2025, 5(3), 30; https://doi.org/10.3390/thermo5030030 - 20 Aug 2025
Viewed by 415
Abstract
Over the last several years, a significant advancement in high-voltage electronic packaging techniques has paved the way for next-generation power electronics. However, controlling the thermal properties of these new packaging solutions is still a major challenge. The utilization of wide bandgap semiconductors such [...] Read more.
Over the last several years, a significant advancement in high-voltage electronic packaging techniques has paved the way for next-generation power electronics. However, controlling the thermal properties of these new packaging solutions is still a major challenge. The utilization of wide bandgap semiconductors such as SiC and GaN offers effective methods to minimize thermal inefficiencies caused by conduction losses through high-frequency switching topologies. Nevertheless, the need for high voltage in electrical systems continues to pose significant barriers, as heat generation remains one of the most significant obstacles to widespread implementation. The trend of electronics design miniaturization has driven the development of high-performance cooling concepts to address the needs of high-power-density systems. As a result, the design of effective cooling systems has emerged as a crucial aspect for successful implementation, requiring seamless integration with electronic packaging to achieve optimal performance. This review article explores various thermal management approaches demonstrated in electronic systems. This paper aims to provide a comprehensive overview of heat transfer enhancement techniques employed in electronics thermal management, focusing on core concepts. The review categorizes these techniques into concepts based on fin design, microchannel cooling, jet impingement, phase change materials, nanofluids, and hybrid designs. Recent advancements in high-power density devices, alongside innovative cooling systems such as phase change materials and nanofluids, demonstrate potential for enhanced heat dissipation in power electronics. Improved designs in finned heat sinks, microchannel cooling, and jet impingement techniques have enabled more efficient thermal management in high-density power electronics. By fixing key insights into one reference, this review serves as a valuable resource for researchers and engineers navigating the complex landscape of high-performance cooling for modern electronic systems. Full article
Show Figures

Figure 1

19 pages, 2646 KB  
Article
Fundamentals of Metal Contact to p-Type GaN—A New Multilayer Energy-Saving Design
by Konrad Sakowski, Cyprian Sobczak, Pawel Strak and Stanislaw Krukowski
Electronics 2025, 14(16), 3309; https://doi.org/10.3390/electronics14163309 - 20 Aug 2025
Viewed by 205
Abstract
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which [...] Read more.
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which is related to the Fermi-level difference, as determined by both ab initio and model calculations. The results indicate a high potential barrier for holes, leading to the non-Ohmic character of the contact. The electrical nature of the Ni–Au contact formed by annealing in an oxygen atmosphere was elucidated. The influence of doping on the potential profile of p-type GaN was calculated using the drift-diffusion model. The energy-barrier height and width for hole transport were determined. Based on these results, a new type of contact is proposed. The contact is created by employing multiple-layer implantation of deep acceptors. The implementation of such a design promises to attain superior characteristics (resistance) compared with other contacts used in bipolar nitride semiconductor devices. The development of such contacts will remove one of the main obstacles in the development of highly efficient nitride optoelectronic devices, both LEDs and LDs: energy loss and excessive heat production close to the multiple-quantum-well system. Full article
Show Figures

Figure 1

Back to TopTop