Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = electrocaloric material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2109 KiB  
Article
XGBoost-Based Modeling of Electrocaloric Property: A Bayesian Optimization in BCZT Electroceramics
by Mustafa Cagri Bayir and Ebru Mensur
Materials 2025, 18(12), 2682; https://doi.org/10.3390/ma18122682 - 6 Jun 2025
Viewed by 455
Abstract
Electrocaloric materials, which exhibit adiabatic temperature change under an applied electric field, are promising for solid-state cooling technologies. In this study, the electrocaloric response of lead-free BaxCa1−xZryTi1−yO3 (BCZT) ceramics was modeled to investigate the [...] Read more.
Electrocaloric materials, which exhibit adiabatic temperature change under an applied electric field, are promising for solid-state cooling technologies. In this study, the electrocaloric response of lead-free BaxCa1−xZryTi1−yO3 (BCZT) ceramics was modeled to investigate the effects of composition, processing, and measurement conditions on performance. A high-accuracy XGBoost regression model (R2 = 0.99, MAE = 0.02 °C) was developed using a dataset of 2188 literature-derived data points to predict and design the electrocaloric response of BCZT ceramics. The feature space incorporated compositional ratios, processing parameters, measurement settings, and atomic-level Magpie descriptors, along with Curie temperature to account for phase-transition behavior. Feature importance analysis revealed that electric field, measurement temperature, and proximity to the Curie point are the most critical factors influencing ΔTEC. Bayesian optimization was applied to navigate the design space and identify performance maxima under unconstrained and realistic constraints, offering valuable insights into the nonlinear interactions governing electrocaloric performance. Under room temperature and moderate-field conditions (24 °C, 40 kV/cm), the optimized ΔTEC achieved a value of 1.03 °C for Ba0.85Ca0.15Zr0.40Ti0.60, to be processed at 1090 °C for 3 h during calcination, 1300 °C for 2 h during sintering. By integrating experimental insight with machine learning and optimization, this study offers a refined, interpretable framework for accelerating the design of high-performance electrocaloric ceramics while reducing the experimental workload. Full article
Show Figures

Figure 1

16 pages, 16501 KiB  
Article
Direct Thermal Method to Characterize the Material Efficiency of Electrocaloric Lead Scandium Tantalate Multilayer Ceramic Capacitors
by Sabrina Unmüßig, David Bach, Julius Metzdorf, Patrick Corhan, Sakyo Hirose and Kilian Bartholomé
Materials 2025, 18(9), 1924; https://doi.org/10.3390/ma18091924 - 24 Apr 2025
Viewed by 1722
Abstract
In this study, we characterize electrocaloric lead scandium tantalate (PST) samples by means of the adiabatic temperature change ΔTad and the dissipative heat qdiss with a direct thermal method. The figure of merit (FOM), defined as [...] Read more.
In this study, we characterize electrocaloric lead scandium tantalate (PST) samples by means of the adiabatic temperature change ΔTad and the dissipative heat qdiss with a direct thermal method. The figure of merit (FOM), defined as the ratio between the adiabatic temperature change and the thermal hysteresis, quantifies the losses of the material. Additionally, it is also possible to draw conclusions on the efficiency of a caloric cooling system based on the regenerator or cascaded approach. The maximum adiabatic temperature change of the measured samples results in ΔTad,max=(1.39±0.02) K and the dissipative heat yields qdiss=(0.39±0.05) J/(kg K), resulting in an FOM=(5.1±0.2). The efficiency for an ideal cascaded system is given by ηcas=0.56, and for the ideal regenerator, the efficiency is given by ηreg=0.84. The results demonstrate that the PST material in this study exceeds the maximum FOM in the literature by 34%. Full article
(This article belongs to the Special Issue Advances in Smart Materials and Applications)
Show Figures

