Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = electric truck

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2128 KiB  
Article
Economic Evaluation of Vehicle Operation in Road Freight Transport—Case Study of Slovakia
by Miloš Poliak, Kristián Čulík, Milada Huláková and Erik Kováč
World Electr. Veh. J. 2025, 16(8), 409; https://doi.org/10.3390/wevj16080409 - 22 Jul 2025
Viewed by 219
Abstract
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on [...] Read more.
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on previous research on the energy consumption of battery electric trucks (BETs) and assesses the economic efficiency of electric vehicles in freight transport through a cost calculation. The primary objective was to determine the conditions under which a BET becomes cost-effective for a transport operator. These findings are practically relevant for freight carriers. Unlike other studies, this article does not focus on total cost of ownership (TCO) but rather compares the variable and fixed costs of BETs and conventional internal combustion engine trucks (ICETs). In this article, the operating costs of BETs were calculated and modeled based on real-world measurements of a tested vehicle. The research findings indicate that BETs are economically efficient, primarily when state subsidies are provided, compensating for the significant difference in purchase costs between BETs and conventional diesel trucks. This study found that optimizing operational conditions (daily routes) enables BETs to reach a break-even point at approximately 110,000 km per year, even without subsidies. Another significant finding is that battery capacity degradation leads to a projected annual operating cost increase of approximately 4%. Full article
Show Figures

Figure 1

22 pages, 1802 KiB  
Article
Economic Operation Optimization for Electric Heavy-Duty Truck Battery Swapping Stations Considering Time-of-Use Pricing
by Peijun Shi, Guojian Ni, Rifeng Jin, Haibo Wang, Jinsong Wang and Xiaomei Chen
Processes 2025, 13(7), 2271; https://doi.org/10.3390/pr13072271 - 16 Jul 2025
Viewed by 281
Abstract
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation [...] Read more.
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation and load balancing to enhance financial viability and grid stability. First, factors including geographical environment, traffic conditions, and truck characteristics are incorporated to simulate swapping behaviors, supporting the construction of an accurate demand-forecasting model. Second, an optimization problem is formulated to maximize the weighted difference between BSS revenue and squared load deviations. An economic operations strategy is proposed based on an adaptive Shapley value. It enables precise evaluation of differentiated member contributions through dynamic adjustment of bias weights in revenue allocation for a strategy that aligns with the interests of multiple stakeholders and market dynamics. Simulation results validate the superior performance of the proposed algorithm in revenue maximization, peak shaving, and valley filling. Full article
Show Figures

Figure 1

28 pages, 15254 KiB  
Article
Detailed Forecast for the Development of Electric Trucks and Tractor Units and Their Power Demand in Hamburg by 2050
by Edvard Avdevičius, Amra Jahic and Detlef Schulz
Energies 2025, 18(14), 3719; https://doi.org/10.3390/en18143719 - 14 Jul 2025
Viewed by 317
Abstract
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, [...] Read more.
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, emphasizing the shift from conventional to electric vehicles. Utilizing historical registration data and existing commercial and institutional reports from 2007 to 2024, the analysis estimates future distributions of electric heavy-duty vehicles across Hamburg’s 103 city quarters. Distinct approaches are evaluated to explore potential heavy-duty vehicle distribution in the city, employing Mixed-Integer Linear Programming to quantify and minimize distribution uncertainties. Power demand forecasts at this detailed geographical level enable effective infrastructure planning and strategy development. The findings serve as a foundation for Hamburg’s transition to electric heavy-duty vehicles, ensuring a sustainable, efficient, and reliable energy supply aligned with the city’s growing electrification requirements. Full article
Show Figures

