Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = electrocorticography (ECoG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 9499 KiB  
Review
Review of Multimodal Data Acquisition Approaches for Brain–Computer Interfaces
by Sayantan Ghosh, Domokos Máthé, Purushothaman Bhuvana Harishita, Pramod Sankarapillai, Anand Mohan, Raghavan Bhuvanakantham, Balázs Gulyás and Parasuraman Padmanabhan
BioMed 2024, 4(4), 548-587; https://doi.org/10.3390/biomed4040041 - 2 Dec 2024
Cited by 2 | Viewed by 5409
Abstract
There have been multiple technological advancements that promise to gradually enable devices to measure and record signals with high resolution and accuracy in the domain of brain–computer interfaces (BCIs). Multimodal BCIs have been able to gain significant traction given their potential to enhance [...] Read more.
There have been multiple technological advancements that promise to gradually enable devices to measure and record signals with high resolution and accuracy in the domain of brain–computer interfaces (BCIs). Multimodal BCIs have been able to gain significant traction given their potential to enhance signal processing by integrating different recording modalities. In this review, we explore the integration of multiple neuroimaging and neurophysiological modalities, including electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), electrocorticography (ECoG), and single-unit activity (SUA). This multimodal approach leverages the high temporal resolution of EEG and MEG with the spatial precision of fMRI, the invasive yet precise nature of ECoG, and the single-neuron specificity provided by SUA. The paper highlights the advantages of integrating multiple modalities, such as increased accuracy and reliability, and discusses the challenges and limitations of multimodal integration. Furthermore, we explain the data acquisition approaches for each of these modalities. We also demonstrate various software programs that help in extracting, cleaning, and refining the data. We conclude this paper with a discussion on the available literature, highlighting recent advances, challenges, and future directions for each of these modalities. Full article
Show Figures

Figure 1

12 pages, 3303 KiB  
Article
Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses
by Felipe Rettore Andreis, Suzan Meijs, Thomas Gomes Nørgaard dos Santos Nielsen, Taha Al Muhamadee Janjua and Winnie Jensen
Sensors 2024, 24(21), 6847; https://doi.org/10.3390/s24216847 - 25 Oct 2024
Viewed by 1365
Abstract
Micro-electrocorticography (µECoG) electrodes have emerged to balance the trade-off between invasiveness and signal quality in brain recordings. However, its large-scale applicability is still hindered by a lack of comparative studies assessing the relationship between ECoG and traditional recording methods such as penetrating electrodes. [...] Read more.
Micro-electrocorticography (µECoG) electrodes have emerged to balance the trade-off between invasiveness and signal quality in brain recordings. However, its large-scale applicability is still hindered by a lack of comparative studies assessing the relationship between ECoG and traditional recording methods such as penetrating electrodes. This study aimed to compare somatosensory evoked potentials (SEPs) through the lenses of a µECoG and an intracortical microelectrode array (MEA). The electrodes were implanted in the pig’s primary somatosensory cortex, while SEPs were generated by applying electrical stimulation to the ulnar nerve. The SEP amplitude, signal-to-noise ratio (SNR), power spectral density (PSD), and correlation structure were analysed. Overall, SEPs resulting from MEA recordings had higher amplitudes and contained significantly more spectral power, especially at higher frequencies. However, the SNRs were similar between the interfaces. These results demonstrate the feasibility of using µECoG to decode SEPs with wide-range applications in physiology monitoring and brain–computer interfaces. Full article
Show Figures

