Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = electroantennogram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3509 KB  
Article
TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles
by Cheng Qu, Jingxue Yan, Zuqing Yan, Ren Li, Yuqi Liu, Aoli Lin, Yuejun Fu, Chen Luo, Zhiwei Kang and Ran Wang
Biomolecules 2025, 15(8), 1152; https://doi.org/10.3390/biom15081152 - 11 Aug 2025
Viewed by 514
Abstract
The tomato leafminer (Tuta absoluta), a globally invasive pest, poses a major economic threat to tomato production. Although chemical control remains the primary management method, sustainable alternatives are urgently needed. Sex pheromone communication is critical for moth courtship and mating, with [...] Read more.
The tomato leafminer (Tuta absoluta), a globally invasive pest, poses a major economic threat to tomato production. Although chemical control remains the primary management method, sustainable alternatives are urgently needed. Sex pheromone communication is critical for moth courtship and mating, with pheromone-binding proteins (PBPs) playing a key role in this process. In this study, we identified a PBP gene, TabsPBP2, from the T. absoluta transcriptome. Real-time quantitative PCR (RT-qPCR) revealed that TabsPBP2 is highly expressed in the antennae, with a strong male-biased expression pattern. Ligand-binding assays demonstrated that TabsPBP2 has the highest affinity for the sex pheromones (3E, 8Z, 11Z)-tetradecatrienyl acetate (TDTA) and (3E, 8Z)-tetradecadienyl acetate (TDDA). It also demonstrated a moderate-to-strong binding affinity to several tomato volatiles, including 2-carene, myrcene, α-pinene, cis-3-hexen-l-ol, methyl salicylate, sabinene, and α-terpinene. Molecular docking suggested that hydrophobic interactions predominantly stabilize the TabsPBP2–ligand complexes, with PHE118, PHE12, LEU90, LEU68, and ALA73 identified as key interacting residues. Electroantennogram (EAG) and Y-tube olfactometer assays confirmed that TDTA and TDDA act as strong attractants for male T. absoluta. This study enhances our understanding of the pheromone recognition in T. absoluta and provides a foundation for developing novel, pheromone-based pest control strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 256 KB  
Article
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
by Rui Zhang, Jian-Ming Shi, Yi-Bei Jiang, Hui-Quan Sun, Dan-Dan Cao, Hui-Ling Hao and Jian-Rong Wei
Insects 2025, 16(8), 781; https://doi.org/10.3390/insects16080781 - 30 Jul 2025
Viewed by 533
Abstract
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger [...] Read more.
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value). Full article
(This article belongs to the Section Insect Pest and Vector Management)
16 pages, 3313 KB  
Article
Entomopathogenic Fungus Treatment Affects Trophic Interactions by Altering Volatile Emissions in Tomato
by Asim Munawar, Haonan Zhang, Jinyi Zhang, Xiangfen Zhang, Xiao-Xiao Shi, Xuan Chen, Zicheng Li, Xiaoli He, Jian Zhong, Zengrong Zhu, Yaqiang Zheng and Wenwu Zhou
Agronomy 2025, 15(5), 1161; https://doi.org/10.3390/agronomy15051161 - 9 May 2025
Viewed by 999
Abstract
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the [...] Read more.
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the parasitic wasp, Trichogramma chilonis. Our results demonstrate that EPF-treated plants exhibited reduced attractiveness to adult P. absoluta moths, which were actively repelled by EPF-induced VOCs. Conversely, these same plants showed enhanced recruitment of the parasitoid T. chilonis, which demonstrated positive chemotaxis toward the modified VOC profile. Chemical analysis revealed significantly elevated emissions of key VOCs in EPF-treated plants, particularly (E)-β-Caryophyllene, β-phellandrene, and α-Phellandrene. This increase is correlated with enhanced production of defense-related phytohormones, including JA, SA, and JA-Ile, which may regulate VOC biosynthesis pathways. Behavioral response studies using synthetic VOCs and electroantennogram (EAG) measurements confirmed that these EPF-induced VOCs elicited strong olfactory responses in both insect species. To summarize, EPF treatment reshapes multitrophic interactions by strategically modulating plant VOC emissions and activating defense signaling pathways in tomato plants, providing new insights for potential applications in sustainable pest management strategies. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

