Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = electrochemical switch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4216 KiB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 213
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

21 pages, 4620 KiB  
Article
PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale and Chan-Wook Jeon
Polymers 2025, 17(12), 1683; https://doi.org/10.3390/polym17121683 - 17 Jun 2025
Viewed by 393
Abstract
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic [...] Read more.
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic two-step strategy involving the electrochemical deposition of amorphous WO3 and the controlled hydrothermal crystallization of TiO2. Structural and morphological analyses confirm the formation of phase-pure heterostructures with a tunable TiO2 crystallinity governed by reaction time. The optimized WTi-5 configuration exhibits a hierarchically organized nanostructure that couples the fast ion intercalation dynamics of amorphous WO3 with the interfacial stability and electrochemical modulation capability of crystalline TiO2. Electrochromic characterization reveals pronounced redox activity, a high charge reversibility (98.48%), and superior coloration efficiency (128.93 cm2/C). Optical analysis confirms an exceptional transmittance modulation (ΔT = 82.16% at 600 nm) and rapid switching kinetics (coloration/bleaching times of 15.4 s and 6.2 s, respectively). A large-area EC device constructed with the WTi-5 electrode delivers durable performance, with only a 3.13% degradation over extended cycling. This study establishes interface-engineered WO3/TiO2 bilayers as a scalable platform for next-generation smart windows, highlighting the pivotal role of a heterostructure design in uniting a high contrast, speed, and longevity within a single EC architecture. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Electrochromic Energy Storage Systems)
Show Figures

Graphical abstract

15 pages, 2856 KiB  
Article
Insights into Pd-Nb@In2Se3 Electrocatalyst for High-Performance and Selective CO2 Reduction Reaction from DFT
by Lin Ju, Xiao Tang, Yixin Zhang, Mengya Chen, Shuli Liu and Chen Long
Inorganics 2025, 13(5), 146; https://doi.org/10.3390/inorganics13050146 - 5 May 2025
Viewed by 604
Abstract
The electrochemical CO2 reduction reaction (eCO2RR), driven by renewable energy, represents a promising strategy for mitigating atmospheric CO2 levels while generating valuable fuels and chemicals. Its practical implementation hinges on the development of highly efficient electrocatalysts. In this study, [...] Read more.
The electrochemical CO2 reduction reaction (eCO2RR), driven by renewable energy, represents a promising strategy for mitigating atmospheric CO2 levels while generating valuable fuels and chemicals. Its practical implementation hinges on the development of highly efficient electrocatalysts. In this study, a novel dual-metal atomic catalyst (DAC), composed of niobium and palladium single atoms anchored on a ferroelectric α-In2Se3 monolayer (Nb-Pd@In2Se3), is proposed based on density functional theory (DFT) calculations. The investigation encompassed analyses of structural and electronic characteristics, CO2 adsorption configurations, transition-state energetics, and Gibbs free energy changes during the eCO2RR process, elucidating a synergistic catalytic mechanism. The Nb-Pd@In2Se3 DAC system demonstrates enhanced CO2 activation compared to single-atom counterparts, which is attributed to the complementary roles of Nb and Pd sites. Specifically, Nb atoms primarily drive carbon reduction, while neighboring Pd atoms facilitate oxygen species removal through proton-coupled electron transfer. This dual-site interaction lowers the overall reaction barrier, promoting efficient CO2 conversion. Notably, the polarization switching of the In2Se3 substrate dynamically modulates energy barriers and reaction pathways, thereby influencing product selectivity. Our work provides theoretical guidance for designing ferroelectric-supported DACs for the eCO2RR. Full article
Show Figures