Figure 1

12 pages, 4741 KiB  
Article
Improvement of Electro-Caloric Effect and Energy Storage Density in BaTiO3-Bi(Zn, Ti)O3 Ceramics Prepared with BaTiO3 Nano-Powder
by Geun-Soo Lee, Jeong-Seog Kim and Chae-Il Cheon
Materials 2024, 17(13), 3146; https://doi.org/10.3390/ma17133146 - 27 Jun 2024
Cited by 2 | Viewed by 1108
Abstract
BaTiO3-Bi(Zn,Ti)O3 (BT-BZT) ceramics have been used as capacitors due to their large dielectric permittivity and excellent temperature stability and are good candidates for lead-free materials for electrocaloric and energy storage devices. However, BT-BZT ceramics often suffer from inferior properties and [...] Read more.
BaTiO3-Bi(Zn,Ti)O3 (BT-BZT) ceramics have been used as capacitors due to their large dielectric permittivity and excellent temperature stability and are good candidates for lead-free materials for electrocaloric and energy storage devices. However, BT-BZT ceramics often suffer from inferior properties and poor reproducibility due to heterogeneous compositional distribution after calcination and sintering. In this work, (1−x)BT-xBZT ceramics (x = 0~0.2) were fabricated with nano-sized BaTiO3 raw materials (nano-BT) by a solid-state reaction method to enhance the chemical homogeneity. The (1−x)BT-xBZT ceramics prepared from the nano-BT showed larger densities and more uniform microstructures at the lower calcination and sintering temperatures than the samples prepared from more frequently used micrometer-sized raw materials BaCO3, TiO2, Bi2O3, and ZnO. The (1−x)BT-xBZT ceramic prepared from the nano-BT displayed a phase transition from a tetragonal ferroelectric to a pseudo-cubic relaxor in a narrower composition range than the sample prepared from micro-sized raw materials. Larger adiabatic temperature changes due to the electro-caloric effect (ΔTECE) and recoverable energy storage density (Urec) were observed in the samples prepared from the nano-BT due to the higher breakdown electric fields, the larger densities, and uniform microstructures. The 0.95BT-0.05BZT sample showed the largest ΔTECE of 1.59 K at 80 °C under an electric field of 16 kV/mm. The 0.82BT-0.18BZT sample displayed a Urec of 1.45 J/cm2, which is much larger than the previously reported value of 0.81 J/cm2 in BT-BZT ceramics. The nano-BT starting material produced homogeneous BT-BZT ceramics with enhanced ECE and energy storage properties and is expected to manufacture other homogeneous solid solutions of BaTiO3 and Bi-based perovskite with high performance. Full article
Show Figures

Figure 1

13 pages, 3322 KiB  
Article
Two Consecutive Negative Electrocaloric Peaks in <001>-Oriented PMN-30PT Single Crystals
by Yu Zhang, Weiping Gong, Zhen Li, Jianting Li, Changyu Li, Jun Chen, Yaodong Yang, Yang Bai and Wei-Feng Rao
Crystals 2024, 14(5), 458; https://doi.org/10.3390/cryst14050458 - 12 May 2024
Cited by 1 | Viewed by 1574
Abstract
The versatile electrocaloric (EC) behaviors of the (1-x)Pb(Mg1/3Nb2/3)O3-xPT (PMN-100xPT) single crystal are closely related to the multiple phase transitions under the multiple fields of electric field and temperature. In this work, the EC effect of [...] Read more.
The versatile electrocaloric (EC) behaviors of the (1-x)Pb(Mg1/3Nb2/3)O3-xPT (PMN-100xPT) single crystal are closely related to the multiple phase transitions under the multiple fields of electric field and temperature. In this work, the EC effect of <001>-oriented PMN-30PT single crystals with chemical composition at morphotropic phase boundary has been studied during the phase transformation process from the ferroelectric rhombohedral (R) phase to the tetragonal (T) phase. Two consecutive negative EC peaks have been achieved for the first time. Based on the projection of the EC effect in the electric field-temperature phase diagram, the relationship between the EC behaviors and the phase transitions is further established. It was found that the monoclinic (M) phase actually existed during the transformation from the R phase to the T phase, and the related R-M phase transition and M-T phase transition could both induce negative EC peaks. Under the electric field of E = 10 kV/cm, the first negative EC peaks induced by the R-M phase transition is at 57 °C with ΔTmax = −0.11 K. And the M-T phase transition can produce a higher negative EC peak, and its value can reach −0.22 K at 68 °C. Based on thermodynamic calculations, the relationship between the entropy change in different phase transitions and the EC behaviors has been further elucidated. The negative EC effect originates from the structural entropy increase in the electric field-induced phase transition process. This work not only advances the research on the electrical properties of relaxor ferroelectric single crystals but also provides a new insight into high-performance ferroelectric materials design. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