Figure 1

22 pages, 8397 KiB  
Article
A Polymer Thick Film on an Organic Substrate Grid Electrode and an Open-Source Recording System for UHF MRI: An Imaging Study
by Yinching Iris Chen, Ilknur Ay, Francesca Marturano, Peter Fuller, Hernan Millan and Giorgio Bonmassar
Sensors 2024, 24(16), 5214; https://doi.org/10.3390/s24165214 - 12 Aug 2024
Viewed by 4178
Abstract
Electrocorticography (ECoG) is a critical tool in preclinical neuroscience research for studying global network activity. However, integrating ECoG with functional magnetic resonance imaging (fMRI) has posed challenges, due to metal electrode interference with imaging quality and heating around the metallic electrodes. Here, we [...] Read more.
Electrocorticography (ECoG) is a critical tool in preclinical neuroscience research for studying global network activity. However, integrating ECoG with functional magnetic resonance imaging (fMRI) has posed challenges, due to metal electrode interference with imaging quality and heating around the metallic electrodes. Here, we introduce recent advancements in ECoG grid development that utilize a polymer-thick film on an organic substrate (PTFOS). PTFOS offers notable advantages over traditional ECoG grids. Firstly, it significantly reduces imaging artifacts, ensuring minimal interference with MR image quality when overlaying brain tissue with PTFOS grids. Secondly, during a 30-min fMRI acquisition, the temperature increase associated with PTFOS grids is remarkably low, measuring only 0.4 °C. These findings suggest that utilizing ECoG with PTFOS grids has the potential to enhance the safety and efficacy of neurosurgical procedures. By providing clearer imaging results and mitigating risk factors such as excessive heating during MRI scans, PTFOS-based ECoG grids represent a promising advancement in neurosurgical technology. Furthermore, we describe a cutting-edge open-source system designed for simultaneous electrophysiology and fMRI. This system stands out due to its exceptionally low input noise levels (<0.6 V peak-to-peak), robust electromagnetic compatibility (it is suitable for use in MRI environments up to 9.4 teslas), and the inclusion of user-programmable real-time signal-processing capabilities. The open-platform software is a key feature, enabling researchers to swiftly implement and customize real-time signal-processing algorithms to meet specific experimental needs. This innovative system has been successfully utilized in several rodent EEG/fMRI studies, particularly at magnetic field strengths of 4.7 and 9.4 teslas, focusing on the somatosensory system. These studies have allowed for detailed observation of neural activity and responses within this sensory system, providing insights that are critical for advancing our understanding of neurophysiological processes. The versatility and high performance of our system make it an invaluable tool for researchers aiming to integrate and analyze complex datasets from advanced imaging and electrophysiological recordings, ultimately enhancing the depth and scope of neuroscience research. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

29 pages, 2975 KiB  
Review
Prospects of Electrocorticography in Neuropharmacological Studies in Small Laboratory Animals
by Yuriy I. Sysoev and Sergey V. Okovityi
Brain Sci. 2024, 14(8), 772; https://doi.org/10.3390/brainsci14080772 - 31 Jul 2024
Viewed by 2084
Abstract
Electrophysiological methods of research are widely used in neurobiology. To assess the bioelectrical activity of the brain in small laboratory animals, electrocorticography (ECoG) is most often used, which allows the recording of signals directly from the cerebral cortex. To date, a number of [...] Read more.
Electrophysiological methods of research are widely used in neurobiology. To assess the bioelectrical activity of the brain in small laboratory animals, electrocorticography (ECoG) is most often used, which allows the recording of signals directly from the cerebral cortex. To date, a number of methodological approaches to the manufacture and implantation of ECoG electrodes have been proposed, the complexity of which is determined by experimental tasks and logistical capabilities. Existing methods for analyzing bioelectrical signals are used to assess the functional state of the nervous system in test animals, as well as to identify correlates of pathological changes or pharmacological effects. The review presents current areas of applications of ECoG in neuropharmacological studies in small laboratory animals. Traditionally, this method is actively used to study the antiepileptic activity of new molecules. However, the possibility of using ECoG to assess the neuroprotective activity of drugs in models of traumatic, vascular, metabolic, or neurodegenerative CNS damage remains clearly underestimated. Despite the fact that ECoG has a number of disadvantages and methodological difficulties, the recorded data can be a useful addition to traditional molecular and behavioral research methods. An analysis of the works in recent years indicates a growing interest in the method as a tool for assessing the pharmacological activity of psychoactive drugs, especially in combination with classification and prediction algorithms. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 2393 KiB  
Article
Impact of a Novel Valerian Extract on Sleep Quality, Relaxation, and GABA/Serotonin Receptor Activity in a Murine Model
by Kazim Sahin, Hasan Gencoglu, Ahmet Kayhan Korkusuz, Cemal Orhan, İsmail Ertuğ Aldatmaz, Fusun Erten, Besir Er, Abhijeet Morde, Muralidhara Padigaru and Ertugrul Kilic
Antioxidants 2024, 13(6), 657; https://doi.org/10.3390/antiox13060657 - 27 May 2024
Cited by 7 | Viewed by 10849
Abstract
Insomnia is a major global health issue, highlighting the need for treatments that are both effective and safe. Valerian extract, a traditional remedy for sleep problems, offers potential therapeutic options. This research examined the potential sleep-enhancing effects of VA (Valerian Pdr%2) in mice. [...] Read more.
Insomnia is a major global health issue, highlighting the need for treatments that are both effective and safe. Valerian extract, a traditional remedy for sleep problems, offers potential therapeutic options. This research examined the potential sleep-enhancing effects of VA (Valerian Pdr%2) in mice. The study evaluated sleep quality by comparing the impact of the VA extract against melatonin on brain activity, using electrocorticography (ECoG) to assess changes in brain waves. For this purpose, the study utilized two experimental models on BALB/c mice to explore the effects of caffeine-induced insomnia and pentobarbital-induced sleep. In the first model, 25 mice were assigned to five groups to test the effects of caffeine (caffeine, 7.5 mg/kg i.p) alone, caffeine with melatonin (2 mg/kg), or caffeine with different doses of valerian extract (100 or 300 mg/kg) given orally on brain activity, assessed via electrocorticography (ECoG) and further analyses on the receptor proteins and neurotransmitters. In the second model, a different set of 25 mice were divided into five groups to examine the impact of pentobarbital (42 mg/kg) alone, with melatonin, or with the valerian extract on sleep induction, observing the effects 45 min after administration. The study found that ECoG frequencies were lower in groups treated with melatonin and two doses of valerian extract (100 and 300 mg/kg), with 300 mg/kg showing the most significant effect in reducing frequencies compared to the caffeine control group, indicating enhanced sleep quality (p < 0.05). This was supported by increased levels of serotonin, melatonin, and dopamine and higher levels of certain brain receptors in the melatonin and valerian extract groups (p < 0.05). Modulatory efficacy for the apoptotic markers in the brain was also noted (p < 0.05). Additionally, melatonin and both doses of VA increased sleep duration and reduced sleep onset time compared to the pentobarbital control, which was particularly notable with high doses. In conclusion, the findings suggest that high doses (300 mg/kg) of valerian extract enhance both the quantity and quality of sleep through the GABAergic pathway and effectively increase sleep duration while reducing the time to fall asleep in a pentobarbital-induced sleep model in mice. Full article
Show Figures