Graphical abstract

13 pages, 4549 KiB  
Article
Wet Etching-Based WO3 Patterning for High-Performance Neuromorphic Electrochemical Transistors
by Liwei Zhang, Sixing Chen, Shaoming Fu, Songjia Han, Li Zhang, Yu Zhang, Mengye Wang, Chuan Liu and Xiaoci Liang
Electronics 2025, 14(6), 1183; https://doi.org/10.3390/electronics14061183 - 18 Mar 2025
Cited by 1 | Viewed by 699
Abstract
WO3-based electrochemical transistors (ECTs) are recognized as candidates for three-terminal memristors due to their high on–off ratio, long retention time, and rapid switching speed. However, their patterned fabrication often relies on complex vacuum systems or extreme processing conditions, hindering cost-effective scalability. [...] Read more.
WO3-based electrochemical transistors (ECTs) are recognized as candidates for three-terminal memristors due to their high on–off ratio, long retention time, and rapid switching speed. However, their patterned fabrication often relies on complex vacuum systems or extreme processing conditions, hindering cost-effective scalability. Here, we developed a novel wet etching technique integrated with sol–gel-derived WO3 channels, enabling ambient-air fabrication of Nafion-WO3 ECTs. The wet-etched devices achieve an on–off ratio of ~105, surpassing unetched and dry-etched counterparts by orders of magnitude. Furthermore, they exhibit exceptional paired-pulse facilitation and long-term stability, maintaining 12 distinct conductance states for 103 s, and an on–off ratio of ~102 over 25 read–write cycles. XPS result shows higher W5+ content and M-O-H bond proportion for wet-etched devices, revealing an optimized interface, with enhanced H+ injection efficiency. The simulated artificial neural network using this wet-etched ECT shows ~97% recognition accuracy for handwritten numerals. This approach offers a novel patterning strategy for developing cost-effective, high-performance neuromorphic devices. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics
by Maxim Fatkullin, Ilia Petrov, Elizaveta Dogadina, Dmitry Kogolev, Alexandr Vorobiev, Pavel Postnikov, Jin-Ju Chen, Rafael Furlan de Oliveira, Olfa Kanoun, Raul D. Rodriguez and Evgeniya Sheremet
Polymers 2025, 17(2), 192; https://doi.org/10.3390/polym17020192 - 14 Jan 2025
Cited by 2 | Viewed by 1632
Abstract
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes [...] Read more.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance. To overcome these challenges, we report on a post-processing redox treatment that allows the tuning of the electrochemical properties of laser-induced rGO/polymer composite electrodes. We show that the polymer substrate plays a crucial role in the electrochemical modulation of the composites’ properties, such as the electrode impedance, charge transfer resistance, and areal capacitance. The mechanism behind the reversible control of electrochemical properties of the rGO/polymer composites is the cleavage of polymer chains in the vicinity of rGO flakes during redox cycling, which exposes rGO active sites to interact with the electrolyte. Sequential redox cycling improves composite performance, allowing the development of devices such as electrolyte-gated transistors, which are widely used in chemical sensing applications. Our strategy enables the engineering of the electrochemical properties of rGO/polymer composites by post-treatment with dynamic switching, opening up new possibilities for flexible electronics and electrochemical applications having tunable properties. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials)
Show Figures

Figure 1

16 pages, 12347 KiB  
Article
Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties
by Vadim I. Avilov, Roman V. Tominov, Zakhar E. Vakulov, Daniel J. Rodriguez, Nikita V. Polupanov and Vladimir A. Smirnov
Nanomaterials 2025, 15(1), 75; https://doi.org/10.3390/nano15010075 - 6 Jan 2025
Viewed by 1160
Abstract
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical [...] Read more.
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, Ti2O3, and TiO2 oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel. Modeling of the nanodot structure synthesis process showed that at the initial stages of growth, a conductivity channel was formed, connecting the top and bottom of the nanostructure, which became thinner over time; at approximately 640 ms, this channel broke into upper and lower nuclei, after which the upper part disappeared. Modeling of the lateral nanostructure synthesis process showed that at the initial stages of growth, a conductivity channel was also formed, which quickly disappeared and left a nucleus that moved after the moving AFM tip. The simulation of the imprint nanostructure synthesis process showed the formation of two conductivity channels at a distance corresponding to the dimensions of the template tip. After about 460 ms, both channels broke, leaving behind embryos. The nanodot, lateral, and imprint nanostructure XPS spectra confirmed the theoretical calculations presented earlier: in the near-surface layers, the TiO2 oxide was observed, with the subsequent titanium oxide nanostructure surface etching proportion of TiO2 decreasing, and proportions of Ti2O3 and TiO oxides increasing. All nanodot, lateral, and imprint nanostructures showed reproducible resistive switching over 1000 switching cycles and holding their state for 10,000 s at read operation. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