14 pages, 5691 KiB  
Article
Influence of Grain-Growth Inhibitors on Modified (Ba,Sr)(Sn,Ti)O3 for Electrocaloric Application
by Zhenglyu Li, Christian Molin and Sylvia E. Gebhardt
Materials 2024, 17(5), 1036; https://doi.org/10.3390/ma17051036 - 23 Feb 2024
Cited by 3 | Viewed by 1240
Abstract
The paper reports on effect of grain-growth inhibitors MgO, Y2O3 and MnCO3 as well as Ca modification on the microstructure, dielectric, ferroelectric and electrocaloric (EC) properties of Ba0.82Sr0.18Sn0.065Ti0.935O3 (BSSnT). Furthermore, [...] Read more.
The paper reports on effect of grain-growth inhibitors MgO, Y2O3 and MnCO3 as well as Ca modification on the microstructure, dielectric, ferroelectric and electrocaloric (EC) properties of Ba0.82Sr0.18Sn0.065Ti0.935O3 (BSSnT). Furthermore, the effects of the sintering time and temperature on the microstructure and the electrical properties of the most promising material system Ba0.62Ca0.20Sr0.18Sn0.065Ti0.935O3 (BCSSnT-20) are investigated. Additions of MgO (xMgO = 1%), Y2O3 (xY2O3 = 0.25%) and MnCO3 (xMnCO3 = 1%) significantly decreased the mean grain size of BSSnT to 0.4 µm, 0.8 µm and 0.4 µm, respectively. Ba0.62Ca0.20Sr0.18Sn0.065Ti0.935O3 (BCSSnT-20) gained a homogeneous fine-grained microstructure with an average grain size of 1.5 µm, leading to a maximum electrocaloric temperature change |ΔTEC| of 0.49 K at 40 °C with a broad peak of |ΔTEC| > 0.33 K in the temperature range from 10 °C to 75 °C under an electric field change of 5 V µm−1. By increasing the sintering temperature of BCSSnT-20 from 1350 °C to 1425 °C, the grain size increased from 1.5 µm to 7.3 µm and the maximum electrocaloric temperature change |ΔTEC| increased from 0.15 K at 35 °C to 0.37 K at 20 °C under an electric field change of 2 V µm−1. Our results show that under all investigated material systems, BCSSnT-20 is the most promising candidate for future application in multilayer ceramic (MLC) components for EC cooling devices. Full article
(This article belongs to the Special Issue Piezoelectrics and Ferroelectrics for End Users)
Show Figures