Figure 1

17 pages, 8324 KiB  
Article
Measurement of the Mapping between Intracranial EEG and fMRI Recordings in the Human Brain
by David W Carmichael, Serge Vulliemoz, Teresa Murta, Umair Chaudhary, Suejen Perani, Roman Rodionov, Maria Joao Rosa, Karl J Friston and Louis Lemieux
Bioengineering 2024, 11(3), 224; https://doi.org/10.3390/bioengineering11030224 - 27 Feb 2024
Cited by 4 | Viewed by 2795
Abstract
There are considerable gaps in our understanding of the relationship between human brain activity measured at different temporal and spatial scales. Here, electrocorticography (ECoG) measures were used to predict functional MRI changes in the sensorimotor cortex in two brain states: at rest and [...] Read more.
There are considerable gaps in our understanding of the relationship between human brain activity measured at different temporal and spatial scales. Here, electrocorticography (ECoG) measures were used to predict functional MRI changes in the sensorimotor cortex in two brain states: at rest and during motor performance. The specificity of this relationship to spatial co-localisation of the two signals was also investigated. We acquired simultaneous ECoG-fMRI in the sensorimotor cortex of three patients with epilepsy. During motor activity, high gamma power was the only frequency band where the electrophysiological response was co-localised with fMRI measures across all subjects. The best model of fMRI changes across states was its principal components, a parsimonious description of the entire ECoG spectrogram. This model performed much better than any others that were based either on the classical frequency bands or on summary measures of cross-spectral changes. The region-specific fMRI signal is reflected in spatially and spectrally distributed EEG activity. Full article
(This article belongs to the Special Issue Multimodal Neuroimaging Techniques: Progress and Application)
Show Figures