Figure 1

34 pages, 2634 KiB  
Article
Toward Low-Carbon Mobility: Greenhouse Gas Emissions and Reduction Opportunities in Thailand’s Road Transport Sector
by Pantitcha Thanatrakolsri and Duanpen Sirithian
Clean Technol. 2025, 7(3), 60; https://doi.org/10.3390/cleantechnol7030060 - 11 Jul 2025
Viewed by 931
Abstract
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International [...] Read more.
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International Vehicle Emissions (IVE) model. Emissions were then estimated based on country-specific vehicle data. In the baseline year 2018, total emissions were estimated at 23,914.02 GgCO2eq, primarily from pickups (24.38%), trucks (20.96%), passenger cars (19.48%), and buses (16.95%). Multiple mitigation scenarios were evaluated, including the adoption of electric vehicles (EVs), improvements in fuel efficiency, and a shift to renewable energy. Results indicate that transitioning all newly registered passenger cars (PCs) to EVs while phasing out older models could lead to a 16.42% reduction in total GHG emissions by 2030. The most effective integrated scenario, combining the expansion of electric vehicles with improvements in internal combustion engine efficiency, could achieve a 41.96% reduction, equivalent to 18,378.04 GgCO2eq. These findings highlight the importance of clean technology deployment and fuel transition policies in meeting Thailand’s climate goals, while providing a valuable database to support strategic planning and implementation. Full article
Show Figures

Figure 1

24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 243
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Development of an Energy Consumption Minimization Strategy for a Series Hybrid Vehicle
by Mehmet Göl, Ahmet Fevzi Baba and Ahu Ece Hartavi
World Electr. Veh. J. 2025, 16(7), 383; https://doi.org/10.3390/wevj16070383 - 7 Jul 2025
Viewed by 286
Abstract
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) [...] Read more.
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) combine internal combustion engines (ICEs) and electric powertrains to enable flexible energy usage, particularly in urban duty cycles characterized by frequent stopping and idling. This study introduces a model-based energy management strategy using the Equivalent Consumption Minimization Strategy (ECMS), tailored for a retrofitted series hybrid refuse truck. A conventional ISUZU NPR 10 truck was instrumented to collect real-world driving and operational data, which guided the development of a vehicle-specific ECMS controller. The proposed strategy was evaluated over five driving cycles—including both standardized and measured urban scenarios—under varying load conditions: Tare Mass (TM) and Gross Vehicle Mass (GVM). Compared with a rule-based control approach, ECMS demonstrated up to 14% improvement in driving range and significant reductions in exhaust gas emissions (CO, NOx, and CO2). The inclusion of auxiliary load modeling further enhances the realism of the simulation results. These findings validate ECMS as a viable strategy for optimizing fuel economy and reducing emissions in hybrid refuse truck applications. Full article
Show Figures

Figure 1

25 pages, 1264 KiB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 360
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

17 pages, 2687 KiB  
Article
Examining the Application Possibilities and Economic Issues of an Alternative Drive Chain in Hungary: Scenario Analysis
by Adrienn Boldizsár, Ádám Török and Norina Szander
Logistics 2025, 9(2), 77; https://doi.org/10.3390/logistics9020077 - 19 Jun 2025
Viewed by 530
Abstract
Background: A societal shift in attitudes is going to be required to reduce greenhouse gas emissions in the field of transportation, which is crucial to the level of mitigation that can be achieved. There is increasing pressure on policymakers to address climate [...] Read more.
Background: A societal shift in attitudes is going to be required to reduce greenhouse gas emissions in the field of transportation, which is crucial to the level of mitigation that can be achieved. There is increasing pressure on policymakers to address climate change and, in turn, to promote sustainable transport. The sector’s decarbonization is essential to meet climate change targets, and alternative powertrains, particularly battery electric trucks, can play a key role. However, international research shows that the solutions and strategic plan proposals are primarily developed in isolation according to the country’s specific conditions. Methods: This study aims to compare battery electric trucks and conventional internal combustion engine trucks in Hungary, focusing on the total cost of ownership over ten years. Results: This study examines the cost parameters for operating electric and conventional trucks, based on current economic conditions. In addition, alternative studies have been carried out to see what additional savings can be expected by changing the parameters under consideration. This research examines four scenarios that model changes in state subsidies, tolls, and excise duties alongside current cost parameters. Conclusions: The results suggest that public policy interventions play a key role in developing sustainable transport systems, particularly to preserve the competitiveness of small and medium-sized enterprises. Full article
Show Figures