Figure 1

14 pages, 2207 KiB  
Article
Phase Structures, Electromechanical Responses, and Electrocaloric Effects in K0.5Na0.5NbO3 Epitaxial Film Controlled by Non-Isometric Misfit Strain
by Yingying Wu, Yun Ou, Jinlin Peng and Chihou Lei
Crystals 2023, 13(9), 1321; https://doi.org/10.3390/cryst13091321 - 29 Aug 2023
Cited by 1 | Viewed by 1347
Abstract
Environmentally friendly lead-free K1-xNaxNbO3 (KNN) ceramics possess electromechanical properties comparable to lead-based ferroelectric materials but cannot meet the needs of device miniaturization, and the corresponding thin films lack theoretical and experimental studies. To this end, we developed the [...] Read more.
Environmentally friendly lead-free K1-xNaxNbO3 (KNN) ceramics possess electromechanical properties comparable to lead-based ferroelectric materials but cannot meet the needs of device miniaturization, and the corresponding thin films lack theoretical and experimental studies. To this end, we developed the nonlinear phenomenological theory for ferroelectric materials to study the effects of non-equiaxed misfit strain on the phase structure, electromechanical properties, and electrical response of K0.5Na0.5NbO3 epitaxial films. We constructed in-plane misfit strain (u1u2) phase diagrams. The results show that K0.5Na0.5NbO3 epitaxial film under non-equiaxed in-plane strain can exhibit abundant phase structures, including orthorhombic a1c, a2c, and a1a2 phases, tetragonal a1, a2, and c phases, and monoclinic r12 phases. Moreover, in the vicinity of a2cr12, a1cc, and a1a2a2 phase boundaries, K0.5Na0.5NbO3 epitaxial films exhibit excellent dielectric constant ε11, while at a2cr12 and a1cc phase boundaries, a significant piezoelectric coefficient d15 is observed. It was also found that high permittivity ε33 and piezoelectric coefficients d33 exist near the a2ca2, a1a2r12, and a1ca1 phase boundaries due to the existence of polymorphic phase boundary (PPB) in the KNN system, which makes it easy to polarize near the phase boundaries, and the polarizability changes suddenly, leading to electromechanical enhancement. In addition, the results show that the K0.5Na0.5NbO3 thin films possess a large electrocaloric response at the phase boundary at the a1a2r12 and a1ca1 phase boundaries. The maximum adiabatic temperature change ΔT is about 3.62 K when the electric field change is 30 MV/m at room temperature, which is significantly enhanced compared with equiaxed strain. This study provides theoretical guidance for obtaining K1−xNaxNbO3 epitaxial thin films with excellent properties. Full article
Show Figures

Figure 1

6 pages, 658 KiB  
Brief Report
Phenomenological Material Model for First-Order Electrocaloric Material
by Sabrina Unmüßig, David Bach, Youri Nouchokgwe, Emmanuel Defay and Kilian Bartholomé
Energies 2023, 16(15), 5837; https://doi.org/10.3390/en16155837 - 7 Aug 2023
Viewed by 1465
Abstract
Caloric cooling systems are potentially more efficient than systems based on vapour compression. Electrocaloric cooling systems use a phase transformation from the paraelectric to the ferroelectric state by applying or removing an electric field to pump heat. Lead scandium tantalate (PST) materials show [...] Read more.
Caloric cooling systems are potentially more efficient than systems based on vapour compression. Electrocaloric cooling systems use a phase transformation from the paraelectric to the ferroelectric state by applying or removing an electric field to pump heat. Lead scandium tantalate (PST) materials show a first-order phase transition and are one of the most promising candidates for electrocaloric cooling. To model caloric cooling systems, accurate and thermodynamically consistent material models are required. In this study, we use a phenomenological model based on an analytical equation for the specific heat capacity to describe the material behaviour of bulk PST material. This model is fitted to the experimental data, showing a very good agreement. Based on this model, essential material properties such as the adiabatic temperature change and isothermal entropy change of this material can be calculated. Full article
Show Figures

Figure 1

14 pages, 6129 KiB  
Article
Influence of Sintering Additives on Modified (Ba,Sr)(Sn,Ti)O3 for Electrocaloric Application
by Zhenglyu Li, Christian Molin and Sylvia E. Gebhardt
Inorganics 2023, 11(4), 151; https://doi.org/10.3390/inorganics11040151 - 1 Apr 2023
Cited by 5 | Viewed by 1855
Abstract
This paper reports on the influence of sintering additives CuO and MgO on the recently developed lead-free electrocaloric (EC) material Ba0.82Sr0.18Sn0.065Ti0.935O3 (BSSnT-18-6.5). Details on the sintering behavior and the resulting microstructure of bulk ceramic [...] Read more.
This paper reports on the influence of sintering additives CuO and MgO on the recently developed lead-free electrocaloric (EC) material Ba0.82Sr0.18Sn0.065Ti0.935O3 (BSSnT-18-6.5). Details on the sintering behavior and the resulting microstructure of bulk ceramic samples prepared through solid-state synthesis and their dielectric, ferroelectric, and electrocaloric properties are presented. On the one hand, the addition of CuO (xCuO = 2%) significantly reduced the sintering temperature from 1400 °C to 1150 °C. On the other hand, the addition of MgO (xMgO = 1%) dramatically reduced the average grain size from 40 µm to 0.4 µm, leading to an increase in dielectric breakdown strength from 4.4 V µm−1 to 7.7 V µm−1. Thus, BSSnT-18-6.5 with the addition of MgO to bulk ceramic samples could achieve maximum EC temperature changes (|ΔTEC|) of 0.27 K around 30 °C with almost no aberration within a broad temperature range from 5 °C to 50 °C under an applied electric field change of 5 V µm−1. The results show the potential of this material for the fabrication of multilayer ceramic (MLC) components for future electrocaloric applications. Full article
(This article belongs to the Special Issue Advanced Materials for Application in Solid State Refrigeration)
Show Figures