22 pages, 26866 KiB  
Article
Facile Synthesis of Novel Conducting Copolymers Based on N-Furfuryl Pyrrole and 3,4-Ethylenedioxythiophene with Enhanced Optoelectrochemical Performances Towards Electrochromic Application
by Huixian Li, Xiaomeng Sun, Datai Liu, Xinchang Liu, Xianchao Du, Shuai Li, Xiaojing Xing, Xinfeng Cheng, Dongqin Bi and Dongfang Qiu
Molecules 2025, 30(1), 42; https://doi.org/10.3390/molecules30010042 - 26 Dec 2024
Viewed by 812
Abstract
In this article, a series of novel conducting copolymers P(FuPy-co-EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are [...] Read more.
In this article, a series of novel conducting copolymers P(FuPy-co-EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy-co-EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.75~1.86 eV). Spectroelectrochemistry studies indicate that the resulting copolymers with increased EDOT units show strengthened electrochromic characteristics, exhibiting a red-to-green-to-blue multicolor reversible transition, especially for the P(FuPy1-co-EDOT9) copolymer films. They also show increased optical contrast (9~34%), fast response time (0.8~2.4 s), and good coloring efficiency (110~362 cm2 C−1). Additionally, the complementary bilayer P(FuPy-co-EDOT)/PEDOT electrochromic devices (ECDs) are also assembled and evaluated to hold excellent electrochromic switching performances with relatively high optical contrast (25%), rapid response time (0.9 s), and satisfactory coloring efficiency (416 cm2 C−1). Together with the superior open circuit memory and cycling stability, they can be used as a new type of electrochromic material and have considerable prospects as promising candidates for electrochromic devices. Full article
Show Figures

Graphical abstract

14 pages, 4402 KiB  
Article
Effects of Phenoxazine Chromophore on Optical, Electrochemical and Electrochromic Behaviors of Carbazole–Thiophene Derivatives
by Bin Hu, Haizeng Song, Xinlei Zhang, Yuan He, Jingshun Ren and Jingbin Huang
Polymers 2024, 16(24), 3546; https://doi.org/10.3390/polym16243546 - 19 Dec 2024
Viewed by 856
Abstract
Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole–thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, [...] Read more.
Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole–thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, HRMS and FTIR. The results of the optical property study indicate that little influence could be observed in the presence of the phenoxazine chromophore. Corresponding polymer films on the surface of an ITO/glass electrode were obtained through electropolymerization. The electrochemical features displayed were various due to the introduction of the phenoxazine group. The spectroelectrochemical results demonstrate that the color of the polymer films could be changed. Compared with the PDDC films, the PDDCP films exhibited three different colors (tangerine, green and purple colors) in different redox states, which could be attributed to the synergistic effect between the carbazole–thiophene conjugate chain and the phenoxazine group. Moreover, fast switching time could be seen due to the presence of the phenoxazine chromophore. This study could provide a reference for obtaining high-performance electrochromic materials. Full article
(This article belongs to the Special Issue Active Polymeric Materials for Electrochemical Applications)
Show Figures

