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Abstract: Electrocorticography (ECoG) data are commonly obtained during drug-resistant epilepsy
(DRE) workup, in which subdural grids and stereotaxic depth electrodes are placed on the cortex for
weeks at a time, with the goal of elucidating seizure origination. ECoG data can also be recorded
from neuromodulatory devices, such as responsive neurostimulation (RNS), which involves the
placement of electrodes deep in the brain. Of the neuromodulatory devices, RNS is the first to use
recorded ECoG data to direct the delivery of electrical stimulation in order to control seizures. In
this review, we first introduced the clinical management for epilepsy, and discussed the steps from
seizure onset to surgical intervention. We then reviewed studies discussing the emergence and
therapeutic mechanism behind RNS, and discussed why RNS may be underperforming despite an
improved seizure detection mechanism. We discussed the potential utility of incorporating machine
learning techniques to improve seizure detection in RNS, and the necessity to change RNS targets for
stimulation, in order to account for the network theory of epilepsy. We concluded by commenting on
the current and future status of neuromodulation in managing epilepsy, and the role of predictive
algorithms to improve outcomes.

Keywords: seizure detection; seizure prediction; seizure controllability; seizure suppression by
electrical stimulation; EEG processing for feedback control of seizure; mathematic modeling of EEG;
system identification of EEG

1. Introduction

Epilepsy affects 70 million people worldwide [1]. It is characterized by spontaneous
seizures which may occur in conjunction with other neurological, intellectual, or motor
symptoms in the form of epilepsy syndromes [2]. Thirty percent of patients are refractory to
medical therapy, which results in a significant impact on their quality of life. Thus, epilepsy
imposes a significant health burden and financial strain on hospital systems worldwide,
making this disease an important global health concern [1].

In conjunction with clinical features, clinicians can diagnose epilepsy and classify
patients based on specific epilepsy subtypes, using diagnostic tools such as electroen-
cephalography (EEG), video electroencephalogram (VEEG), computed tomography (CT),
and/or magnetic resonance imaging (MRI) [3,4]. Broadly speaking, there are two main
types of epilepsy: focal and generalized [3]. Of these two, the most common is focal
epilepsy, in which seizures are confined to one hemisphere, as opposed to generalized
epilepsy, which involves both hemispheres. Most focal epilepsies are caused by structural
brain abnormalities, and can present on neuroimaging with atrophy, hyperintensity, or
abnormal morphology. The most common type of focal epilepsy is temporal lobe epilepsy
(TLE); most of these cases localize in the mesial temporal lobe structures (i.e., hippocampus,
amygdala, and parahippocampal gyrus). Pathologically, TLE is most commonly associated
with hippocampal sclerosis; however, other pathological lesions that are associated with
focal DRE include long-term epilepsy-associated tumors, and malformation of cortical
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development [5]. Focal epilepsy can also arise outside the hippocampus, and involve
regions such as the temporal neocortex, frontal lobe, occipital lobe, or the parietal lobe.

The first-line management for patients with epilepsy involves anti-seizure medications
(ASMs). However, when at least two trials of ASMs fail to achieve seizure control, a surgical
workup to identify the seizure onset zone (SOZ) is warranted [6,7]. This takes place in
epilepsy centers that have the necessary tools for the tripartite surgical epilepsy workup [6].
Phase one of this workup involves noninvasive tools such as scalp EEG to localize seizure
onset, and clinical evaluation to characterize seizure semiology [8]. In addition, MRI,
positron emission tomography (PET), neuropsychiatric assessment, and the Wada test are
used to localize language and memory [8]. However, the mainstay of this workup is the
ability to obtain EEG recordings.

Before the first application of EEG in human recordings by Hans Berger in 1929,
there was no way to quantify ongoing neuronal activity to help understand normal and
pathologic functional states [9–11]. By 1934, EEG had helped characterize and differenti-
ate normal human brain waves and seizure patterns in patients with brain tumors and
epilepsy [10,11]. By measuring the local voltage fluctuations, clinicians and neuroscientists
could identify physiologic and pathologic neuronal activity in superficial regions of the
brain. EEGs are recorded from electrodes that are affixed to the scalp. Unfortunately, one
flaw in these scalp EEGs is that they are limited in spatial resolution, as a result of recording
signals through the skull and intermediate tissue [12]. This is where the advent of ECoG
recordings changed how we measure brain waves and seizure patterns.

In 1934, the first use of intraoperative ECoG data by Foerester and Altenburger pro-
vided improved spatial resolution necessary to quantify electrical activity in both superficial
and deep brain structures [13–17]. Subdural electrode grids and strips were used for di-
rect recording from the cortex, while depth electrodes allowed for recording from deep
structures. Analysis of ECoG data became a vital step in clinical decision-making for
surgical resection or neuromodulation, and is the mainstay of phase two of the surgical
epilepsy workup.