16 pages, 3695 KB  
Article
Odor-Binding Protein 2 in Apis mellifera ligustica Plays Important Roles in the Response to Floral Volatiles Stimuli from Melon and Tomato Flowers
by Jiangchao Zhang, Weihua Ma, Yue Zhang, Surong Lu, Chaoying Zhang, Huiting Zhao and Yusuo Jiang
Int. J. Mol. Sci. 2025, 26(7), 3176; https://doi.org/10.3390/ijms26073176 - 29 Mar 2025
Viewed by 586
Abstract
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. [...] Read more.
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. Therefore, we aimed to further investigate the olfactory recognition mechanism of honeybees by detecting the expression levels and binding ability of AmelOBP2 to floral volatiles of melon and tomato flowers. The results show that AmelOBP2 mRNA was highly expressed in the antennae of honeybees, and its protein expression was highest in the antennae at 20 days of age and was higher in the melon greenhouse. The binding ability of AmelOBP2 to floral volatiles of melon was stronger than that of tomato. AmelOBP2 had a stronger binding ability with aldehydes in melon floral volatiles and with terpenes and benzenes in tomato floral volatiles. After feeding with siRNA, the electroantennogram response of honeybees to E-2-hexenal, E-2-octenal, and 1-nonanal decreased markedly, confirming the role of AmelOBP2 in the recognition of melon and tomato floral volatiles. These results elucidate the molecular mechanisms underlying honeybee flower-visiting behavior and provide a theoretical reference for regulating the behavior of honeybees using plant volatiles. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 2099 KB  
Article
Identification of Female Sex Pheromone of a Plant Bug, Polymerus pekinensis Reuter (Hemiptera: Miridae)
by Liuyang Wang, Yubo Wang, Xiaofang Zhang, Meijuan Fang, Xiangdong Mei and Tao Zhang
Insects 2025, 16(2), 111; https://doi.org/10.3390/insects16020111 - 23 Jan 2025
Viewed by 1158
Abstract
Insect sex pheromones have been widely used in integrated pest control due to their efficiency, non-toxicity, specificity, and environmental sustainability. They are considered a key component of green pest management techniques. Polymerus pekinensis is a phytophagous plant bug on alfalfa (Medicago sativa [...] Read more.
Insect sex pheromones have been widely used in integrated pest control due to their efficiency, non-toxicity, specificity, and environmental sustainability. They are considered a key component of green pest management techniques. Polymerus pekinensis is a phytophagous plant bug on alfalfa (Medicago sativa L.) in East Asia. This study used gas chromatography–electroantennogram detection (GC–EAD) and gas chromatography–mass spectrometry (GC–MS) to analyze the whole-body extracts from male and female P. pekinensis. Octyl acetate (OA) and decyl acetate (DA) elicited the antennal response of males and were identified as the predominant components of female and male extracts, respectively. Subsequent field trials demonstrated that OA (>8 mg per lure) showed the strongest attraction to conspecific males. However, when DA was added in a lure (≥2 mg), a significant decline in captures occurred. These findings provide new insights into the understanding of sex pheromones in Miridae and benefit the development of sustainable management of P. pekinensis. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Figure 1