Figure 1

13 pages, 1581 KiB  
Case Report
Responsive Neurostimulation of the Anterior Thalamic Nuclei in Refractory Genetic Generalized Epilepsy: A Case Series
by Carly M. O’Donnell, Sara J. Swanson, Chad E. Carlson, Manoj Raghavan, Peter A. Pahapill and Christopher Todd Anderson
Brain Sci. 2023, 13(2), 324; https://doi.org/10.3390/brainsci13020324 - 14 Feb 2023
Cited by 3 | Viewed by 4420
Abstract
Genetic generalized epilepsies (GGEs) are thought to represent disorders of thalamocortical networks. There are currently no well-established non-pharmacologic treatment options for patients with drug-resistant GGE. NeuroPace’s Responsive Neurostimulation (RNS) System was approved by the United States Food and Drug Administration to treat focal [...] Read more.
Genetic generalized epilepsies (GGEs) are thought to represent disorders of thalamocortical networks. There are currently no well-established non-pharmacologic treatment options for patients with drug-resistant GGE. NeuroPace’s Responsive Neurostimulation (RNS) System was approved by the United States Food and Drug Administration to treat focal seizures with up to two ictal foci. We report on three adults with drug-resistant GGE who were treated with thalamic RNS. Given the severity of their epilepsies and the potential ictogenic role of the thalamus in the pathophysiology of GGE, the RNS System was palliatively implanted with leads in the bilateral anterior thalamic nuclei (ANT) of these patients. The ANT was selected because it was demonstrated to be a safe target. We retrospectively evaluated metrics including seizure frequency over 18–32 months. One patient required explantation due to infection. The other two patients were clinical responders. By the end of the observation period reported here, one patient was seizure-free for over 9 months. All three self-reported an improved quality of life. The clinical response observed in these patients provides ‘proof-of-principle’ that GGE may be treatable with responsive thalamic stimulation. Our results support proceeding to a larger study investigating the efficacy and safety of thalamic RNS in drug-resistant GGE. Full article
(This article belongs to the Special Issue Etiology, Symptoms and Treatment of Epilepsy)
Show Figures

Figure 1

16 pages, 4032 KiB  
Article
Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface
by Md Eshrat E. Alahi, Yonghong Liu, Sara Khademi, Anindya Nag, Hao Wang, Tianzhun Wu and Subhas Chandra Mukhopadhyay
Biosensors 2022, 12(11), 1044; https://doi.org/10.3390/bios12111044 - 18 Nov 2022
Cited by 3 | Viewed by 3664
Abstract
Chronic implantation of an epidural Electrocorticography (ECoG) electrode produces thickening of the dura mater and proliferation of the fibrosis around the interface sites, which is a significant concern for chronic neural ECoG recording applications used to monitor various neurodegenerative diseases. This study describes [...] Read more.
Chronic implantation of an epidural Electrocorticography (ECoG) electrode produces thickening of the dura mater and proliferation of the fibrosis around the interface sites, which is a significant concern for chronic neural ECoG recording applications used to monitor various neurodegenerative diseases. This study describes a new approach to developing a slippery liquid-infused porous surface (SLIPS) on the flexible ECoG electrode for a chronic neural interface with the advantage of increased cell adhesion. In the demonstration, the electrode was fabricated on the polyimide (PI) substrate, and platinum (Pt)-gray was used for creating the porous nanocone structure for infusing the silicone oil. The combination of nanocone and the infused slippery oil layer created the SLIPS coating, which has a low impedance (4.68 kΩ) level favourable for neural recording applications. The electrochemical impedance spectroscopy and equivalent circuit modelling also showed the effect of the coating on the recording site. The cytotoxicity study demonstrated that the coating does not have any cytotoxic potentiality; hence, it is biocompatible for human implantation. The in vivo (acute recording) neural recording on the rat model also confirmed that the noise level could be reduced significantly (nearly 50%) and is helpful for chronic ECoG recording for more extended neural signal recording applications. Full article
(This article belongs to the Special Issue Novel Materials in Biosensing Devices)
Show Figures

Figure 1

15 pages, 1189 KiB  
Review
Responsive Neurostimulation for Seizure Control: Current Status and Future Directions
by Ujwal Boddeti, Darrian McAfee, Anas Khan, Muzna Bachani and Alexander Ksendzovsky
Biomedicines 2022, 10(11), 2677; https://doi.org/10.3390/biomedicines10112677 - 23 Oct 2022
Cited by 15 | Viewed by 4378
Abstract
Electrocorticography (ECoG) data are commonly obtained during drug-resistant epilepsy (DRE) workup, in which subdural grids and stereotaxic depth electrodes are placed on the cortex for weeks at a time, with the goal of elucidating seizure origination. ECoG data can also be recorded from [...] Read more.
Electrocorticography (ECoG) data are commonly obtained during drug-resistant epilepsy (DRE) workup, in which subdural grids and stereotaxic depth electrodes are placed on the cortex for weeks at a time, with the goal of elucidating seizure origination. ECoG data can also be recorded from neuromodulatory devices, such as responsive neurostimulation (RNS), which involves the placement of electrodes deep in the brain. Of the neuromodulatory devices, RNS is the first to use recorded ECoG data to direct the delivery of electrical stimulation in order to control seizures. In this review, we first introduced the clinical management for epilepsy, and discussed the steps from seizure onset to surgical intervention. We then reviewed studies discussing the emergence and therapeutic mechanism behind RNS, and discussed why RNS may be underperforming despite an improved seizure detection mechanism. We discussed the potential utility of incorporating machine learning techniques to improve seizure detection in RNS, and the necessity to change RNS targets for stimulation, in order to account for the network theory of epilepsy. We concluded by commenting on the current and future status of neuromodulation in managing epilepsy, and the role of predictive algorithms to improve outcomes. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