Figure 1

16 pages, 2115 KiB  
Article
Safety Challenges in Battery Swapping Operations of Electric Underground Mining Trucks
by Alberto Martinetti, Ognjen Popović, Micaela Demichela, Pier Paolo Oreste, Aleksandar Cvjetić and Vladimir Milisavljević
Appl. Sci. 2025, 15(12), 6763; https://doi.org/10.3390/app15126763 - 16 Jun 2025
Viewed by 509
Abstract
Recently, the global landscape of public transportation has witnessed a transformative shift towards sustainable and efficient modes of mobility, with particular emphasis on electric vehicles (EVs) and their integration into industrial applications. The mining industry, including the underground mining of the mineral resources [...] Read more.
Recently, the global landscape of public transportation has witnessed a transformative shift towards sustainable and efficient modes of mobility, with particular emphasis on electric vehicles (EVs) and their integration into industrial applications. The mining industry, including the underground mining of the mineral resources sector is following this trend. However, underground mines are critical environments and the adoption of EVs needs to be carefully analysed. This study investigates the associated hazards and risks of adopting EVs (such as dumpers and loaders) focusing on the swapping battery operations. First, current hazards related to battery swapping are identified—21 in total, occurring in 25 instances. After, risks are assessed and associated with specific hazards. Finally, possible measures and solutions for reducing the impacts of these risks on the performance of the EVs are offered. Full article
(This article belongs to the Special Issue Safety and Risk Assessment in Industrial Systems)
Show Figures

Figure 1

36 pages, 2787 KiB  
Review
A Comprehensive Analysis Perspective on Path Optimization of Multimodal Electric Transportation Vehicles: Problems, Models, Methods and Future Research Directions
by Wenxin Li and Yuhonghao Wang
World Electr. Veh. J. 2025, 16(6), 320; https://doi.org/10.3390/wevj16060320 - 9 Jun 2025
Viewed by 1038
Abstract
Multimodal transport refers to the integrated transportation in a logistics system in the form of multiple transportation modes, such as highway, railway, waterway, etc. In recent years, the deep integration of electric trucks and route optimization has significantly improved the cost-effectiveness and operational [...] Read more.
Multimodal transport refers to the integrated transportation in a logistics system in the form of multiple transportation modes, such as highway, railway, waterway, etc. In recent years, the deep integration of electric trucks and route optimization has significantly improved the cost-effectiveness and operational efficiency of multimodal transportation. It has provided strong support for the sustainable development of the logistics system. Based on whether to consider low-carbon requirements, uncertainty, and special cargo transportation, the literature is divided into five areas: traditional multimodal transport path optimization, multimodal transport path optimization considering low-carbon requirements, multimodal transport path optimization considering uncertainty, multimodal transport path optimization considering low-carbon requirements and uncertainty, and multimodal transport path optimization considering special transport needs. In this paper, we searched the literature on multimodal path optimization after 2016 in WOS (Web of Science) and CNKI (China National Knowledge Infrastructure), and found that the number of publications in 2024 is three times that in 2016. We collected 130 relevant studies to summarize the current state of research. Finally, with the development of multimodal transport to collaborative transport and the improvement of the application of in-depth learning in different fields, the research mainly focuses on two future research directions: collaborative transport and the use of in-depth learning to solve uncertain problems, and combining it with the problem of multimodal transport route optimization to explore more efficient and perfect transport solutions. Full article
Show Figures