19 pages, 6868 KB  
Article
Functional Role of Odorant-Binding Proteins in Response to Sex Pheromone Component Z8-14:Ac in Grapholita molesta (Busck)
by Yuqing Luo, Xiulin Chen, Shiyan Xu, Boliao Li, Kun Luo and Guangwei Li
Insects 2024, 15(12), 918; https://doi.org/10.3390/insects15120918 - 25 Nov 2024
Cited by 2 | Viewed by 1189
Abstract
The plum fruit moth (PFM), Grapholita funebrana, and the oriental fruit moth (OFM), G. molesta, are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components Z8-12:Ac and E8-12:Ac. The secondary [...] Read more.
The plum fruit moth (PFM), Grapholita funebrana, and the oriental fruit moth (OFM), G. molesta, are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components Z8-12:Ac and E8-12:Ac. The secondary sex pheromone components of PFMs consist of Z8-12:OH, Z8-14:Ac, and Z10-14:Ac, while those of OFMs include Z8-12:OH and 12:OH. Previous researchers have proved that the inclusion of Z8-14:Ac and Z10-14:Ac did not augment PFM catches but inhibited OFM catches in orchards in Europe, thereby maintaining the species-specificity of the PFM sex attractant. However, which of these components, Z8-14:Ac or Z10-14:Ac, plays the major role in inhibiting OFM attraction remains unclear. In the current study, electroantennogram (EAG) assays indicated that both OFM and PFM males exhibited a moderate EAG response to Z8-14:Ac and Z10-14:Ac. Rubber septa loaded with varying ratios of Z8-14:Ac (1% to 30%) or Z10-14:Ac (5% to 110%) combined with a constant dose of Z8-12:Ac and E8-12:Ac produced diverse trapping effects. Sex attractants containing Z8-14:Ac did not significantly affect the trapping of PFM males but drastically reduced the capture of OFM males, with the reduction reaching up to 96.54%. Attractants containing more than 10% of Z10-14:Ac simultaneously reduced the number of OFM and PFM males captured. Z8-14:Ac was indispensable for maintaining the specificity of sex pheromones. Fluorescence competitive binding assays of recombinant GmolPBP2 showed the lowest Ki value (0.66 ± 0.02 μM) among the PBPs/GOBPs from OFMs, suggesting that it is the most likely target for Z8-14:Ac. Molecular dynamic simulation and site-directed mutagenesis assays confirmed that the Phe12 residue, which forms a π–alkyl interaction with Z8-14:Ac, was crucial for GmolPBP2 binding to Z8-14:Ac. In conclusion, Z8-14:Ac is vital to the specificity of PFM sex pheromones inhibiting OFM attractants when added to Z8-12:Ac and E8-12:Ac. This could be potentially used to develop species-specific sex attractants for the PFM. Full article
(This article belongs to the Special Issue New Advances in Insect Chemical Adaptation)
Show Figures

Figure 1

17 pages, 3151 KB  
Article
Identification on Key Volatiles Contributed to Oviposition Preference of Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae) from High and Normal Oleic Varieties of Peanut
by Chen Wang, Dianxuan Wang, Fangfang Zeng, Liang Chen, Xinxin Zhao, Xi Zhu, Junji Yao and Yihan Li
Insects 2024, 15(11), 866; https://doi.org/10.3390/insects15110866 - 5 Nov 2024
Cited by 4 | Viewed by 1474
Abstract
The Indian meal moth, Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae), a primary stored peanut insect pest, exhibited a significant difference in oviposition preference among normal-oleic peanuts (NOPs) and high-oleic peanuts (HOPs). Identifying key volatile organic compounds (VOCs) that are attractive or repellent to [...] Read more.
The Indian meal moth, Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae), a primary stored peanut insect pest, exhibited a significant difference in oviposition preference among normal-oleic peanuts (NOPs) and high-oleic peanuts (HOPs). Identifying key volatile organic compounds (VOCs) that are attractive or repellent to P. interpunctella is of great significance for the ecological management of pests. The profiles and contents of VOCs among NOP and HOP varieties were measured and compared, and key bioactive VOCs were further confirmed via an electroantennogram (EAG) analysis, as well as behavioral responses in Y-tube olfactometer and wind tunnel bioassays. Females prefer to lay eggs on NOP varieties more than on HOP ones. Acetophenone, nonanal, decanal, dodecane, 2,5-dimethylbenzaldehyde, and 4-ethyl-benzaldehy derived from tested peanuts elicited stronger antennal EAG responses. The results of the Y-tube olfactometer and wind tunnel bioassay showed that the relative high levels of nonanal, dodecane, and unique VOC acetophenone in NOP varieties have a significant attraction to P. interpunctella. Conversely, 4-ethyl-benzaldehyde and the unique VOC 2,5-dimethyl-benzaldehyde commonly found in HOP varieties exhibit notable repellent effects on P. interpunctella. These VOCs could contribute to the development of attractants or repellents derived from special peanut varieties for pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1355 KB  
Article
Asymmetric Synthesis and Biological Activity of Contact Pheromone of Western Flower Thrips, Frankliniella occidentalis
by Chuanwen Lin, Wenya Zhu, Shuai Wu, Qinghua Bian and Jiangchun Zhong
Int. J. Mol. Sci. 2024, 25(21), 11699; https://doi.org/10.3390/ijms252111699 - 31 Oct 2024
Cited by 1 | Viewed by 1147
Abstract
Western flower thrips, Frankliniella occidentalis, is a serious worldwide pest of agriculture and horticulture, and its contact pheromone is 7-methyltricosane. Two enantiomers of 7-methyltricosane were synthesized for the first time. The centra of our strategy were chiral auxiliaries to introduce stereocenter, and [...] Read more.
Western flower thrips, Frankliniella occidentalis, is a serious worldwide pest of agriculture and horticulture, and its contact pheromone is 7-methyltricosane. Two enantiomers of 7-methyltricosane were synthesized for the first time. The centra of our strategy were chiral auxiliaries to introduce stereocenter, and Wittig coupling to connect two blocks. The overall yields of our synthesis were 29–30% with seven steps. The electroantennogram (EAG) and the contact behavioral responses revealed that (R)-, (S)- and racemic 7-methyltricosane were separately bioactive, and the racemate was the most bioactive in the male arrestant activity and the female EAG test. This result provides valuable insights, showing that the racemate could be used for the support of the control of western flower thrips, which could be more easily prepared relative to more expensive enantiopure pheromone. Full article
(This article belongs to the Special Issue Molecular Signalling in Multitrophic Systems Involving Arthropods)
Show Figures