Figure 1

13 pages, 3036 KiB  
Article
Asymmetric Imidazolium-Based Ionic Liquid Crystal with Enhanced Ionic Conductivity in Low-Temperature Smectic Phases
by Yuna Kim, Alagan Jeevika, Tomoya Suwa, Kazuya Kubo and Ken-ichi Iimura
Crystals 2024, 14(12), 1053; https://doi.org/10.3390/cryst14121053 - 3 Dec 2024
Cited by 1 | Viewed by 1367
Abstract
We report the synthesis and characterization of a novel asymmetric imidazolium-based ionic liquid crystal (ILC) dimer exhibiting stable smectic phases over a wide temperature range, including room temperature. This unique molecular structure, combining two distinct mesogenic cores, reduces packing density, which enhances ion [...] Read more.
We report the synthesis and characterization of a novel asymmetric imidazolium-based ionic liquid crystal (ILC) dimer exhibiting stable smectic phases over a wide temperature range, including room temperature. This unique molecular structure, combining two distinct mesogenic cores, reduces packing density, which enhances ion mobility and achieves high ionic conductivity in the smectic phase (0.1 mS cm−1 at 40 °C). Electrochemical impedance spectroscopy (EIS) confirmed improved ionic conductivity at lower temperatures, along with a stable electrochemical window of ±3 V. Application as a solid-state electrolyte in an electrochromic device demonstrated effective switching behavior and reversible redox cycles. These findings suggest that this asymmetric imidazolium-based ILC is a viable candidate for advanced electrochemical applications due to its structural stability and anisotropic ionic pathways. Full article
(This article belongs to the Special Issue Liquid Crystal Materials and Devices)
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films
by Pritam J. Morankar, Rutuja U. Amate, Manesh A. Yewale and Chan-Wook Jeon
Crystals 2024, 14(12), 1038; https://doi.org/10.3390/cryst14121038 - 28 Nov 2024
Cited by 2 | Viewed by 1801
Abstract
The purpose of this study was to investigate the effect of annealing temperature on the structural, morphological, and electrochemical properties of tungsten trioxide (WO3) films, fabricated via electrodeposition and annealed at 50 °C, 250 °C, and 450 °C. Structural analysis using [...] Read more.
The purpose of this study was to investigate the effect of annealing temperature on the structural, morphological, and electrochemical properties of tungsten trioxide (WO3) films, fabricated via electrodeposition and annealed at 50 °C, 250 °C, and 450 °C. Structural analysis using X-ray diffraction (XRD) revealed temperature-induced modifications, transitioning from amorphous to crystalline phases. Morphological studies by field emission scanning electron microscopy (FESEM) demonstrated an increase in grain size with temperature (31 nm, 48 nm, and 53 nm) and the formation of cracks at higher annealing temperatures. Electrochemical characterization showed that the WO3 film annealed at 250 °C exhibited superior redox activity, enhanced ion diffusion, and excellent reversibility. Optical studies highlighted its exceptional performance, with 79.35% optical modulation, a coloration efficiency of 97.91 cm2/C, and rapid switching times (9.8 s for coloration and 7.5 s for bleaching). Furthermore, long-term cycling tests confirmed minimal degradation after 5000 cycles, demonstrating durability. This work provides a comprehensive understanding of the annealing temperature’s impact on WO3 films and underscores the novelty of achieving optimal electrochromic (EC) performance through temperature tuning, advancing the design of energy-efficient smart materials. Full article
(This article belongs to the Special Issue Research and Applications of Thin Films and Energy Materials)
Show Figures

Figure 1

18 pages, 12677 KiB  
Article
A Simple Preparation of Crosslinked, Highly Alkaline Diallyldimethylammonium Hydroxide Hydrogel Particles via Inverse Static Anion Exchange
by Tim B. Mrohs and Oliver Weichold
Gels 2024, 10(11), 743; https://doi.org/10.3390/gels10110743 - 15 Nov 2024
Cited by 1 | Viewed by 980
Abstract
Highly alkaline hydrogels are gaining increasing attention in building materials research. Specifically, cationic alkaline hydrogels based on diallyldimethylammonium hydroxide (DADMAOH) as the monomer have been effectively used to seal water-bearing cracks or serve as coupling media for electrochemical chloride extraction. However, the residual [...] Read more.
Highly alkaline hydrogels are gaining increasing attention in building materials research. Specifically, cationic alkaline hydrogels based on diallyldimethylammonium hydroxide (DADMAOH) as the monomer have been effectively used to seal water-bearing cracks or serve as coupling media for electrochemical chloride extraction. However, the residual halogen content and challenges in scaling up monomer production have hindered broader application. Attempts to use a commercially available cation-selective membrane for ion exchange achieved up to 90% chloride-to-hydroxide switch, but the approach proved ineffective due to significant monomer decomposition during the process. By contrast, neutral gels and gel particles can be readily prepared from diallyldimethylammonium chloride (DADMAC) in large quantities and with a wide range of compositions. It is demonstrated here that these neutral gel particles undergo inverse static anion exchange when suspended in NaOH solution, generating DADMAOH particles with residual halide contents of <0.3%, without the need for ion-selective or dialysis membranes. This corresponds to an up to 100-fold reduction in residual chloride content compared to particles produced directly from alkaline monomer solutions, thereby significantly enhancing the efficiency of hydroxide ion release. The swelling behaviour of the particles is primarily influenced by the initial monomer concentration, while conductivity remains largely unaffected, indicating that charge transport occurs mainly along the particle surface. Despite the pronounced increase in swelling with decreasing particle radii, the specific conductivity of 2.8 Ω−1 m−1 is still sufficient for their use as coupling media in concrete applications. In summary, the alkaline particles prepared via inverse static anion exchange meet all necessary requirements for building materials applications, offering a broader range of tuneable properties and greater ease of production compared to gels or particles derived from DADMAOH. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

