TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Sample Collection
2.2. RNA Extraction and cDNA Synthesis
2.3. Gene Cloning and Sequence Analysis
2.4. Expression Profiling of PBPs
2.5. Recombinant Protein Expression and Purification
2.6. Competitive Fluorescence Binding Assay
2.7. Modeling of TabsPBP2 and Ligand Docking
2.8. Electrophysiological Recordings and Olfactometer Bioassay
2.9. Statistical Analysis
3. Results
3.1. Sequence and Phylogenetic Analysis
3.2. Expression Pattern of TabsPBP2
3.3. Binding Characteristics of Recombinant TabsPBP2
3.4. Protein Modeling and Docking Analysis
3.5. EAG and Behavioral Responses of Male T. absoluta
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in insect olfaction: To smell or not to smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Ronou, M. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Anastasaki, E.; Drizou, F.; Milonas, P.G. Electrophysiological and oviposition responses of Tuta absoluta females to herbivore-induced volatiles in tomato plants. J. Chem. Ecol. 2018, 44, 288–298. [Google Scholar] [CrossRef]
- Rihani, K.; Ferveur, J.F.; Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef]
- Gong, D.P.; Zhang, H.J.; Zhao, P.; Xia, Q.Y.; Xiang, Z.H. The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genom. 2009, 10, 332. [Google Scholar] [CrossRef]
- Vogt, R.G.; Riddiford, L.M. Pheromone binding and inactivation by moth antennae. Nature 1981, 293, 161–163. [Google Scholar] [CrossRef]
- Zhang, T.T.; Mei, X.D.; Feng, J.N.; Berg, B.G.; Zhang, Y.J.; Guo, Y.Y. Characterization of three pheromone-binding proteins (PBPs) of Helicoverpa armigera (Hubner) and their binding properties. J. Insect Physiol. 2012, 58, 941–948. [Google Scholar] [CrossRef]
- Sun, M.; Liu, Y.; Wang, G. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella. J. Insect Physiol. 2013, 59, 46–55. [Google Scholar] [CrossRef]
- Al-Danoon, O.; Mazumder, S.; Chaudhary, B.P.; Nukala, V.; Bishop, B.; Cahoon, G.; Mohanty, S. Structural and functional characterization of European corn borer, Ostrinia nubilalis, pheromone binding protein 3. J. Agric. Food Chem. 2021, 69, 14013–14023. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Mang, D.Z.; Liao, H.; Ye, J.; Qian, J.L.; Dong, S.L.; Zhang, Y.N.; He, P.; Zhang, Q.H.; Purba, E.R.; et al. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury). J. Agric. Food Chem. 2021, 69, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S.; Nikonova, L.; Peng, G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999, 464, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.X.; Guo, J.M.; Liao, H.; Li, Y.; Ma, Y.; Zhu, Y.W.; Wei, Z.Q.; Dong, S.L.; Yan, Q. Functional differentiation of three pheromone binding proteins in Orthaga achatina using mixed-type sex pheromones. Pestic. Biochem. Physiol. 2022, 184, 105097. [Google Scholar] [CrossRef]
- Li, L.L.; Xu, B.Q.; Li, C.Q.; Li, B.L.; Luo, K.; Li, G.W.; Chen, X.L. Functional disparity of four pheromone-binding proteins from the plum fruit moth Grapholita funebrana Treitscheke in detection of sex pheromone components. Int. J. Biol. Macromol. 2023, 225, 1267–1279. [Google Scholar] [CrossRef]
- Zhong, Y.; Xie, M.; Di, Z.; Li, F.; Chen, J.; Kong, X.; Lin, L.; Su, W.; Xu, L.; Zhang, F.; et al. PBP1 plays key roles in sex pheromone reception of the fall armyworm. Int. J. Biol. Macromol. 2022, 214, 162–169. [Google Scholar] [CrossRef]
- Yang, H.; Su, T.; Yang, W.; Yang, C.P.; Chen, Z.M.; Lu, L.; Liu, Y.L.; Tao, Y.Y. Molecular characterization, expression pattern and ligand-binding properties of the pheromone-binding protein gene from Cyrtotrachelus buqueti. Physiol. Entomol. 2017, 42, 369–378. [Google Scholar] [CrossRef]