Phase two occurs if patients are candidates for surgery, and warrant further workup.
During phase two, intracranial EEG (iEEG) studies take place with the placement of sub-
dural electrodes, stereotactic electroencephalography (SEEG) electrodes, or a combination
of the two. If a SOZ is identified, patients move on to phase three, which involves surgi-
cal intervention or neuromodulation of the epileptogenic focus (EF), in order to achieve
seizure control. This most commonly involves open-surgical resection, but can also in-
clude magnetic resonance-guided laser-interstitial thermal therapy (MR-guided LITT), or
neuromodulatory techniques such as responsive neurostimulation (RNS). Vagus nerve stim-
ulation (VNS) and deep brain stimulation (DBS) are reserved for patients with multifocal
epilepsy or generalized epilepsy, among other indications [12].

In this review, we first introduced surgical intervention for the treatment of DRE,
discussing resection and neuromodulatory interventions available. Then, we discussed the
emergence of therapeutic mechanisms behind RNS. Mainly, we aimed to contribute to a
discussion on how the shift in understanding of epilepsy as a network disorder warrants
a reevaluation in how we use RNS to improve seizure control. Finally, we discussed the
application of machine learning to improve seizure detection in RNS, and the use of RNS
in conjunction with resective surgery to achieve improved seizure control.

2. Surgical Intervention in Epilepsy

ECoG data collected during phase two of the surgical epilepsy workup is interpreted
by epileptologists to identify the SOZ, in order to localize seizure activity and determine
surgical options. This was first established by Penfield and Jasper, who were the first to
institute iEEG as the mainstay for identifying the SOZ [18]. The most effective surgical
intervention for DRE stands to be surgical resection, when possible. Other interventions can
include MR-guided LITT, which is preferred when surgical resection carries a risk of high
morbidity, or patient preference precludes a craniotomy [19]. MR-guided LITT involves
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the use of laser guided thermal energy to ablate the SOZ [19]. Removal of the epileptogenic
zone was once thought of as a curative measure to eliminate predetermined foci involved
in seizure onset. Temporal lobe resection is the most common resection procedure, and
achieves seizure freedom in 64–85% of DRE patients with TLE [20,21]. However, when
resective or ablative surgery is not an option, neuromodulation becomes an alternative
therapeutic intervention. When there is not a single recognized SOZ, or it is located within
highly functional brain regions, neuromodulatory interventions (i.e., DBS, VNS, RNS)
can serve to disrupt seizure onset and spread, achieving seizure control and even seizure
freedom in some cases [22,23].

3. Introduction to Neuromodulatory Therapies

Electrical stimulation of the cortex, a procedure that was pioneered by Penfield and
Jasper, is commonly carried out both during and outside surgery, in order to map areas
of neurological function [24]. This serves to help guide decision making with regards to
anatomic regions that can be used to access deeper structures in the brain to target patholo-
gies, such as brain tumors or EF, in the case of epilepsy. However, cortical stimulation
can at times result in afterdischarges (AD), which are repetitive epileptiform discharges
or aberrant spikes in electrical activity [25]. Lesser et al. observed that brief pulse stimuli
(BPS) can counter these afterdischarges when administered prior to afterdischarge onset,
and closer to the location of the afterdischarge onset [26,27]. The idea of using BPS to
suppress epileptiform discharges underlies the idea of cortical stimulation to target EF, and
is the premise behind the use of neuromodulatory devices, such as RNS, to target focal
epilepsy [24].

Neuromodulatory techniques have been used as effective strategies for epilepsy and
other neurological diseases. VNS was initially developed for epilepsy, but its use has
been extended to the treatment of depression, migraines, Alzheimer’s Disease, obesity,
and eating disorders such as bulimia nervosa [28,29]. For VNS, a device is implanted into
the chest that allows for therapeutic modulation of the cervical truck of the left vagus
nerve for patients with both focal and generalized seizures [30]. In epilepsy, the rate at
which patients have been found to experience at least a 50% reduction in seizure frequency
(also known as the 50% responder rate) from VNS is between 45–65% (Table 1) [31,32].
On the other hand, DBS was initially intended to treat patients with motor disorders,
such as essential tremors and Parkinson’s Disease [33]. Later, studies showed that DBS,
with implanted electrodes supplying a predetermined electrical stimulation to the anterior
nucleus of the thalamus (ATN) and the hippocampus, improved seizure control in patients
with epilepsy [30,34]. DBS has also been found to be beneficial in controlling electrographic
sub-clinical seizures, when electrode leads are placed in the centromedian nucleus (CMN)
of the thalamus in patients with Lennox–Gastaut syndrome [35]. Other controlled trials,
carried out by groups such as Valentin et al., showed that DBS is safe and efficacious for
the treatment of refractory generalized epilepsy [36]. The use of DBS in epilepsy has been
found to have a 50% responder rate after one year of 43.4%, and up to 74% after seven
years in long-term follow-up studies (Table 1) [37]. Both VNS and DBS have open-loop
stimulation schedules which are independent of the underlying neuronal activity. In other
words, the stimulation frequency and parameters do not change if a patient has a change in
his/her seizure patterns on a given day. Therefore, efficacy could be improved through
VNS and RNS devices that can modify stimulation parameters based on read brain activity.
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Table 1. Neuromodulatory interventions 50% responder rates. Comparison of 50% responder rates
across the following neuromodulatory interventions for the treatment of epilepsy: RNS, VNS, and DBS.