Figure 1

12 pages, 2537 KB  
Article
Pupal and Adult Experience Affect Adult Response to Food Odour Components in the Flower-Visiting Butterfly Tirumala limniace
by Chengzhe Li, Hua Wang, Fangyuan Bian, Jun Yao, Lei Shi and Xiaoming Chen
Insects 2024, 15(4), 231; https://doi.org/10.3390/insects15040231 - 27 Mar 2024
Viewed by 1595
Abstract
Butterflies have the ability to learn to associate olfactory information with abundant food sources during foraging. How the co-occurrence of both food and food odours affects the learning behaviour of adults and whether butterflies perceive the odour of their surroundings and develop a [...] Read more.
Butterflies have the ability to learn to associate olfactory information with abundant food sources during foraging. How the co-occurrence of both food and food odours affects the learning behaviour of adults and whether butterflies perceive the odour of their surroundings and develop a preference for that odour during the pupal stage have rarely been tested. We examined the effect of experience with food odour components (α-pinene and ethyl acetate) during the pupal and adult stages on the foraging behaviour of the flower-visiting butterfly Tirumala limniace. We found that α-pinene exposure during the pupal stage changed the foraging preference of newly emerged adults. T. limniace exhibits olfactory learning in the adult stage, and adult learning may influence their previous pupal memory. Moreover, adults’ odour preference did not continue to increase over multiple training times. The learning ability of adults for floral odours (α-pinene) was greater than that for non-floral odours (ethyl acetate). In contrast to previous studies, we found that males learned odours more efficiently than females did. This could be attributed to differences in antennal sensilla, affecting sensitivity to compounds and nectar demand between males and females. Our study provides further insight into how olfactory learning helps flower-visiting butterflies use food odours to forage better. Full article
Show Figures