- Yang, H.H.; Xu, J.W.; Zhang, X.Q.; Huang, J.R.; Li, L.L.; Yao, W.C.; Zhao, P.P.; Zhang, D.; Liu, J.Y.; Dewer, Y.; et al. AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in Athetis lepigone. Bull. Entomol. Res. 2022, 112, 536–545. [Google Scholar] [CrossRef]
- Fu, H.F.; Xiao, G.P.; Yang, Z.D.; Hu, P. EsigPBP3 was the important pheromone-binding protein to recognize male pheromones and key eucalyptus volatiles. Int. J. Mol. Sci. 2024, 25, 2940. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Catalán Ruescas, D.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Desneux, N.; Luna, M.G.; Guillemaud, T.; Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. J. Pest Sci. 2011, 84, 403–408. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K.; et al. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Zhang, G.F.; Ma, D.Y.; Wang, Y.S.; Gao, Y.H.; Liu, W.X.; Zhang, R.; Fu, W.J.; Xian, X.Q.; Wang, J.; Kuang, M.; et al. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China. J. Integr. Agric. 2020, 19, 1912–1917. [Google Scholar] [CrossRef]
- Zhang, G.F.; Xian, X.Q.; Zhang, Y.B.; Liu, W.X.; Liu, H.; Feng, X.D.; Ma, D.Y.; Wang, Y.S.; Gao, Y.H.; Zhang, R.; et al. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: Geographic and potential host range expansion. Pest Manag. Sci. 2021, 77, 5475–5488. [Google Scholar] [CrossRef]
- Rostami, E.; Madadi, H.; Abbasipour, H.; Fu, J.; Cuthbertson, A.G.S. Assessment of Tuta absoluta yield loss in Iranian tomato crops. J. Asia-Pac. Entomol. 2021, 24, 1017–1023. [Google Scholar] [CrossRef]
- Yang, H.S.; Zhang, C.; Shen, Y.Y.; Gao, H.F.; Zhang, G.F.; Liu, W.X.; Jiang, H.B.; Zhang, Y.B. Life Table Parameters of the Tomato Leaf Miner Tuta absoluta (Lepidoptera: Gelechiidae) on Five Tomato Cultivars in China. Insects 2024, 15, 208. [Google Scholar] [CrossRef]
- Inak, E.; Ozdemir, E.; Atis, A.E.; Randa Zelyut, F.; Inak, A.; Demir, U.; Roditakis, E.; Vontas, J. Population structure and insecticide resistance status of Tuta absoluta populations from Turkey. Pest Manag. Sci. 2021, 77, 4741–4748. [Google Scholar] [CrossRef]
- Pandey, M.; Bhattarai, N.; Pandey, P.; Chaudhary, P.; Katuwal, D.R.; Khanal, D. A review on biology and possible management strategies of tomato leaf miner, Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae in Nepal. Heliyon 2023, 9, e16474. [Google Scholar] [CrossRef]
- Roditakis, E.; Vasakis, E.; Grispou, M.; Stavrakaki, M.; Nauen, R.; Gravouil, M.; Bassi, A. First report of Tuta absoluta resistance to diamide insecticides. J. Pest Sci. 2015, 88, 9–16. [Google Scholar] [CrossRef]
- Silva, J.E.; Ribeiro, L.M.d.S.; Vinasco, N.; Guedes, R.N.C.; Siqueira, H.Á.A. Field-evolved resistance to chlorantraniliprole in the tomato pinworm Tuta absoluta: Inheritance, cross-resistance profile, and metabolism. J. Pest Sci. 2018, 92, 1421–1431. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Roditakis, E.; Campos, M.R.; Haddi, K.; Bielza, P.; Siqueira, H.A.A.; Tsagkarakou, A.; Vontas, J.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Zang, L.S.; Akhtar, Z.R.; Ali, A.; Tariq, K.; Campos, M.R. Flubendiamide resistance and its mode of inheritance in tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Insects 2022, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.A.H.; George, J.; Reddy, G.V.P.; Zeng, X.; Guerrero, A. Latest developments in insect sex pheromone research and its application in agricultural pest management. Insects 2021, 12, 484. [Google Scholar] [CrossRef] [PubMed]