Neuromodulatory Intervention 50% Responder Rate

RNS
1 year: 44%
2 years: 55%
5 years: 50–61% [37]

VNS 1 year: 45–65% [31,32]

DBS

1 year: 43.4%
2 years: 53.7%
5 years: 67.8%
7 years: 74% [37]

4. Introduction to RNS

The RNS device is an intracranially implanted device that is used to achieve seizure
control in patients with focal seizures (Figure 1) [38]. RNS was approved for the treatment
of DRE in 2013 [38–40]. Specifically, the device consists of a neurostimulator that is attached
to two leads, either of which can be NeuroPace depth leads or NeuroPace cortical strip leads.
Each lead has four electrodes at the distal end that are implanted at the site of the SOZ
or seizure spread (more recently), and four electrodes that are implanted at the proximal
end attached to the neurostimulator [38]. Data from the RNS device can be recorded, and
settings can be made using the programmer, remote monitor, and patient data management
system (PDMS) database (Figure 2). The programmer allows the physician to change
stimulation settings, and the remote monitor is a home-monitoring device that patients can
use to upload ECoG data that are recorded by the RNS device to the PDMS database, which
is a cloud storage of ECoG data, for physician review at a later time [38]. After implantation,
the RNS device is set to passively record ECoG data without applying electrical stimulation
for a period of time necessary, in order to define seizure neurophysiology, known as the
programming epoch [41]. After this time, stimulation settings are programmed into the
RNS device, after which it is capable of delivering electrical stimuli in response to detected
epileptiform activity [41]. The recommended initial responsive therapy settings are as
follows: frequency: 200 Hz; burst duration: 100 ms; current: set to achieve a charge
density = 0.5 µC/cm2; pulse width: 160 µsec [42]. The main metric that is adjusted when
changing the stimulation parameters is charge density, which is increased by 0.5 µC/cm2

at each programming visit, should the response at the current charge density level be
unsatisfactory [42]. The pivotal difference between RNS and other neuromodulatory
devices is that RNS is a closed-loop system with sensing capabilities [34]. This means that
the neurostimulator that is implanted delivers direct electrical stimuli in response to the
detection of specific patterns of electrographic activity that have been predetermined by
the physician to be epileptiform activity [38]. Additionally, the RNS device records and
stores ECoG data for physician review, allowing for access to, and analysis of, long-term
ECoG data [40]. The ECoG data are collected as a bipolar differential between neighboring
electrodes on a lead, and are sampled at 250 Hz [38]. This enables physicians to access
ECoG activity immediately before and immediately after specific events. Events that trigger
the recording of EcoG data include: (1) detection of epileptiform activity, (2) responsive
stimulation, (3) long duration of detection event, (4) magnet swipe by patient, (5) saturation
(high-amplitude activity), or (6) detection of noise (60 Hz line noise) [38]. The long-term
efficacy of RNS is comparable to DBS, with RNS achieving one-year, two-year, and five-year
50% responder rates of 44%, 55%, and 50–61%, respectively (Table 1) [30,43].
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5. RNS for Focal Epilepsy

Three clinical trials ultimately led to the U.S. Food and Drug Administration’s (FDA)
approval of the RNS device to treat focal epilepsy. The first was a feasibility study that
confirmed the safety of the device, allowing for a second clinical trial, a pivotal study. The
pivotal study, which was a two-year multicenter, double-blinded, randomized controlled
trial, consisted of 191 patients who underwent implantation of the RNS device [44]. Patients
who were implanted were randomized to either the active stimulation group or the sham
group. For the duration of the pivotal study, the active stimulation group demonstrated a
37.9% reduction in mean seizure frequency, compared to only 17.3% reduction in the sham
group [44]. Further out from implantation, the active group continued to show improved
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seizure control, with the median percent seizure reduction being 44% at one year, and 53%
at two years [38].