Figure 1

13 pages, 3804 KB  
Article
Antennal Sensitivity of Spotted Lanternflies, Lycorma delicatula: Differential Electrophysiological Responses of Males and Females to Compounds Derived from Host Plants and Conspecifics
by Hajar Faal and Miriam F. Cooperband
Insects 2024, 15(3), 162; https://doi.org/10.3390/insects15030162 - 28 Feb 2024
Cited by 4 | Viewed by 2147
Abstract
In herbivorous insects, antennae play a crucial role in chemical communication and orientation when locating host plants and mates. To evaluate antennal sensitivity in response to odor stimuli, electroantennography (EAG) has been a practical technique. In the current study of the invasive spotted [...] Read more.
In herbivorous insects, antennae play a crucial role in chemical communication and orientation when locating host plants and mates. To evaluate antennal sensitivity in response to odor stimuli, electroantennography (EAG) has been a practical technique. In the current study of the invasive spotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), we evaluated and compared their antennal sensitivity to a series of volatile chemicals collected from their bodies, honeydew, and host plants. To do this, we exposed the antennae of SLF fourth-instar and adult males and females to individual chemicals at a fixed dose of 50 ng. Further, a series of dose–response tests were carried out within a range of 0.5 to 100 ng. Although the amplitude of antennal responses varied among stages and sexes, adult males generated the strongest antennal responses in both experiments. In dose–response experiments, increased doses of chemicals up to 50 ng revealed the saturation points except in adult females which required a higher dose (100 ng) to reveal the saturation point. Although EAG does not provide any information on behavioral responses, our results are consistent with the olfactory bioassays in previous publications in which adult males, not females, were attracted to natural volatiles of their conspecifics. EAG indicated a higher sensitivity of adult male antennae to odor stimuli, particularly conspecific volatiles, than female antennae and highlighted sexual differences in the perception of chemical cues in SLF. Full article
Show Figures

Figure 1

15 pages, 2152 KB  
Article
Mutagenesis of Odorant Receptor Coreceptor Orco Reveals the Odorant-Detected Behavior of the Predator Eupeodes corollae
by Ji-Nan Wu, Chen-Xi Cai, Wen-Biao Liu, Dong Ai, Song Cao, Bing Wang and Gui-Rong Wang
Int. J. Mol. Sci. 2023, 24(24), 17284; https://doi.org/10.3390/ijms242417284 - 9 Dec 2023
Cited by 3 | Viewed by 2040
Abstract
The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect [...] Read more.
The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect odor perception. However, the function of Orco in the mating and prey-seeking behaviors of the hoverfly remains relatively unexplored. In this study, we characterized the Orco gene from the hoverfly, Eupeodes corollae, a natural enemy insect. We used the CRISPR/Cas9 technique to knock out the Orco gene of E. corollae, and the EcorOrco−/− homozygous mutant was verified by the genotype analysis. Fluorescence in situ hybridization showed that the antennal ORN of EcorOrco−/− mutant lack Orco staining. Electroantennogram (EAG) results showed that the adult mutant almost lost the electrophysiological response to 15 odorants from three types. The two-way choice assay and the glass Y-tube olfactometer indicated that both the larvae and adults of hoverflies lost their behavioral preference to the aphid alarm pheromone (E)-β-farnesene (EBF). In addition, the mating assay results showed a significant decrease in the mating rate of males following the knock out of the EcorOrco gene. Although the mating of females was not affected, the amount of eggs being laid and the hatching rate of the eggs were significantly reduced. These results indicated that the EcorOrco gene was not only involved in the detection of semiochemicals in hoverflies but also plays a pivotal role in the development of eggs. In conclusion, our results expand the comprehension of the chemoreceptive mechanisms in the hoverflies and offers valuable insights for the advancement of more sophisticated pest management strategies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 3831 KB  
Article
The Aversive Response of the Locust Locusta migratoria to 3-Octanone, an Odorant from Fungal Pathogens, Is Mediated by a Chemosensory Protein
by Xiao Xu, Long Zhang and Xingbo Zhao
Agriculture 2023, 13(8), 1542; https://doi.org/10.3390/agriculture13081542 - 2 Aug 2023
Cited by 1 | Viewed by 1895
Abstract
(1) Locusts are important agricultural pests. Identifying harmful substances and avoiding them is important for locusts’ survival; their abilities to do so remain to be clarified. (2) We examined the electrophysiological (electroantennogram (EAG) and single sensillum recording (SSR)) and behavioral responses (preference behavior [...] Read more.
(1) Locusts are important agricultural pests. Identifying harmful substances and avoiding them is important for locusts’ survival; their abilities to do so remain to be clarified. (2) We examined the electrophysiological (electroantennogram (EAG) and single sensillum recording (SSR)) and behavioral responses (preference behavior in a T-maze) of locusts to 18 different compounds; (3) Of these 18 compounds, 9 elicited strong EAG responses, and 3 elicited SSR responses of neurons expressing locust odorant receptor 3 (LmigOR3). The 11 chemicals that elicited stronger EAG or SSR responses were selected for evaluation of the behavioral responses of locusts. Only 2-heptanone induced significant attraction responses in locusts at the tested concentration. RNA interference (RNAi) of LmigOR3 and SSR experiments revealed that LmigOR3 could detect 2-heptanone and 3-octanone. However, in behavioral experiments, RNAi of LmigOR3 did not alter 2-heptanone-induced attraction but increased attraction by 3-octanone. (4) Our results suggest that the broadly tuned receptor expressed in a heterologous expression system exhibits a narrow electrophysiological response spectrum, and the aversive response of locusts to 3-octanone, an odorant from fungal pathogens, natural enemies, and non-host plants, is mediated by LmigOR3. These findings enhance our understanding of the complex olfactory recognition mechanism in insects. Full article
(This article belongs to the Special Issue Agrochemical Ecology)
Show Figures