- Attygalle, A.B.; Jham, G.N.; Svato, A.; Frighetto, R.T.S.; Ferrara, F.A.; Vilela, E.F.; Uchoa-Fernandes, M.A.; Meinwald, J. (3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae). Bioorganic Med. Chem. 1996, 4, 305–314. [Google Scholar] [CrossRef]
- Svatos, A.; Attygalle, A.B.; Jham, G.N.; Frighetto, R.T.; Vilela, E.F.; Saman, D.; Meinwald, J. Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae). J. Chem. Ecol. 1996, 22, 787–800. [Google Scholar] [CrossRef]
- Jabamo, T.; Ayalew, G.; Goftishu, M.; Wakgari, M. Integrated effect of insecticide and sex pheromone on the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Crop Prot. 2023, 171, 106285. [Google Scholar] [CrossRef]
- Zhang, G.F.; Zhang, Y.B.; Zhao, L.; Wang, Y.S.; Huang, C.; Lu, Z.C.; Li, P.; Liu, W.C.; Xian, X.Q.; Zhao, J.N.; et al. Determination of hourly distribution of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) using sex pheromone and ultraviolet light traps in protected tomato crops. Horticulturae 2023, 9, 402. [Google Scholar] [CrossRef]
- Ou, X.L.; Li, X.Y.; Xu, B.; Wang, Y.S.; Zhang, G.F.; Liu, W.X.; Wan, F.H.; Jiang, H.B.; Haddi, K.; Huang, C.; et al. Expression and sex pheromone-binding characteristics of pheromone-binding protein 3 in Tuta absoluta (Lepidoptera: Gelechiidae). Pestic. Biochem. Physiol. 2025, 210, 106404. [Google Scholar] [CrossRef]
- Yang, A.P.; Wang, Y.S.; Huang, C.; Lv, Z.C.; Liu, W.X.; Bi, S.Y.; Wan, F.H.; Wu, Q.; Zhang, G.F. Screening potential reference genes in Tuta absoluta with real-Time quantitative PCR analysis under different experimental conditions. Genes 2021, 12, 1253. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Yang, F.; Sun, A.; Song, J.Y.; Shan, S.; Zhang, Y.J.; Wang, S.N. Expressional and functional comparisons of five clustered odorant binding proteins in the brown marmorated stink bug Halyomorpha halys. Int. J. Biol. Macromol. 2022, 206, 759–767. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.-X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.J.; Wang, Z.H.; Yang, F.; Liu, H.; Qiao, G.H.; Zhang, A.H.; Wang, S.N. The female-biased general odorant binding protein 2 of Semiothisa cinerearia displays binding affinity for biologically active host plant volatiles. Biology 2024, 13, 274. [Google Scholar] [CrossRef]
- Robertson, H.M.; Martos, R.; Sears, C.R.; Todres, E.Z.; Walden, K.K.; Nardi, J.B. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 1999, 8, 501–518. [Google Scholar] [CrossRef]
- Gu, S.H.; Zhou, J.J.; Gao, S.; Wang, D.H.; Li, X.C.; Guo, Y.Y.; Zhang, Y.J. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci. Rep. 2015, 5, 13800. [Google Scholar] [CrossRef]
- Cai, L.J.; Zheng, L.S.; Huang, Y.P.; Xu, W.; You, M.S. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella. Insect Sci. 2021, 28, 987–1004. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; He, D.F.; Wu, Q.; Tang, R.; Xing, L.S.; Liu, W.X.; Wang, W.K.; Liu, B.; Xi, Y.; et al. Comparative genomics provide insights into function and evolution of odorant binding proteins in Cydia pomonella. Front. Physiol. 2021, 12, 690185. [Google Scholar] [CrossRef]
- Wu, Z.R.; Fan, J.T.; Tong, N.; Guo, J.M.; Li, Y.; Lu, M.; Liu, X.L. Transcriptome analysis and identification of chemosensory genes in the larvae of Plagiodera versicolora. BMC Genom. 2022, 23, 845. [Google Scholar] [CrossRef]
- Jia, C.; Mohamed, A.; Cattaneo, A.M.; Huang, X.; Keyhani, N.O.O.; Gu, M.; Zang, L.S.; Zhang, W. Odorant-binding proteins and chemosensory proteins in Spodoptera frugiperda: From genome-wide identification and developmental stage-related expression analysis to the perception of host plant odors, sex pheromones, and insecticides. Int. J. Mol. Sci. 2023, 24, 5595. [Google Scholar] [CrossRef]