After completion of the feasibility and pivotal studies, an open-label long-term treat-
ment (LTT) study continued to follow patients who were implanted with the RNS device,
either in the feasibility study or in the pivotal study, and looked at outcomes for an addi-
tional 7 years [44]. The median seizure reduction rate at 9 years post-implantation was
found to be 75% [44,45]. Outcomes in the LTT study were broken down by location by
Geller et al., who explored outcomes in mesial temporal lobe epilepsy (MTLE), and Jobst
et al., who explored outcomes in neocortical epilepsy [24]. Jobst et al. identified that RNS
achieved improved seizure control in neocortical epilepsy when patients had a structural
lesion relative to those who did not (median 77% reduction vs. 45% reduction, respectively),
suggesting that RNS device lead placement may be more important to achieving better
seizure control when targeting neocortical epilepsy targets [46]. This was not found to be
the case in MTLE [47].

The true underlying mechanism behind how RNS exerts its therapeutic effect is
unknown. To date, the most widely accepted understanding follows Lesser et al.’s observa-
tions that BPS applied to cortical locations closer to afterdischarge onset can control the
aberrant electrical activity [41]. In other words, the idea behind RNS to identify regions
of epileptic activity, and then provide neutralizing or disruptive activity at the site (direct
inhibition/suppression of epileptic activity), in order to restore normal function [38,41].
However, more recent studies suggest that the therapeutic effect of RNS is likely to be
driven by modulation of epileptic networks.

6. RNS Modulation of Epileptic Networks

In order to better understand the more recent findings behind the therapeutic mecha-
nism underlying how RNS works, it is important to discuss the recent shift in thinking of
epilepsy as a network disorder.

6.1. Epilepsy as a Network Disorder

Until relatively recently, epilepsy has been thought of as a focal disease; however, recent
studies suggest that epilepsy is a disorder of a distributed epileptogenic network [48–50].
In 1951, Bailey and Gibbs wrote that “surgical resection of focal seizure activity was
comparable to eradicating a tumor,” delineating the former understanding of surgical
resection of EF as curative [51]; however, post-surgery outcomes show that 42–63% of
patients continue to have seizures within one year of surgery, dispelling this former train of
thought [48]. In order to determine the reason for seizure recurrence, recent clinical studies
have shown that the resection or modulation of nodes that are involved in early seizure
spread from the SOZ may result in significantly improved seizure control, post-surgical
resection, as opposed to resection of nodes involved in later seizure spread. Specifically, in a
cohort of patients with TLE who had resection of EF involved in early seizure spread (<10 s)
from seizure onset, had an approximately 90% reduction in seizures post-resection [48].
Additionally, these findings were further supported by studies that showed that resection
and/or neuromodulation of nodes involved in high interictal-connectivity led to enhanced
post-operative freedom [52]. For example, Sisterson et al. showed in a retrospective analysis
that RNS with electrodes implanted in the CMN of the thalamus, an important node in
refractory generalized epilepsy, resulted in a significant reduction in seizure frequency
(75–99%) and severity [53]. These findings suggest that (1) epilepsy is a network disorder,
and that (2) EFs identified in the epilepsy monitoring unit (EMU) do not correlate with
targets that achieve maximal seizure freedom [48].

6.2. Modulation of Epileptic Network

Given the former understanding of epilepsy as a seizure-focus disorder, it was origi-
nally thought that RNS worked by disrupting epileptiform activity at implanted sites that
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were predetermined to be EFs. However, recent studies suggest additional therapeutic
potential for RNS as a means to disrupt network activity.

In 2019, Kokkinos et al. performed a retrospective review of ECoG recordings from
11 patients with focal epilepsy who were implanted with RNS devices [41]. Specifically, they
looked at ECoG data in the time–frequency domain, and identified two major categories
of effects from electrical stimulation: direct effects and indirect effects. Direct effects
were characterized as time or frequency changes that occurred in the immediate period
(<5 s) after a responding stimulation was applied by the RNS device. Indirect effects were
characterized as changes in time or frequency that occurred at least 27 s after a previous
stimulation, and at least 11 s before the next. Direct effects included (1) ictal inhibition,
where RNS stimulation resulted in the ECoG data returning to the interictal level within
5 s; and (2) frequency modulation of the ECoG data, where there were changes in the active
frequency bands in ECoG data recorded within 5 s of a stimulation event. Indirect effects
included (1) spontaneous ictal inhibition, in which seizure activity resolved spontaneously
in the absence of electrical stimulation by the RNS device; (2) spontaneous frequency
modulation of the ECoG data; (3) fragmentation, where seizure activity was spontaneously
disrupted by periods of normal interictal activity; and (4) spontaneous decrease in ictal
duration. Seizure outcomes were measured using the extended personal impact of epilepsy
scale questionnaire, subjective measures of seizure frequency, severity, and duration, and
clinically determined Engel scale classes [41]. The authors demonstrated that the odds ratio
(OR) for indirect modulatory effects was significant for the outcome measures of seizure
frequency, severity, and duration (seizure occurrence frequency: OR = infinity, P = 0.005;
seizure severity: OR = infinity, P = 0.007; and seizure duration: OR = 28.0, P = 0.03). In
contrast, the OR for direct modulatory effects was not significant for any measure of seizure
activity (seizure occurrence frequency: OR = 0.67, P > 0.99; seizure severity: OR = 0.0,
P = 0.10; and seizure duration: OR = 0.25, P = 0.56). Thus, Kokkinos et al. concluded that
improved clinical outcomes that were seen in RNS patients are likely attributed to the
indirect effects of RNS, as opposed to direct suppression of focal epileptiform activity [41].