11 pages, 1930 KiB  
Article
Aptamer-Mediated Electrochemical Detection of SARS-CoV-2 Nucleocapsid Protein in Saliva
by Ryan H. P. Siu, Robert G. Jesky, Yu-Jing Fan, Cyrus C. H. Au-Yeung, Andrew B. Kinghorn, Kwok-Hung Chan, Ivan Fan-Ngai Hung and Julian A. Tanner
Biosensors 2024, 14(10), 471; https://doi.org/10.3390/bios14100471 - 30 Sep 2024
Cited by 1 | Viewed by 2482
Abstract
Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural [...] Read more.
Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural switching electrochemical aptamer-based biosensor (E-AB) targeting the SARS-CoV-2 nucleocapsid (N) protein was developed. Four N protein-targeting aptamers were characterized on an electrochemical cell configuration using square wave voltammetry (SWV). The sensor was investigated in an artificial saliva matrix optimizing the aptamer anchoring orientation, SWV interrogation frequency, and target incubation time. Rapid detection of the N protein was achieved within 5 min at a low nanomolar limit of detection (LOD) with high specificity. Specific N protein detection was also achieved in simulated positive saliva samples, demonstrating its feasibility for saliva-based rapid diagnosis. Further research will incorporate novel signal amplification strategies to improve sensitivity for early diagnosis. Full article
Show Figures

Graphical abstract

16 pages, 6439 KiB  
Article
On-Substrate Preparation of a Poly(triphenylamino azomethine) for Electrochromic Devices
by Heather L. Filiatrault, Kacper Muras, Monika Wałęsa-Chorab and W. G. Skene
Polymers 2024, 16(17), 2440; https://doi.org/10.3390/polym16172440 - 28 Aug 2024
Cited by 2 | Viewed by 1139
Abstract
An electroactive polyazomethine was prepared directly on a transparent electrode by the polycondensation of bis(triphenylamine) dialdehyde and its complementary methoxytriphenylamine diamine. The spray-and-bake method of coating the electrode for preparing electrochromic layers could be upscaled to prepare working devices larger than standard test [...] Read more.
An electroactive polyazomethine was prepared directly on a transparent electrode by the polycondensation of bis(triphenylamine) dialdehyde and its complementary methoxytriphenylamine diamine. The spray-and-bake method of coating the electrode for preparing electrochromic layers could be upscaled to prepare working devices larger than standard test devices. The film prepared by thermally annealing the complementary monomers was both electroactive and switched its color with an applied potential. The yellow electrochromic polyazomethine could be electrochemically oxidized reversibly to obtain a blue film. The electrochromic test device fabricated from the polyazomethine was operated upwards of 1 h for performance assessment. The electrochromic response times of the electrochromic device were ca. 3.3 and 1.2 s for the coloration and bleaching, respectively. The upscaled device prepared by the straightforward coating approach had consistent metrics with the small-area test device. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