Graphical abstract

11 pages, 1799 KB  
Article
Attraction of Male Pine Sawflies, Diprion jingyuanensis, to Synthetic Pheromone Candidates: Synergism between Two Stereoisomers
by Olle Anderbrant, Qing-He Zhang, Guo-Fa Chen, Fredrik Östrand, Gunnar Bergström, Ann-Britt Wassgren, Zhen Zhang, Erik Hedenström and Hans-Erik Högberg
Forests 2023, 14(6), 1187; https://doi.org/10.3390/f14061187 - 8 Jun 2023
Cited by 1 | Viewed by 1639
Abstract
The pine sawfly Diprion jingyuanensis Xiao and Zhang (Hymenoptera: Diprionidae) is a serious pest of Pinus tabulaeformis Carr. in the Shanxi, Gansu, and Inner Mongolia provinces in P. R. China. The sex pheromone of D. jingyuanensis was shown to be the propionate ester [...] Read more.
The pine sawfly Diprion jingyuanensis Xiao and Zhang (Hymenoptera: Diprionidae) is a serious pest of Pinus tabulaeformis Carr. in the Shanxi, Gansu, and Inner Mongolia provinces in P. R. China. The sex pheromone of D. jingyuanensis was shown to be the propionate ester of 3,7-dimethyl-2-tridecanol. Virgin females contained an approximate 1:3 blend of the pheromone precursors erythro-(2S,3S,7R/S and 2R,3R,7R/S)-3,7-dimethyl-2-tridecanol and threo-(2S,3R,7R/S and 2R,3S,7R/S)-3,7-dimethyl-2-tridecanol, but the exact stereoisomers were not determined. Males responded the strongest to the propionate ester of the two threo-isomers, (2S,3R,7R) and (2S,3R,7S), in electroantennogram (EAG) recordings, followed by a significant EAG response to the (2S,3R,7R) propionate of diprionol (pheromone component of D. similis), whereas the remaining two isomers (2S,3S,7S and 2S,3S,7R) of the propionate ester of 3,7-dimethyl-2-tridecanol and the acetate of the (2S,3R,7R) isomer (one of the two pheromone components of D. pini) did not elicit any significant increase in antennal response. In the field, the strongly EAG-active (2S,3R,7R)-isomer alone was only weakly (but significantly) attractive to D. jingyuanensis males at 100 µg, while the equally EAG- active (2S,3R,7S)-isomer alone at the same loading was 8–14 times more attractive than was the (2S,3R,7R)-isomer alone. Traps baited with the same amounts of the two threo-isomers ((2S,3R,7R) and (2S,3R,7S), 100 µg + 100 µg) caught significantly more males than did traps baited with other isomers, either of the two isomers alone or other proportions of the two isomers. Thus, the (2S,3R,7S)-isomer is considered as a strong and essential sex-attractant component for D. jingyuanensis males, whereas the (2S,3R,7R)-isomer is a weak but synergistic sex-attractant. This is one of the few examples of a pine sawfly responding significantly stronger to a binary blend of stereoisomers in a synergistic fashion than to a single stereoisomer alone. Full article
(This article belongs to the Special Issue Applied Chemical Ecology of Forest Insects)
Show Figures