Graphical abstract

21 pages, 6109 KiB  
Article
Performance Study on an Electrocaloric Heat Pump Based on Ga-Based Liquid Metal
by Panpan Song, Yawei Zhu, Zhongyan An, Mingshan Wei, Xiaoxia Sun and Yangjun Zhang
Energies 2023, 16(7), 3104; https://doi.org/10.3390/en16073104 - 29 Mar 2023
Cited by 1 | Viewed by 3436
Abstract
A solid-state heat pump using the electrocaloric effect (ECE) provides a new idea for the future development of heat pumps. However, most of the electrocaloric (EC) heat pumps presented in the literature are low in efficiency and use at least one moving part, [...] Read more.
A solid-state heat pump using the electrocaloric effect (ECE) provides a new idea for the future development of heat pumps. However, most of the electrocaloric (EC) heat pumps presented in the literature are low in efficiency and use at least one moving part, which significantly reduces the reliability of the heat pump and adds to its complexities. In this context, combining the positive and negative ECEs, we proposed a plate-laminar non-mobile EC heat pump adopting Gallium-based liquid metal as an intermediate medium to guarantee highly efficient heat transfer. Numerical simulation in COMSOL Multiphysics has been performed to investigate the correlation between different operating parameters and the performance of the EC heat pump. Changing the temperature span only, a COP of 8.13 and a UVHP of 746.1 W·dm3 were obtained at a temperature span of 7 K. It was also found that the UVHP increased by 28.45% and COP increased by 25.46% after adding one layer of EC material. The electric-induced quantity of heat and cooling capacity was found to significantly affect the heating performance. The biggest heating power of 7132.7 W·dm3 was obtained under 200 MV·m1, and the biggest COP of 14.84 was obtained under 150 MV·m1 at a cyclic period of 8 s. This study provides a highly efficient, non-mobile EC heat pump that employs fluid-thermal conjugated heat transfer, and exploration of the parameters makes the optimization of the heat pump possible by fine-tuning the operation parameters. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications)
Show Figures

Figure 1

2 pages, 167 KiB  
Editorial
Research and Development of Ferroelectric Material
by Jan Macutkevič
Crystals 2023, 13(3), 400; https://doi.org/10.3390/cryst13030400 - 25 Feb 2023
Viewed by 1729
Abstract
Ferroelectric materials are widely investigated due their unique dielectric, piezoelectric, piroelectric, electrocaloric and other properties [...] Full article
(This article belongs to the Special Issue Research and Development of Ferroelectric Material)
10 pages, 4029 KiB  
Article
Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics
by Lavinia Curecheriu, Maria Teresa Buscaglia, Vlad Alexandru Lukacs, Leontin Padurariu and Cristina Elena Ciomaga
Materials 2022, 15(21), 7825; https://doi.org/10.3390/ma15217825 - 6 Nov 2022
Cited by 2 | Viewed by 1970
Abstract
Pure perovskite Ba0.90Ca0.10TiO3 ceramics, with a relative density of between 79 and 98% and grain sizes larger than 1 µm, were prepared by solid-state reaction. The dielectric and electrocaloric properties were investigated and discussed considering the density and [...] Read more.
Pure perovskite Ba0.90Ca0.10TiO3 ceramics, with a relative density of between 79 and 98% and grain sizes larger than 1 µm, were prepared by solid-state reaction. The dielectric and electrocaloric properties were investigated and discussed considering the density and grain size of the samples. Room temperature impedance measurements show good dielectric properties for all ceramics with relative permittivity between 800 and 1100 and losses of <5%. Polarization vs. E loops indicates regular variation with increasing sintering temperature (grain size and density), an increase in loop area, and remanent and saturation polarization (from Psat = 7.2 µC/cm2 to Psat = 16 µC/cm2). The largest electrocaloric effect was 1.67 K for ceramic with GS = 3 µm at 363 K and electrocaloric responsivity (ζ) was 0.56 K mm/kV. These values are larger than in the case of other similar materials; thus, Ba0.90Ca0.10TiO3 ceramics with a density larger than 90% and grain sizes of a few µms are suitable materials for electrocaloric devices. Full article
(This article belongs to the Special Issue Advances in Dielectric Ceramics and Their Applications)
Show Figures