14 pages, 3938 KiB  
Article
Influence of Potentiostat Hardware on Electrochemical Measurements
by Abhilash Krishnamurthy and Kristina Žagar Soderžnik
Sensors 2024, 24(15), 4907; https://doi.org/10.3390/s24154907 - 29 Jul 2024
Viewed by 1228
Abstract
We describe two operating modes for the same potentiostat, where the redox processes of hydroquinone in a hydrochloric acid medium are contrasted for cyclic voltammetry (CV) as functions of a digital/staircase scan and an analogue/linear scan. Although superficially there is not much to [...] Read more.
We describe two operating modes for the same potentiostat, where the redox processes of hydroquinone in a hydrochloric acid medium are contrasted for cyclic voltammetry (CV) as functions of a digital/staircase scan and an analogue/linear scan. Although superficially there is not much to separate the two modes of operation as an end user, differences can be seen in the voltammograms while switching between the digital and analogue modes. The effects of quantization clearly have some impact on the measurements, with the outputs between the two modes being a function of the equivalent-circuit model of the electrochemical system under investigation. Increasing scan rates when using both modes produces higher peak redox currents, with the differences between the analogue and digital modes of operation being consistent as a function of the scan rate. Differences between the CV loops between the analogue and digital modes show key differences at certain points along the scans, which can be attributed to the nature of the electrolyte affecting the charging and discharging processes and consequently changing the peak currents of the redox processes. The faradaic processes were shown to be independent of the scan rates. Simulations of the equivalent-circuit behaviour show differences in the responses to different input signals, i.e., the step and ramp responses of the system. Both the voltage and current steps and ramp responses showed the time-domain behaviour of distinct elements of the equivalent electrochemical circuit model as an approximation of the applied digital and analogue CV input signals. Ultimately, it was concluded that similar parameters between the two modes of operation available with the potentiostat would lead to different output voltammograms and, despite advances in technology, digital systems can never fully emulate a true analogue system for electrochemical applications. These observations showcase the value of having hardware capable of true analogue characteristics over digital systems. Full article
(This article belongs to the Special Issue Electrochemical Sensors: Technologies and Applications)
Show Figures

Figure 1

20 pages, 4654 KiB  
Article
Can Aqueous Na2SO4-Based Neutral Electrolyte Increase Energy Density of Monolithic Wood Biochar Electrode Supercapacitor?
by Long Ye, Tianjie Feng, Donald W. Kirk and Charles Q. Jia
Energies 2024, 17(15), 3710; https://doi.org/10.3390/en17153710 - 27 Jul 2024
Cited by 2 | Viewed by 1398
Abstract
The performance of supercapacitors is significantly influenced by both the nature and the concentration of the electrolyte employed. This study investigates the impact of a neutral electrolyte on the electrochemical properties of the maple-derived monolithic wood biochar (MWB)–sodium sulfate (Na2SO4 [...] Read more.
The performance of supercapacitors is significantly influenced by both the nature and the concentration of the electrolyte employed. This study investigates the impact of a neutral electrolyte on the electrochemical properties of the maple-derived monolithic wood biochar (MWB)–sodium sulfate (Na2SO4) supercapacitor. The goal is to determine if a neutral electrolyte, in this case Na2SO4, can increase the supercapacitor energy density compared to a previous study employing a KOH electrolyte. Starting from examining the ion sizes and conductivities of salt species in KOH and Na2SO4 electrolytes, the difference in voltage window, measured specific capacitance, and resistance are discussed. By switching the electrolyte from 4 M KOH to 0.5/1 M Na2SO4, the voltage stability window was extended from 0.8 V to 1.4 V. For 1 M Na2SO4, the supercapacitor attains a specific capacitance of 46 F/g at 5 mA/g, accompanied by an energy density of 12.5 Wh/kg and a maximum power density of 300 W/kg. The MWB electrode, derived from naturally abundant wood, when combined with the non-toxic Na2SO4 electrolyte, offers an environmentally friendly and cost-effective energy storage solution. With a prolonged lifetime and minimal maintenance requirements, MWB-Na2SO4 supercapacitors emerge as a promising choice for diverse applications. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

Back to TopTop