However, more recent studies are further suggesting that this indirect therapeutic
effect of RNS is a result of disruption of epileptic network activity. In 2022, Fan et al. con-
ducted a retrospective study of 31 patients with implanted RNS devices [51]. Specifically,
they characterized the functional connectivity of these patients’ electrographic activity
using resting-state magnetoencephalogram (MEG) data that were collected prior to RNS
implantation, with the goal of determining if baseline functional connectivity can help
predict clinical outcomes of RNS. Fan et al. looked at functional connectivity across various
spatial scales, including global, hemispheric, and lobar, after spectral decomposition of
patient ECoG data obtained from RNS. Fan et al. demonstrated that increased baseline
functional network connectivity was associated with improved clinical outcomes, as mea-
sured by percent change in self-reported seizure frequency in the most recent year of clinic
visits, compared to prior to RNS device implantation [54]. More specifically, they identified
that increased global functional connectivity in the alpha frequency band was correlated
with seizure frequency reduction (P = 0.010). Additionally, global functional connectivity
was also more strongly predictive of responder status, compared to hemispheric func-
tional connectivity. A similar study was carried out by Charlebois et al., who carried out
a retrospective study of 22 patients with MTLE who were treated with RNS. Given that
studies suggest MTLE is a network disorder that involves structures such as the amygdala,
hippocampus, entorhinal cortex, cingulate cortex, thalamus, and hypothalamus, Charlebois
et al. aimed to show that network modulation played a role in seizure reduction in MTLE,
as opposed to stimulation location [55]. From their analysis, Charlebois et al. showed that
the stimulation of regions connected to the medial prefrontal cortex, ipsilateral anterior
cingulate, and contralateral precuneus, was predictive of seizure reduction, in comparison
to the volume of tissue activation (VTA) location. VTA refers to the collection of anatomical
locations that show the spread in electrical field from stimulating leads [56]. In other
words, VTA location is representative of the direct impact of stimulation. These results are
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concordant with the increased connectivity to the posterior cingulate, medial prefrontal
cortex, and precuneus seen in DRE patients who responded to DBS at the ATN, as shown
by Middlebrooks et al. [57] (Table 2).

Table 2. Studies suggesting that RNS works by seizure network disruption. Summary of the major
recent studies that establish that the therapeutic mechanism behind RNS is likely epileptic network
disruption and modulation.

Study Authors and Year Study Type and
Number of Patients Main Points

Association of Closed-Loop Brain
Stimulation Neurophysiological
Features With Seizure Control Among
Patients With Focal Epilepsy

Kokkinos et al., 2019
[41]

Retrospective study,
11 patients

- The effects of RNS were separated
into direct and indirect effects.

- Indirect effects strongly correlated
with clinical outcomes.

- This suggests that therapeutic
benefit of RNS comes from
modulation of the seizure
network as opposed to acute
disruption of seizure events.

Network connectivity predicts
effectiveness of responsive
neurostimulation in focal epilepsy

Fan et al., 2022 [54] Retrospective study,
31 patients

- Reduction in seizure frequency
and responder status more
strongly predicted by global
functional connectivity,
specifically in the alpha frequency
band.

Patient-specific structural connectivity
informs outcomes of responsive
neurostimulation for temporal lobe
epilepsy

Charlebois et al.,
2022 [55]

Retrospective study,
22 patients

- Stimulation of regions connected
to the medial prefrontal cortex,
ipsilateral anterior cingulate, and
contralateral precuneus in MTLE
patients was predictive of seizure
reduction, in comparison to the
volume of tissue activation (VTA)
location.

In summary, studies by Fan et al. and Charlebois et al. suggest that baseline functional
connectivity and stimulation of specific networks inform the clinical response to RNS.
Ultimately, this suggests that the indirect therapeutic effects of RNS observed by Kokkinos
et al. are likely due to the disruption of epileptic network activity, further supporting the
network theory of epilepsy.