Figure 1

13 pages, 1945 KiB  
Article
Indirect Evaluation of the Electrocaloric Effect in PbZrTiO3 (20/80)-Based Epitaxial Thin Film Structures
by Georgia A. Boni, Lucian D. Filip, Cristian Radu, Cristina Chirila, Iuliana Pasuk, Mihaela Botea, Ioana Pintilie and Lucian Pintilie
Electron. Mater. 2022, 3(4), 344-356; https://doi.org/10.3390/electronicmat3040028 - 1 Nov 2022
Cited by 1 | Viewed by 2733
Abstract
Electrocaloric effect is the adiabatic temperature change in a dielectric material when an electric field is applied or removed, and it can be considered as an alternative refrigeration method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a phase [...] Read more.
Electrocaloric effect is the adiabatic temperature change in a dielectric material when an electric field is applied or removed, and it can be considered as an alternative refrigeration method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a phase transition, while antiferroelectrics and relaxors may exhibit a negative electrocaloric effect. In this study, the temperature variation in polarization was investigated for epitaxial ferroelectric thin film structures based on PbZrTiO3 materials in simple or complex multilayered structures. We propose the intriguing possibility of a giant negative electrocaloric effect (ΔT = −3.7 K at room temperature and ΔT = −5.5 K at 370 K) in a simple epitaxial Pb(ZrTi)O3 capacitor. Furthermore, it was shown that abnormal temperature variation in polarization is dependent on the non-FE component introduced in a multilayered structure. No significant variation in polarization with temperature was obtained for PZT/STON multilayered structures around room temperature. However, for PZT/BST or PZT/Nb2O5 multilayers, an abnormal temperature variation in polarization was revealed, which was similar to a simple PZT layer. The giant and negative ∆T values were attributed to internal fields and defects formed due to the large depolarization fields when the high polarization of the FE component was not fully compensated either by the electrodes or by the interface with an insulator layer. The presented results make Pb(ZrTi)O3-based structures promising for cooling applications operating near room temperature. Full article
(This article belongs to the Special Issue Electronic Processes in Ferroelectrics)
Show Figures

Figure 1

13 pages, 3012 KiB  
Article
Bimodal-Structured 0.9KNbO3-0.1BaTiO3 Solid Solutions with Highly Enhanced Electrocaloric Effect at Room Temperature
by Hongfang Zhang, Liqiang Liu, Ju Gao, K. W. Kwok, Sheng-Guo Lu, Ling-Bing Kong, Biaolin Peng and Fang Hou
Nanomaterials 2022, 12(15), 2674; https://doi.org/10.3390/nano12152674 - 4 Aug 2022
Viewed by 1866
Abstract
0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, [...] Read more.
0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, the extra-large grains (~10–50 μm) were evolved from the micron-sized filler powders, and the fine grains (~0.05–0.35 μm) were derived from the sol precursor matrix. The 0.9KNbO3-0.1BaTiO3 ceramics exhibit relaxor-like behavior with a diffused phase transition near room temperature, as confirmed by the presence of the polar nanodomain regions revealed through high resolution transmission electron microscope analyses. A large room-temperature electrocaloric effect (ECE) was observed, with an adiabatic temperature drop (ΔT) of 1.5 K, an isothermal entropy change (ΔS) of 2.48 J·kg−1·K−1, and high ECE strengths of |ΔT/ΔE| = 1.50 × 10−6 K·m·V−1 and ΔS/ΔE = 2.48 × 10−6 J·m·kg−1·K−1·V−1 (directly measured at E = 1.0 MV·m−1). These greatly enhanced ECEs demonstrate that our simple IAGG method is highly appreciated for synthesizing high-performance electrocaloric materials for efficient cooling devices. Full article
Show Figures