Figure 1

16 pages, 3043 KiB  
Article
Green Last-Mile Delivery: Adapting Beverage Distribution to Low Emission Urban Areas
by Alessandro Giordano and Panayotis Christidis
Future Transp. 2025, 5(2), 65; https://doi.org/10.3390/futuretransp5020065 - 3 Jun 2025
Viewed by 419
Abstract
Electrifying urban last-mile logistics is an important step towards reducing carbon emissions which requires replacing conventional vehicles with low-carbon alternatives that offer comparable operational and cost characteristics. This study presents a methodology for evaluating the feasibility of electrifying an urban delivery fleet, using [...] Read more.
Electrifying urban last-mile logistics is an important step towards reducing carbon emissions which requires replacing conventional vehicles with low-carbon alternatives that offer comparable operational and cost characteristics. This study presents a methodology for evaluating the feasibility of electrifying an urban delivery fleet, using data from a major beverage company in Seville as a case study. Applying a fleet and route optimization algorithm for various vehicle combinations, we demonstrate that emerging electric vehicle options, combined with a redesigned fleet mix and an optimized routing, can already enable cost-efficient electrification of distribution activities in the city centre. Furthermore, our analysis suggests that full electrification of the company’s local distribution network may be possible by 2030, depending on the availability of larger electric trucks. Our results show that currently available electric vehicles can fully substitute conventional options in the case study context, with higher capital costs offset by lower energy costs in most cases. The electrification of urban logistics can yield significant environmental benefits, particularly if powered by a clean energy mix. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

22 pages, 2361 KiB  
Article
Effect of Malthouse Size and Transportation on the Environmental Profile of Malt Production
by Mauro Moresi and Alessio Cimini
Sustainability 2025, 17(11), 5077; https://doi.org/10.3390/su17115077 - 1 Jun 2025
Viewed by 439
Abstract
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower [...] Read more.
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower process efficiencies or higher resource use. This study conducted a cradle-to-gate Life Cycle Assessment (LCA) of three Italian malthouses—small, medium, and large—using SimaPro 10.2.0.0 and a functional unit of 1 kg of malted barley delivered by bulk truck to local breweries. Primary data on barley, water, methane, and electricity consumption, as well as waste generation, were collected via questionnaires; secondary data were sourced from Ecoinvent and Agri-Footprint. Impact categories were evaluated using the Cumulative Energy Demand (CED) and Product Environmental Footprint (PEF) methodologies. Barley cultivation dominates the footprint (84–92% of total impacts when using local grain). Drying and transport contribute 3.7–4.4% and 0–8.4% of impacts, respectively, depending on facility scale and import share. Smaller malthouses exhibit higher per-kilogram impacts due to lower energy efficiency and transportation modes. Mitigation strategies —including sustainable agriculture, renewable energy adoption, logistics optimization, and process improvements—can substantially reduce impacts. Notably, sourcing barley from low-impact suppliers alone lowers the carbon footprint from 0.80 to 0.66 kg CO2e/kg, freshwater eutrophication from 227 to 32 CTUe/kg, land use from 196 to 136 Pt/kg, and overall PEF from 192 to 81 µPt/kg. These results underscore the critical role of feedstock sourcing and process efficiency in decarbonizing malt production and provide a quantitative baseline for targeted sustainability interventions. Full article
Show Figures

Figure 1

25 pages, 823 KiB  
Review
Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon
by Asiful Alam, Robert J. Macias, John Sessions, Chukwuemeka Valentine Okolo, Swagat Attreya, Kevin Lyons and Andres Susaeta
Energies 2025, 18(11), 2747; https://doi.org/10.3390/en18112747 - 26 May 2025
Viewed by 604
Abstract
Decarbonizing Oregon’s heavy-duty trucking sector, which accounts for 24% of the state’s transportation emissions, is essential for meeting carbon reduction targets. Drop-in fuels such as renewable diesel, biodiesel, and synthetic fuels provide an immediate and effective solution, reducing emissions by up to 80% [...] Read more.
Decarbonizing Oregon’s heavy-duty trucking sector, which accounts for 24% of the state’s transportation emissions, is essential for meeting carbon reduction targets. Drop-in fuels such as renewable diesel, biodiesel, and synthetic fuels provide an immediate and effective solution, reducing emissions by up to 80% while utilizing the existing diesel infrastructure. In 2023, Oregon’s heavy-duty trucks consumed 450 million gallons of diesel, with drop-in fuels making up 15% of the fuel mix. Renewable diesel, which is growing at a rate of 30% annually, accounted for 10% of this volume, thanks to incentives from Oregon’s Clean Fuels Program. By 2030, drop-in fuels could capture 40% of the market, reducing CO2 emissions by 3.5 million metric tons annually, assuming continued policy support and advancements in feedstock sourcing. Meeting the projected demand of 200 million gallons annually and securing sustainable feedstock remain critical challenges. Advances in synthetic fuels, like Power-to-Liquids (PtL) from renewable energy, may further contribute to decarbonization, with costs expected to decrease by 20% over the next decade. Oregon aims for a 50% reduction in emissions from heavy-duty trucks by 2050, using a mix of drop-in fuels and emerging technologies. While hydrogen fuel cells and electric trucks face challenges, innovations in infrastructure and vehicle design will be key to the success of Oregon’s long-term decarbonization strategy. Full article
Show Figures