7. Improving Seizure Prediction and Control

Given our most recent understanding behind how RNS exerts its therapeutic effect,
we can use this information to better guide surgical decision-making and inform RNS lead
placement to better address highly-connected nodes. However, additionally, the seizure
detection abilities of RNS can be further improved utilizing the large-scale ECoG data it
offers. We will now discuss how RNS offers a form of long-term ambulatory ECoG data,
how RNS can potentially better detect seizures using machine learning algorithms, and
how RNS lead placement can be modified on the basis of our understanding of epilepsy as
a network disorder.

7.1. Improving Seizure Prediction

Given that the basis for the function of RNS is seizure detection, it is imperative
that the device successfully (1) identifies seizures with high accuracy and precision, and
(2) detects these seizures early [58]. Currently, RNS detects seizures using three tools:
the line detection tool, the area detection tool, and the bandpass detection tool. The line
detection tool identifies changes in frequency and amplitude of the ECoG signal. The area
detection tool identifies changes in total signal energy, without accounting for frequency.



Biomedicines 2022, 10, 2677 9 of 15

Finally, the bandpass detection tool serves as a frequency filter, and is used to detect activity
within specific frequency bands (i.e., theta, alpha, beta, and gamma) [38].

Since RNS uses a template signal that is predetermined and programmed by epileptol-
ogists to be the trigger for stimulation, the system may fail to detect some seizures. This is
where machine learning can be incorporated, using training periods at regular intervals
in order to maximize effectiveness. This is an improvement over using one rigid template
that never adapts, and has little room for error. For example, Lee et al. showed that a
principal component analysis (PCA) frequency-based algorithm improved early seizure
detection in a pilocarpine-induced epilepsy rat model [58]. PCA is a computational tool
that allows for the identification of components of a signal that most contribute to the
uniqueness of the signal; this enables the parsing of the most important aspects of ECoG
signals that immediately precede epileptiform activity. Specifically, Lee et al. demonstrated
that PCA was able to identify frequency-based features that were able to predict seizures
more accurately from an early ECoG recording, in comparison to the ECoG data obtained
from the entire duration of the seizure [58]. Studies such as these demonstrate the ability to
accurately detect seizures by applying predictive algorithms to early ECoG data collected
at the beginning of a seizure. However, more specifically, recent studies that attempted
to train machine learning algorithms using the ECoG data obtained from the RNS system
have been completed.

In 2021, Yueqiu et al. demonstrated the possibility of predicting seizure frequency
by training five different machine learning algorithms with interictal frequency domain
ECoG data obtained from five different patients implanted with RNS devices (Table 3) [34].
Specifically, their group compared performances (as measured by areas under the curve,
AUC) across the following machine learning algorithms: (1) support vector machine (SVM),
(2) logistic regression, (3) decision tree, (4) random forest, and (5) gradient boosting [34].
Yueqiu et al. trained each algorithm using 80% of a patient’s ECoG data, and then tested
its performance against the remaining 20% of ECoG data. From their analyses, Yuequi
et al. identified that high gamma power during the interictal period was predictive of
high seizure-frequency epochs, and that overall, the best performing machine learning
algorithms were SVM and gradient boosting. However, their group also showed that the
best performing algorithm was not consistent from patient to patient.

Table 3. Studies Applying Machine Learning Algorithms to RNS-Derived ECoG Data. Major recent
studies that have used machine learning algorithms in the context of RNS-derived ECoG data to
predict seizure frequency and ictal periods.

Study Authors and Year Study Type and
Number of Patients

Machine Learning
Algorithms Used Main Points

Machine Learning to Classify Relative
Seizure Frequency From Chronic
Electrocorticography

Yueqiu et al., 2021 Retrospective study,
5 patients

- Support Vector
Machine (SVM)

- Logistic
Regression

- Decision Tree
- Random Forest
- Gradient Boosting

- High gamma power during the
interictal period was predictive
of high seizure-frequency
epochs.

- Best performing machine
learning algorithms were SVM
and Gradient Boosting.

- Best performing algorithm was
not consistent from patient to
patient.

Expert-Level Intracranial
Electroencephalogram Ictal Pattern
Detection by a Deep Learning Neural
Network

Constantino et al.,
2021

Retrospective study,
22 patients

- Convolutional
Neural Network
(CNN) (Deep
Learning Model)

- With a large training set of
RNS-derived ECoG data, a CNN
model can detect seizures at an
accuracy similar to that of expert
epileptologists.