Graphical abstract

19 pages, 4307 KiB  
Article
Large Electrocaloric Responsivity and Energy Storage Response in the Lead-Free Ba(GexTi1−x)O3 Ceramics
by Bouchra Asbani, Yaovi Gagou, Said Ben Moumen, Jean-Luc Dellis, Abdelilah Lahmar, M’Barek Amjoud, Daoud Mezzane, Mimoun El Marssi, Brigita Rozic and Zdravko Kutnjak
Materials 2022, 15(15), 5227; https://doi.org/10.3390/ma15155227 - 28 Jul 2022
Cited by 12 | Viewed by 2614
Abstract
Ferroelectric property that induces electrocaloric effect was investigated in Ba(GexTi1−x)O3 ceramics, known as BTGx. X-ray diffraction analysis shows pure perovskite phases in tetragonal symmetry compatible with the P4mm (No. 99) space group. Dielectric permittivity exhibits [...] Read more.
Ferroelectric property that induces electrocaloric effect was investigated in Ba(GexTi1−x)O3 ceramics, known as BTGx. X-ray diffraction analysis shows pure perovskite phases in tetragonal symmetry compatible with the P4mm (No. 99) space group. Dielectric permittivity exhibits first-order ferroelectric-paraelectric phase transition, confirmed by specific heat measurements, similar to that observed in BaTiO3 (BTO) crystal. Curie temperature varies weakly as a function of Ge-content. Using the direct and indirect method, we confirmed that the adiabatic temperature change ΔT reached its higher value of 0.9 K under 8 kV/cm for the composition BTG6, corresponding to an electrocaloric responsivity ΔT/ΔE of 1.13 × 10−6 K.m/V. Such electrocaloric responsivity significantly exceeds those obtained so far in other barium titanate-based lead-free electrocaloric ceramic materials. Energy storage investigations show promising results: stored energy density of ~17 mJ/cm3 and an energy efficiency of ~88% in the composition BTG5. These results classify the studied materials as candidates for cooling devices and energy storage applications. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

12 pages, 2584 KiB  
Article
Ferroelectric Smectic Liquid Crystals as Electrocaloric Materials
by Peter John Tipping and Helen Frances Gleeson
Crystals 2022, 12(6), 809; https://doi.org/10.3390/cryst12060809 - 8 Jun 2022
Cited by 2 | Viewed by 3222
Abstract
The 1980s saw the development of ferroelectric chiral smectic C (SmC*) liquid crystals (FLCs) with a clear focus on their application in fast electro-optic devices. However, as the only known fluid ferroelectric materials, they also have potential in other applications, one of which [...] Read more.
The 1980s saw the development of ferroelectric chiral smectic C (SmC*) liquid crystals (FLCs) with a clear focus on their application in fast electro-optic devices. However, as the only known fluid ferroelectric materials, they also have potential in other applications, one of which is in heat-exchange devices based on the electrocaloric effect. In particular, ferroelectric liquid crystals can be both the electrocaloric material and the heat exchanging fluid in an electrocaloric device, significantly simplifying some of the design constraints associated with solid dielectrics. In this paper, we consider the electrocaloric potential of three SmC* ferroelectric liquid crystal systems, two of which are pure materials that exhibit ferroelectric, antiferroelectric, and intermediate phases and one that was developed as a room-temperature SmC* material for electro-optic applications. We report the field-induced temperature changes of these selected materials, measured indirectly using the Maxwell method. The maximum induced temperature change determined, 0.37 K, is currently record-breaking for an FLC and is sufficiently large to make these materials interesting candidates for the development for electrocaloric applications. Using the electrocaloric temperature change normalised as a function of electric field strength, as a function of merit, the performances of FLCs are compared with ferroelectric ceramics and polymers. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in UK)
Show Figures

Figure 1

Back to TopTop