Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedures
2.2. Electrode Specification and Data Recording
2.3. Signal Processing
2.3.1. SEP Amplitude and Signal-to-Noise Ratio
2.3.2. Power Spectral Density
2.3.3. Correlation Coefficient as a Function of Distance Between Electrode Pairs
2.4. Statistical Analysis
3. Results
3.1. SEP Amplitude and Signal-to-Noise Ratio
3.2. Power Spectral Density
3.3. Correlation of Electrode Pairs as a Function of Distance
4. Discussion
4.1. SEP Amplitude and SNR
4.2. Comparison of Power Spectral Density
4.3. Correlation of Electrode Pairs as a Function of Distance
4.4. Limitations
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef]
- Hong, G.; Lieber, C.M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330–345. [Google Scholar] [CrossRef] [PubMed]
- Jeakle, E.N.; Abbott, J.R.; Usoro, J.O.; Wu, Y.; Haghighi, P.; Radhakrishna, R.; Sturgill, B.S.; Nakajima, S.; Thai, T.T.D.; Pancrazio, J.J.; et al. Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. Micromachines 2023, 14, 680. [Google Scholar] [CrossRef] [PubMed]
- Shokoueinejad, M.; Park, D.W.; Jung, Y.H.; Brodnick, S.K.; Novello, J.; Dingle, A.; Swanson, K.I.; Baek, D.H.; Suminski, A.J.; Lake, W.B.; et al. Progress in the field of micro-electrocorticography. Micromachines 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Axmacher, N. (Ed.) Studies in Neuroscience, Psychology and Behavioral Economics. In Intracranial EEG; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-20909-3. [Google Scholar]
- Nurse, E.S.; John, S.E.; Freestone, D.R.; Oxley, T.J.; Ung, H.; Berkovic, S.F.; O’Brien, T.J.; Cook, M.J.; Grayden, D.B. Consistency of Long-Term Subdural Electrocorticography in Humans. IEEE Trans. Biomed. Eng. 2018, 65, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Kellis, S.; Sorensen, L.; Darvas, F.; Sayres, C.; O’Neill, K.; Brown, R.B.; House, P.; Ojemann, J.; Greger, B. Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography. Clin. Neurophysiol. 2016, 127, 591–601. [Google Scholar] [CrossRef]
- Boran, E.; Ramantani, G.; Krayenbühl, N.; Schreiber, M.; König, K.; Fedele, T.; Sarnthein, J. High-density ECoG improves the detection of high frequency oscillations that predict seizure outcome. Clin. Neurophysiol. 2019, 130, 1882–1888. [Google Scholar] [CrossRef]
- Watanabe, H.; Sato, M.A.; Suzuki, T.; Nambu, A.; Nishimura, Y.; Kawato, M.; Isa, T. Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex. J. Neural Eng. 2012, 9, 036006. [Google Scholar] [CrossRef]
- Kanth, S.T.; Ray, S. Electrocorticogram (ECOG) is highly informative in primate visual cortex. J. Neurosci. 2020, 40, 2430–2444. [Google Scholar] [CrossRef]
- Tanosaki, M.; Ishibashi, H.; Zhang, T.; Okada, Y. Effective connectivity maps in the swine somatosensory cortex estimated from electrocorticography and validated with intracortical local field potential measurements. Brain Connect. 2014, 4, 100–111. [Google Scholar] [CrossRef]