11 pages, 41791 KiB  
Article
An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film
by Yoontae Kim, Stella Alimperti, Paul Choi and Moses Noh
Sensors 2022, 22(3), 1277; https://doi.org/10.3390/s22031277 - 8 Feb 2022
Cited by 12 | Viewed by 6377
Abstract
Electrocorticography (ECoG) is a conventional, invasive technique for recording brain signals from the cortical surface using an array of electrodes. In this study, we developed a highly flexible 22-channel ECoG microelectrode array on a thin Parylene film using novel fabrication techniques. Narrow (<40 [...] Read more.
Electrocorticography (ECoG) is a conventional, invasive technique for recording brain signals from the cortical surface using an array of electrodes. In this study, we developed a highly flexible 22-channel ECoG microelectrode array on a thin Parylene film using novel fabrication techniques. Narrow (<40 µm) and thin (<500 nm) microelectrode patterns were first printed on PDMS, then the patterns were transferred onto Parylene films via vapor deposition and peeling. A custom-designed, 3D-printed connector was built and assembled with the Parylene-based flexible ECoG microelectrode array without soldering. The impedance of the assembled ECoG electrode array was measured in vitro by electrochemical impedance spectroscopy, and the result was consistent. In addition, we conducted in vivo studies by implanting the flexible ECoG sensor in a rat and successfully recording brain signals. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 3864 KiB  
Article
Effects of Alpha-2 Adrenergic Agonist Mafedine on Brain Electrical Activity in Rats after Traumatic Brain Injury
by Yuriy I. Sysoev, Veronika A. Prikhodko, Roman T. Chernyakov, Ruslan D. Idiyatullin, Pavel E. Musienko and Sergey V. Okovityi
Brain Sci. 2021, 11(8), 981; https://doi.org/10.3390/brainsci11080981 - 25 Jul 2021
Cited by 15 | Viewed by 3965
Abstract
The search for and development of new neuroprotective (or cerebroprotective) drugs, as well as suitable methods for their preclinical efficacy evaluation, are priorities for current biomedical research. Alpha-2 adrenergic agonists, such as mafedine and dexmedetomidine, are a highly appealing group of drugs capable [...] Read more.
The search for and development of new neuroprotective (or cerebroprotective) drugs, as well as suitable methods for their preclinical efficacy evaluation, are priorities for current biomedical research. Alpha-2 adrenergic agonists, such as mafedine and dexmedetomidine, are a highly appealing group of drugs capable of reducing neurological deficits which result from brain trauma and vascular events in both experimental animals and human patients. Thus, our aim was to assess the effects of mafedine and dexmedetomidine on the brain’s electrical activity in a controlled cortical-impact model of traumatic brain injury (TBI) in rats. The functional status of the animals was assessed by electrocorticography (ECoG), using ECoG electrodes which were chronically implanted in different cortical regions. The administration of intraperitoneal mafedine sodium at 2.5 mg∙kg−1 at 1 h after TBI induction, and daily for the following 6 days, restored interhemispheric connectivity in remote brain regions and intrahemispheric connections within the unaffected hemisphere at post-TBI day 7. Animals that had received mafedine sodium also demonstrated an improvement in cortical responses to photic and somatosensory stimulation. Dexmedetomidine at 25 μg∙kg−1 did not affect the brain’s electrical activity in brain-injured rats. Our results confirm the previously described neuroprotective effects of mafedine sodium and suggest that ECoG registration and analysis are a viable method evaluating drug efficacy in experimental animal models of TBI. Full article
Show Figures