- Hu, P.; Gao, C.L.; Zong, S.X.; Luo, Y.Q.; Tao, J. Pheromone Binding Protein EhipPBP1 is highly enriched in the male antennae of the seabuckthorn carpenterworm and is binding to sex pheromone components. Front. Physiol. 2018, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.D.; Zhang, J.H.; Xu, M.X.; Francis, F.; Liu, Y. Pheromone-binding protein 1 performs a dual function for intra- and intersexual signaling in a moth. Int. J. Mol. Sci. 2024, 25, 13125. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.P.; Zhou, J.; Bin, M.; Zheng, Y.; Wang, Y.F.; Li, D.Q.; Wang, P.; Liu, K.Y.; Wang, X.P.; Ai, H. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). Sci. Rep. 2016, 6, 34484. [Google Scholar] [CrossRef]
- Hu, L.M.; Zhang, T.L.; Wu, Q.J.; Liang, K.Y.; Yu, G.H.; He, M.Y.; Chen, D.S.; Su, X.N.; Zhang, Y.P.; Zhang, Z.F.; et al. Comparation of pheromone-binding proteins 1 and 2 of Spodoptera frugiperda in perceiving the three sex pheromone components Z9-14:Ac, Z7-12: Ac and Z11-16: Ac. Pestic. Biochem. Physiol. 2024, 206, 106183. [Google Scholar] [CrossRef]
- Amegan, K.E.; Fourati, Y.; Del-valle, S.; Salgon, S.; Ferrante, P.; Robin, C.; Lavoir, A.V.; Caromel, B.; Larbat, R.; Kergunteuil, A. Joint effects of inter-specific and intra-specific diversity of tomato volatile profiles on antixenosis against Tuta absoluta. Entomol. Gen. 2024, 44, 325–337. [Google Scholar] [CrossRef]
- Jing, D.P.; Zhang, T.T.; Prabu, S.; Bai, S.X.; He, K.L.; Wang, Z.Y. Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in Conogethes pinicolalis (Lepidoptera: Crambidae). Int. J. Biol. Macromol. 2020, 146, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Li, R.C.; Zhou, T.; Cheng, S.C.; Li, C.X.; Ye, X.; Li, Y.; Tian, Z. Structural evidence for pheromone discrimination by the pheromone binding protein 3 from Plutella xylostella. Int. J. Biol. Macromol. 2021, 169, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Duan, H.X.; Liu, J.T.; Sun, L.; Gu, S.H.; Yang, R.N.; Dhiloo, K.H.; Gao, X.W.; Zhang, Y.J.; Guo, Y.Y. Key site residues of pheromone-binding protein 1 involved in interacting with sex pheromone components of Helicoverpa armigera. Sci. Rep. 2017, 7, 16859. [Google Scholar] [CrossRef]
- Venthur, H.; Mutis, A.; Zhou, J.-J.; Quiroz, A. Ligand binding and homology modelling of insect odorant-binding proteins. Physiol. Entomol. 2014, 39, 183–198. [Google Scholar] [CrossRef]
- Fang, N.N.; Hu, Y.W.; Mao, B.; Bi, J.; Zheng, Y.; Guan, C.X.; Wang, Y.F.; Li, J.H.; Mao, Y.K.; Ai, H. Molecular characterization and functional differentiation of three pheromone-binding proteins from Tryporyza intacta. Sci. Rep. 2018, 8, 10774. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, C.; Yan, J.; Yan, Z.; Li, R.; Liu, Y.; Lin, A.; Fu, Y.; Luo, C.; Kang, Z.; Wang, R. TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles. Biomolecules 2025, 15, 1152. https://doi.org/10.3390/biom15081152
Qu C, Yan J, Yan Z, Li R, Liu Y, Lin A, Fu Y, Luo C, Kang Z, Wang R. TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles. Biomolecules. 2025; 15(8):1152. https://doi.org/10.3390/biom15081152
Chicago/Turabian StyleQu, Cheng, Jingxue Yan, Zuqing Yan, Ren Li, Yuqi Liu, Aoli Lin, Yuejun Fu, Chen Luo, Zhiwei Kang, and Ran Wang. 2025. "TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles" Biomolecules 15, no. 8: 1152. https://doi.org/10.3390/biom15081152
APA StyleQu, C., Yan, J., Yan, Z., Li, R., Liu, Y., Lin, A., Fu, Y., Luo, C., Kang, Z., & Wang, R. (2025). TabsPBP2, a Pheromone-Binding Protein Highly Expressed in Male Antennae of Tuta absoluta, Binds Sex Pheromones and Tomato Volatiles. Biomolecules, 15(8), 1152. https://doi.org/10.3390/biom15081152