In addition to using interictal ECoG data from RNS to predict seizure frequency,
groups such as Constantino et al. explored whether machine learning algorithms could
detect RNS-derived ictal patterns with an accuracy comparable to that of epileptologists
(Table 3) [59]. Specifically, Constantino et al. trained a convolutional neural network (CNN)
model to distinguish ictal activity from non-ictal activity [59]. A CNN model is a specific
type of deep learning model; it is considered the model of choice when working with
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multiple array data, such as EEG data [59]. Constantino et al.’s group was able to show that
with a large training set of RNS-derived ECoG data, a CNN model could detect seizures
with an accuracy that was similar to that of expert epileptologists [59].

Although in recent years, machine learning algorithms have been applied to study
ECoG data obtained from RNS, they have yet to be implemented to aid in advanced seizure
detection. This is where we foresee that large-scale RNS-derived ECoG data can guide
future studies that inform the adaptation of machine learning algorithms, in order to
better achieve seizure control. For example, a theoretical CNN model could be trained
to use time domain and spectral features in the interictal and pre-ictal period to predict
seizure onset and seizure duration. Yueqiu et al. suggested that this information could
then guide stimulation programming, both in the interictal period (akin to dampening
activity that is “fueling the fire” of an upcoming seizure, a probable mechanism behind
RNS’s therapeutic function in the first place, as discussed above (see Section 6.2)) and
the immediate preictal period, detecting and controlling seizures that may potentially be
missed by the RNS system.

However, there are still several questions that need to be answered in this realm. As
Yuequi et al. showed, different machine learning algorithms perform better in different
patients, which begs the question: what are the implications of this in RNS programming?
Additionally, what stimulation parameters should algorithms adjust to over time, in order
to improve seizure control? These are the pivotal questions that can be investigated, once
we begin to explore the application of machine learning algorithms using RNS-derived
ECoG data specifically to improve seizure detection [60].

7.2. Improving Seizure Control

RNS currently targets 1–2 foci in order to treat seizures, in approaching epilepsy
as a focus-based disorder. However, as described above, studies are now showing that
neuromodulatory devices exert their therapeutic effects through network disruption, not
focus disruption [54]. Using this information, we can inform RNS target placement to
address key nodes in the epileptogenic network, allowing for improved seizure control.

As discussed above (see Section 6.1), the specific selection of nodes involved in epilep-
tic activity that are targeted has a significant impact on postoperative outcomes. Keeping
this in mind, it is imperative that RNS lead placement be directed by the identification of
nodes that play an integral role in the pathologic seizure network that underlies DRE. This
can be accomplished in manner that is similar to how Andrews et al. stratified patients
on the basis of the timing of seizure spread [48]. However, other connectivity metrics
can also be implemented. For example, using ECoG data obtained from EMU recordings,
functional connectivity analyses can be run to determine the most important targets for
network disruption. Metrics, such as coherence, cross-correlation, or mutual information,
can be used to identify targets that would otherwise not be identified by epileptologists in
the EMU [61].

In addition to changing RNS targets, surgical epilepsy outcomes can also be improved
using RNS as an adjunctive therapy to surgical resection. Although resection and neu-
romodulation are options that are available for patients with DRE, patients with whom
resection surgery alone cannot address the ictal onset zone (i.e., multifocal epilepsy, elo-
quent areas) are deemed to be poor surgical candidates, and have minimal therapeutic
options. However, recent studies are showing that these patients can benefit from a com-
bination of resective surgery supplemented with RNS. One of the foremost studies that
showed this explored a cohort of ten patients with multifocal ictal onset at the University
of California Irvine (UCI), from 2015 to 2019, who underwent resection and RNS device
placement [62]. Outcomes showed a significant decrease in seizure frequency (average
81% +/− 9) at the six month follow-up [62].

Using graph theory metrics to target RNS lead placement based on the most highly
connected foci, as opposed to using traditionally determined EFs and RNS in addition
to resective surgery, RNS can serve to treat epilepsy in a fashion concordant with the
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network-based pathomechanism of the neurological disorder, in order to achieve improved
seizure control [63].