Figure 1

15 pages, 1223 KiB  
Article
Surgical Outcome in Extratemporal Epilepsies Based on Multimodal Pre-Surgical Evaluation and Sequential Intraoperative Electrocorticography
by Lilia María Morales Chacón, Judith González González, Martha Ríos Castillo, Sheila Berrillo Batista, Karla Batista García-Ramo, Aisel Santos Santos, Nelson Quintanal Cordero, Marilyn Zaldívar Bermúdez, Randis Garbey Fernández, Bárbara Estupiñan Díaz, Zenaida Hernández Díaz, Juan E. Bender del Busto, Abel Sánchez Coroneux, Margarita M. Báez Martin and Lourdes Lorigados Pedre
Behav. Sci. 2021, 11(3), 30; https://doi.org/10.3390/bs11030030 - 4 Mar 2021
Cited by 16 | Viewed by 3535
Abstract
Objective: to present the postsurgical outcome of extratemporal epilepsy (ExTLE) patients submitted to preoperative multimodal evaluation and intraoperative sequential electrocorticography (ECoG). Subjects and methods: thirty-four pharmaco-resistant patients with lesional and non-lesional ExTLE underwent comprehensive pre-surgical evaluation including multimodal neuroimaging such as ictal and [...] Read more.
Objective: to present the postsurgical outcome of extratemporal epilepsy (ExTLE) patients submitted to preoperative multimodal evaluation and intraoperative sequential electrocorticography (ECoG). Subjects and methods: thirty-four pharmaco-resistant patients with lesional and non-lesional ExTLE underwent comprehensive pre-surgical evaluation including multimodal neuroimaging such as ictal and interictal perfusion single photon emission computed tomography (SPECT) scans, subtraction of ictal and interictal SPECT co-registered with magnetic resonance imaging (SISCOM) and electroencephalography (EEG) source imaging (ESI) of ictal epileptic activity. Surgical procedures were tailored by sequential intraoperative ECoG, and absolute spike frequency (ASF) was calculated in the pre- and post-resection ECoG. Postoperative clinical outcome assessment for each patient was carried out one year after surgery using Engel scores. Results: frontal and occipital resection were the most common surgical techniques applied. In addition, surgical resection encroaching upon eloquent cortex was accomplished in 41% of the ExTLE patients. Pre-surgical magnetic resonance imaging (MRI) did not indicate a distinct lesion in 47% of the cases. In the latter number of subjects, SISCOM and ESI of ictal epileptic activity made it possible to estimate the epileptogenic zone. After one- year follow up, 55.8% of the patients was categorized as Engel class I–II. In this study, there was no difference in the clinical outcome between lesional and non lesional ExTLE patients. About 43.7% of patients without lesion were also seizure- free, p = 0.15 (Fischer exact test). Patients with satisfactory seizure outcome showed lower absolute spike frequency in the pre-resection intraoperative ECoG than those with unsatisfactory seizure outcome, (Mann– Whitney U test, p = 0.005). Conclusions: this study has shown that multimodal pre-surgical evaluation based, particularly, on data from SISCOM and ESI alongside sequential intraoperative ECoG, allow seizure control to be achieved in patients with pharmacoresistant ExTLE epilepsy. Full article
(This article belongs to the Special Issue Behavioral Disorders, Coronavirus and the Nervous System)
Show Figures