Figure 1

12 pages, 2541 KB  
Article
Buckwheat Flower Volatiles Attract Peristenus spretus and Enhance Its Field-Level Parasitism of Apolygus lucorum
by Shike Xia, Tao Zhang, Livy Williams, Yizhong Yang and Yanhui Lu
Plants 2023, 12(8), 1658; https://doi.org/10.3390/plants12081658 - 15 Apr 2023
Cited by 3 | Viewed by 2373
Abstract
Volatile compounds play indispensable roles in the interactions among host plants, herbivores and natural enemies. Previous studies showed that the addition of buckwheat strips in cotton fields could attract Peristenus spretus, the dominant parasitoid of Apolygus lucorum, and enhance its parasitic [...] Read more.
Volatile compounds play indispensable roles in the interactions among host plants, herbivores and natural enemies. Previous studies showed that the addition of buckwheat strips in cotton fields could attract Peristenus spretus, the dominant parasitoid of Apolygus lucorum, and enhance its parasitic activity. Through the combined analysis of Y-tube olfactometer, solid-phase microextraction (SPME), gas chromatography-mass spectrometer (GC-MS) and electroantennography (EAG), we found that male and female P. spretus responded to compounds present in buckwheat flowers. The five major components of buckwheat flowers, cis-3-hexenyl acetate (Z3HA), 4-methylanisole, 4-oxoisophorone, p-methylphenol and 2-ethylhexyl salicylate, all had a significant attraction to P. spretus adults and led to positive electroantennogram responses, especially for 10 mg/mL 4-oxoisophorone, indicating the components played a key role in the selection behavior of P. spretus to buckwheat flowers. Additionally, field trials showed that the five volatiles could significantly increase the parasitism by P. spretus. Our study screened the key active components of buckwheat flower volatiles that have an attractive effect on P. spretus, revealing its behavioral selection mechanism and emphasizing the important role of plant volatiles on host selection and parasitism of parasitic wasps, providing a theoretical basis for the development of attractants for P. spretus and the reduction of pesticides in the field to promote conservation biological control (CBC) of A. lucorum. Full article
(This article belongs to the Special Issue Advances in Induced Plant Defense and Biological Control)
Show Figures

Figure 1

12 pages, 4511 KB  
Article
Comparison of Preference for Chemicals Associated with Fruit Fermentation between Drosophila melanogaster and Drosophila suzukii and between Virgin and Mated D. melanogaster
by Hyemin Kim, YeongHo Kim, Gwang Hyun Roh and Young Ho Kim
Insects 2023, 14(4), 382; https://doi.org/10.3390/insects14040382 - 14 Apr 2023
Cited by 4 | Viewed by 3478
Abstract
Two taxonomically similar Drosophila species, Drosophila melanogaster and Drosophila suzukii, are known to have distinct habitats: D. melanogaster is mostly found near overripe and fermented fruits, whereas D. suzukii is attracted to fresh fruits. Since chemical concentrations are typically higher in overripe [...] Read more.
Two taxonomically similar Drosophila species, Drosophila melanogaster and Drosophila suzukii, are known to have distinct habitats: D. melanogaster is mostly found near overripe and fermented fruits, whereas D. suzukii is attracted to fresh fruits. Since chemical concentrations are typically higher in overripe and fermented fruits than in fresh fruits, D. melanogaster is hypothesized to be attracted to higher concentrations of volatiles than D. suzukii. Therefore, the chemical preferences of the two flies were compared via Y-tube olfactometer assays and electroantennogram (EAG) experiments using various concentrations of 2-phenylethanol, ethanol, and acetic acid. D. melanogaster exhibited a higher preference for high concentrations of all the chemicals than that of D. suzukii. In particular, since acetic acid is mostly produced at the late stage of fruit fermentation, the EAG signal distance to acetic acid between the two flies was higher than those to 2-phenylethanol and ethanol. This supports the hypothesis that D. melanogaster prefers fermented fruits compared to D. suzukii. When comparing virgin and mated female D. melanogaster, mated females showed a higher preference for high concentrations of chemicals than that of virgin females. In conclusion, high concentrations of volatiles are important attraction factors for mated females seeking appropriate sites for oviposition. Full article
(This article belongs to the Collection Advances in Diptera Biology)
Show Figures

Figure 1

Back to TopTop