7.3. Ambulatory ECoG Data

In order to enhance RNS’s ability to improve seizure prediction, it is important to have
a sufficiently large data set of ECoG recordings to train machine learning algorithms, as dis-
cussed above (see Section 7.1). This is where RNS’s ability to provide access to ambulatory
ECoG recordings comes into play. Ambulatory ECoG data are important, clinically, because
they provide objective information about the activity before and during a seizure that the
patient may not remember having, including nocturnal seizures, consequently bypassing
the limitations of seizure diaries [64]. Traditional intracranial ECoG data collected during
phase two of the surgical epilepsy workup are obtained in the controlled setting of the EMU.
However, there are limitations to traditionally obtained ECoG data. Firstly, because the
electrodes are wired to the recording device, patient movement is restricted, resulting in a
relatively stationary state during observation. Therefore, the diagnostic abilities and seizure
frequency are not necessarily synonymous with what a patient experiences when carrying
out their normal day. For this reason, the data collected during the few weeks in the EMU
are likely an under-sampling of the patient’s natural seizure activity [65]. Furthermore,
observations over time have shown that there exist cycles of seizures in patients with
epilepsy in which interictal epileptiform activity (IEA) fluctuates cyclically [65]. As such,
sampling of IEA during acute EEG or iEEG measurements in the EMU largely miss the
IEA outside the current cycle being measured, further suggesting that ECoG data from the
EMU are significantly limited in their diagnostic value [65]. With RNS, instead of relying
on spontaneous seizures in the EMU, epileptologists can analyze months to years of natural
epileptic data to provide more precise modeling of ECoG activity that precedes seizures,
and make more informed medical recommendations to the patient [66]. Moreover, during
this time, a patient is weaned off ASMs. When a patient ceases to take ASMs, their seizure
profile changes in the EMU compared to that at home [67–69]. Therefore, the seizure activity
that is recorded in the EMU may not be reflective of the baseline nature of the disease.
Lastly, long-term patient ECoG data allow for patient-specific modeling, as well as for a
further understanding of normal and pathologic brain activity. However, it is important
to note that along with the added benefits of ambulatory ECoG data obtained from RNS,
they are limited by spatial resolution, as there are only four electrodes per location being
recorded from RNS. Additionally, RNS has only one battery, as opposed to ECoG data
recorded from the EMU which use many electrodes, each with their own power source. In
conclusion, RNS provides a superior method of obtaining ECoG recordings that can then
be used to train machine learning algorithms to ultimately improve seizure detection and
seizure control.

8. Conclusions

Outcomes in epilepsy surgery have been stagnant over the past two decades, and the
mechanisms by which neuromodulation reduces seizure frequency are not clearly under-
stood [41]. With growing consideration for epilepsy as a network disorder, instead of as a
seizure-focus disorder, an in-depth understanding of the changes in network connectivity
is pivotal in the care of EFs in high-functioning brain regions. For patients with DRE,
more effective tools for seizure detection, seizure prediction, and network connectivity
are needed in order to improve seizure reduction rates. Until these factors are addressed,
patients will continue to have a detrimental quality of life. RNS has the capabilities to
tackle these concerns.

Given the closed-loop nature of RNS, RNS has immense potential, not only in clinical
care, but also in the mechanistic understanding of epilepsy. RNS has the capabilities
to obtain and store long-term ambulatory ECoG data; these will provide clinicians and
neuroscientists with the best guide to understanding and making significant segues in
clinical decision-making. Regarding RNS’s therapeutic stimulation, while the effects are
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not yet fully understood, previous research suggests that its indirect effects, which correlate
more toward clinical outcomes, are concordant with the network theory of epilepsy [70]. A
shift toward addressing highly functional network nodes, instead of simply the regions of
strongest epileptic activity, will be the next step in neuromodulatory therapy. Nonetheless,
more understanding of epilepsy networks is necessary to achieve this.

More progress in RNS is necessary, before it reaches optimal efficacy rates. Firstly, RNS
devices will require increased storage capabilities or periodic backups, in order to store the
ECoG data they continuously obtain [64]. Secondly, ECoG data detection algorithms need
to be adjusted, in order to consider highly connected network nodes instead of just one
or two EFs. Lastly, the integration of machine learning into RNS workup and stimulation
will allow for more personalized therapy through improved seizure prediction. Machine
learning algorithms of the ECoG data will also help distinguish which patients will be more
responsive to RNS. Overall, there is immense potential for RNS in the future treatment of
epilepsy as we increase our understanding of network epilepsy and stimulation.
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Nomenclature Table
Term Abbreviation
Afterdischarges AD
Anterior thalamic nucleus ATN
Anti-seizure medications ASMs
Area under the curve AUC
Brief pulse stimuli BPS
Centromedian nucleus CMN
Computed tomography CT
Convolutional neural network CNN
Deep brain stimulation DBS
Drug-resistant epilepsy DRE
Electrocorticography ECoG
Electroencephalography EEG
Epilepsy monitoring unit EMU
Epileptogenic focus EF
Food and Drug Administration FDA
Interictal epileptiform activity IEA
Intracranial electroencephalography iEEG
Long-term treatment LTT
Magnetic resonance-guided laser-interstitial thermal
therapy MR-guided LITT

Magnetic resonance imaging MRI
Magnetoencephalogram MEG
Mesial temporal lobe epilepsy MTLE
Odds ratio OR
Patient data management system PDMS
Positron emission tomography PET
Principal component analysis PCA
Responsive neurostimulation RNS
Seizure onset zone SOZ
Stereotactic electroencephalography SEEG
Support vector machine SVM
Temporal lobe epilepsy TLE
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