Figure 1

12 pages, 4764 KiB  
Article
Wafer-Scale Fabrication and Assembly Method of Multichannel Microelectrode Arrays for ECoG Application
by Cong Wang, Yu-Chen Wei, Ho-Kun Sung, Alok Kumar, Zhong-Liang Zhou, Dan-Qing Zou, Cheng-Peng Jiang, Guo-Feng Yan, Jee-Hyun Choi and Rajendra Dhakal
Electronics 2021, 10(3), 316; https://doi.org/10.3390/electronics10030316 - 29 Jan 2021
Cited by 3 | Viewed by 3407
Abstract
High density electrocorticography (ECoG)-based microelectrode arrays (MEAs) are fabricated to timely record the neural activities to provide the fundamental understanding in neuroscience and biomedical engineering. This paper aims to introduce a device-based concept and wafer-scale fabrication process for MEAs. Flexible and biocompatible polyimide [...] Read more.
High density electrocorticography (ECoG)-based microelectrode arrays (MEAs) are fabricated to timely record the neural activities to provide the fundamental understanding in neuroscience and biomedical engineering. This paper aims to introduce a device-based concept and wafer-scale fabrication process for MEAs. Flexible and biocompatible polyimide is applied on MEAs to bear all possible stress and strain. Detailed fabrication key techniques, including surface treatment, polyimide stability measurement, evaporation process, and curing conditions, have been discussed thoroughly. Moreover, the fabricated polyimide-based MEAs are surface-mounted on well-packaged printed circuit boards (PCBs) via a slot-type connector without any additional wire bonding to make the signal recording process easier. An absence seizure was recorded during the in vivo test, which shows the availability of signal recording based on the presented MEAs. The proposed MEAs could be remained at the skull, while the connector and PCBs can be disassembled apart. Therefore, the testing sample will get less suffering. To verify the robustness of the fabricated MEAs, the impedance properties were characterized using electrochemical impedance spectroscopy. The measured results indicate an average impedance of 12.3 ± 0.675 kΩ at 1 kHz. In total, 10 groups of MEAs were sample tested, and over 90% of the total 60 channels per 1-MEAs operated efficiently. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

14 pages, 4179 KiB  
Article
Consciousness Detection in a Complete Locked-in Syndrome Patient through Multiscale Approach Analysis
by Shang-Ju Wu, Nicoletta Nicolaou and Martin Bogdan
Entropy 2020, 22(12), 1411; https://doi.org/10.3390/e22121411 - 15 Dec 2020
Cited by 9 | Viewed by 4431
Abstract
Completely locked-in state (CLIS) patients are unable to speak and have lost all muscle movement. From the external view, the internal brain activity of such patients cannot be easily perceived, but CLIS patients are considered to still be conscious and cognitively active. Detecting [...] Read more.
Completely locked-in state (CLIS) patients are unable to speak and have lost all muscle movement. From the external view, the internal brain activity of such patients cannot be easily perceived, but CLIS patients are considered to still be conscious and cognitively active. Detecting the current state of consciousness of CLIS patients is non-trivial, and it is difficult to ascertain whether CLIS patients are conscious or not. Thus, it is important to find alternative ways to re-establish communication with these patients during periods of awareness, and one such alternative is through a brain–computer interface (BCI). In this study, multiscale-based methods (multiscale sample entropy, multiscale permutation entropy and multiscale Poincaré plots) were applied to analyze electrocorticogram signals from a CLIS patient to detect the underlying consciousness level. Results from these different methods converge to a specific period of awareness of the CLIS patient in question, coinciding with the period during which the CLIS patient is recorded to have communicated with an experimenter. The aim of the investigation is to propose a methodology that could be used to create reliable communication with CLIS patients. Full article
(This article belongs to the Special Issue Information Theory in Computational Neuroscience)
Show Figures

Figure 1

7 pages, 636 KiB  
Proceeding Paper
Transfer Printing of Conductive Thin Films on PDMS with Soluble Substrates for Flexible Biosensors
by Steffen Hadeler, Sebastian Bengsch, Maren S. Prediger and Marc Christopher Wurz
Eng. Proc. 2020, 2(1), 47; https://doi.org/10.3390/ecsa-7-08181 - 14 Nov 2020
Cited by 2 | Viewed by 2315
Abstract
The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution [...] Read more.
The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution combining micro technological processes and Polydimethylsiloxane (PDMS) as the flexible, biocompatible material. The conductive electrode structure is deposited on a water-soluble transfer substrate by Physical Vapor Deposition (PVD) processes. Subsequently, the structure is contacted. Finally, the transfer to PDMS and dissolution of the transfer substrate takes place. In this way, high-resolution conductive structures can be produced on the PDMS. Transferred gold structures exhibit higher adhesion and conductivity than transferred platinum structures. The adhesion was improved by applying a silica surface modification to the conductive layer prior to transferring. Furthermore, the conductive layer is flexible, conductive up to an elongation of 10%, and resistant to sodium chloride solution, mimicking brain fluids. Using the introduced production process, an ECoG electrode was manufactured and characterized for its functionality in an electrochemical impedance measurement. Furthermore, the electrodes are flexible enough to adapt to different shapes. The transfer process can also be carried out in a three-dimensional mold to produce electrodes tailored to the individual patient. Full article
(This article belongs to the Proceedings of 7th International Electronic Conference on Sensors and Applications)
Show Figures

Figure 1

Back to TopTop