Figure 1

27 pages, 1898 KiB  
Article
Advanced Vehicle Routing for Electric Fleets Using DPCGA: Addressing Charging and Traffic Constraints
by Yuehan Zheng, Hao Chang, Peng Yu, Taofeng Ye and Ying Wang
Mathematics 2025, 13(11), 1698; https://doi.org/10.3390/math13111698 - 22 May 2025
Viewed by 515
Abstract
With the rapid proliferation of electric vehicles (EVs), urban logistics faces increasing challenges in optimizing vehicle routing. This paper presents a new modeling framework for the Electric Vehicle Routing Problem (EVRP), where multiple electric trucks serve a set of customers within their capacity [...] Read more.
With the rapid proliferation of electric vehicles (EVs), urban logistics faces increasing challenges in optimizing vehicle routing. This paper presents a new modeling framework for the Electric Vehicle Routing Problem (EVRP), where multiple electric trucks serve a set of customers within their capacity limits. The model incorporates critical EV-specific constraints, including limited battery range, charging demand, and dynamic urban traffic conditions, with the objective of minimizing total delivery cost. To efficiently solve this problem, a Dual Population Cooperative Genetic Algorithm (DPCGA) is proposed. The algorithm employs a dual-population mechanism for global exploration, effectively expanding the search space and accelerating convergence. It then introduces local refinement operators to improve solution quality and enhance population diversity. A large number of experimental results demonstrate that DPCGA significantly outperforms traditional algorithms in terms of performance, achieving an average 3% improvement in customer satisfaction and a 15% reduction in computation time. Furthermore, this algorithm shows superior solution quality and robustness compared to the AVNS and ESA-VRPO algorithms, particularly in complex scenarios such as adjustments in charging station layouts and fluctuations in vehicle range. Sensitivity analysis further verifies the stability and practicality of DPCGA in real-world urban delivery environments. Full article
Show Figures

Figure 1

24 pages, 4137 KiB  
Article
Optimized Support System for Mobility in the Logistics Processes of Routes with Electric Trucks
by Patrícia Gomes Dallepiane, Camilo Sepulveda Rangel, Leandro Mallmann, Felipe Gomes Dallepiane and Luciane Silva Neves
Sustainability 2025, 17(10), 4607; https://doi.org/10.3390/su17104607 - 17 May 2025
Viewed by 682
Abstract
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable [...] Read more.
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable energy sources. In this context, this article proposes a methodology to support sustainable mobility optimization considering the variables related to the logistical problems of electric vehicles (recharging time and autonomy), which allows for routes to be compared based on the shortest time, lowest costs, and shortest distance for delivering goods while integrating recharge time windows into optimized routes. The study results reveal that additional recharging can significantly impact total travel time and total costs due to variable tariffs at charging stations. Consequently, the model assists in improving resource management and delivery schedule management, thereby increasing operational efficiency and correcting potential conflicts or delays. Therefore, the method provides mobility as a service and offers greater flexibility to decision-makers in selecting the path that best meets delivery objectives, aiming to propose solutions to reduce the impact on the logistics process through the adoption of electric trucks in last-mile freight transport. Full article
Show Figures

Figure 1

Back to TopTop