- Toda, H.; Suzuki, T.; Sawahata, H.; Majima, K.; Kamitani, Y.; Hasegawa, I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage 2011, 54, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Boisseau, N.; Madany, M.; Staccini, P.; Armando, G.; Martin, F.; Grimaud, D.; Raucoules-Aimé, M. Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br. J. Anaesth. 2002, 88, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Sauleau, P.; Lapouble, E.; Val-Laillet, D.; Malbert, C.-H.H. The pig model in brain imaging and neurosurgery. Animal 2009, 3, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Janjua, T.A.M.; dos Nielsen, T.G.N.S.; Andreis, F.R.; Meijs, S.; Jensen, W. The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs. IBRO Neurosci. Rep. 2021, 11, 112–118. [Google Scholar] [CrossRef]
- Tereshenko, V.; Maierhofer, U.; Hruby, L.A.; Klepetko, J.; Dotzauer, D.C.; Politikou, O.; Laengle, G.; Luft, M.; Festin, C.; Blumer, R.; et al. Axonal mapping of motor and sensory components within the ulnar nerve and its branches. J. Neurosurg. 2023, 139, 1396–1404. [Google Scholar] [CrossRef]
- Andreis, F.R.; Metcalfe, B.; Janjua, T.A.M.; Jensen, W.; Meijs, S.; dos Santos Nielsen, T.G.N. The Use of the Velocity Selective Recording Technique to Reveal the Excitation Properties of the Ulnar Nerve in Pigs. Sensors 2021, 22, 58. [Google Scholar] [CrossRef]
- Kortelainen, J.; Al-Nashash, H.; Vipin, A.; Thow, X.Y.; All, A. The effect of anaesthesia on somatosensory evoked potential measurement in a rat model. Lab. Anim. 2016, 50, 63–66. [Google Scholar] [CrossRef]
- Grani, F.; Soto-Sanchez, C.; Farfan, F.D.; Alfaro, A.; Grima, M.D.; Rodil Doblado, A.; Fernández, E. Time stability and connectivity analysis with an intracortical 96-channel microelectrode array inserted in human visual cortex. J. Neural Eng. 2022, 19, 045001. [Google Scholar] [CrossRef]
- Rogers, N.; Hermiz, J.; Ganji, M.; Kaestner, E.; Kılıç, K.; Hossain, L.; Thunemann, M.; Cleary, D.R.; Carter, B.S.; Barba, D.; et al. Correlation structure in micro-ECoG recordings is described by spatially coherent components. PLoS Comput. Biol. 2019, 15, e1006769. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Kaiju, T.; Doi, K.; Yokota, M.; Watanabe, K.; Inoue, M.; Ando, H.; Takahashi, K.; Yoshida, F.; Hirata, M.; Suzuki, T. High spatiotemporal resolution ECoG recording of somatosensory evoked potentials with flexible micro-electrode arrays. Front. Neural Circuits 2017, 11, 20. [Google Scholar] [CrossRef]
- Jellema, T.; Brunia, C.H.M.; Wadman, W.J. Sequential activation of microcircuits underlying somatosensory-evoked potentials in rat neocortex. Neuroscience 2004, 129, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Konerding, W.S.; Froriep, U.P.; Kral, A.; Baumhoff, P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci. Rep. 2018, 8, 3825. [Google Scholar] [CrossRef] [PubMed]
- Arnulfo, G.; Wang, S.H.; Myrov, V.; Toselli, B.; Hirvonen, J.; Fato, M.M.; Nobili, L.; Cardinale, F.; Rubino, A.; Zhigalov, A.; et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nat. Commun. 2020, 11, 5363. [Google Scholar] [CrossRef] [PubMed]
- Barth, K.J.; Sun, J.; Chiang, C.H.; Qiao, S.; Wang, C.; Rahimpour, S.; Trumpis, M.; Duraivel, S.; Dubey, A.; Wingel, K.E.; et al. Flexible, high-resolution cortical arrays with large coverage capture microscale high-frequency oscillations in patients with epilepsy. Epilepsia 2023, 64, 1910–1924. [Google Scholar] [CrossRef]
- Im, C.; Seo, J.M. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 2016, 6, 104–112. [Google Scholar] [CrossRef]
- Petroff, O.A.; Spencer, D.D.; Goncharova, I.I.; Zaveri, H.P. A comparison of the power spectral density of scalp EEG and subjacent electrocorticograms. Clin. Neurophysiol. 2016, 127, 1108–1112. [Google Scholar] [CrossRef]
- Miller, K.J.; Sorensen, L.B.; Ojemann, J.G.; Den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 2009, 5, e1000609. [Google Scholar] [CrossRef]
- Slutzky, M.W.; Jordan, L.R.; Krieg, T.; Chen, M.; Mogul, D.J.; Miller, L.E. Optimal spacing of surface electrode arrays for brain-machine interface applications. J. Neural Eng. 2010, 7, 026004. [Google Scholar] [CrossRef]
- Muller, L.; Hamilton, L.S.; Edwards, E.; Bouchard, K.E.; Chang, E.F. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography. J. Neural Eng. 2016, 13, 056013. [Google Scholar] [CrossRef]
- Rouse, A.G.; Williams, J.J.; Wheeler, J.J.; Moran, D.W. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface. J. Neural Eng. 2016, 13, 056018. [Google Scholar] [CrossRef]
- Hermiz, J.; Hossain, L.; Arneodo, E.M.; Ganji, M.; Rogers, N.; Vahidi, N.; Halgren, E.; Gentner, T.Q.; Dayeh, S.A.; Gilja, V. Stimulus Driven Single Unit Activity From Micro-Electrocorticography. Front. Neurosci. 2020, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.T.; Jiang, L.; Woodington, B.; Middya, S.; Braendlein, M.; Lam, J.L.W.; Lim, M.J.R.; Ng, V.Y.P.; Rao, J.P.; Chan, D.W.S.; et al. Recording of single-unit activities with flexible micro-electrocorticographic array in rats for decoding of whole-body navigation. J. Neural Eng. 2024, 21, 046037. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Rios, E.; Sudhakar, S.K.; Roossien, D.H.; Caldwell, C.; Cai, D.; Ahmed, O.J.; Lempka, S.F.; Chestek, C.A. Quantitative simulation of extracellular single unit recording from the surface of cortex. J. Neural Eng. 2018, 15, 056007. [Google Scholar] [CrossRef] [PubMed]
Frequency | MEA | μECoG | Power Ratio |
---|---|---|---|
δ: 1–4 | 35.1 ± 2.8 | 28.4 ± 2.3 | 5.2 |
θ: 4–8 | 28.7 ± 2.2 | 21.8 ± 1.3 | 4.6 |
α: 8–12 | 26.4 ± 2.1 | 18.2 ± 1.4 | 7.2 |
β: 12–30 | 16.1 ± 2.2 | 9.0 ± 1.8 | 5.3 |
γ: 30–80 | −4.9 ± 2.3 | 0.7 ± 2.0 | 9.9 |
High γ: 80–200 | −6.5 ± 1.1 | −15.2 ± 2.6 | 17.5 |
Very high γ: 200–400 | −10.7 ± 0.6 | −18.7 ± 2.5 | 19.2 |
MUA: 400–750 | −13.5 ± 0.5 | −20.1 ± 2.2 | 12.9 |
MUA: 750–1500 * | −16.6 ± 0.4 | −21.8 ± 1.8 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rettore Andreis, F.; Meijs, S.; Nielsen, T.G.N.d.S.; Janjua, T.A.M.; Jensen, W. Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses. Sensors 2024, 24, 6847. https://doi.org/10.3390/s24216847
Rettore Andreis F, Meijs S, Nielsen TGNdS, Janjua TAM, Jensen W. Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses. Sensors. 2024; 24(21):6847. https://doi.org/10.3390/s24216847
Chicago/Turabian StyleRettore Andreis, Felipe, Suzan Meijs, Thomas Gomes Nørgaard dos Santos Nielsen, Taha Al Muhamadee Janjua, and Winnie Jensen. 2024. "Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses" Sensors 24, no. 21: 6847. https://doi.org/10.3390/s24216847
APA StyleRettore Andreis, F., Meijs, S., Nielsen, T. G. N. d. S., Janjua, T. A. M., & Jensen, W. (2024). Comparison of Subdural and Intracortical Recordings of Somatosensory Evoked Responses. Sensors, 24(21), 6847. https://doi.org/10.3390/s24216847