Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = electric freight vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2128 KiB  
Article
Economic Evaluation of Vehicle Operation in Road Freight Transport—Case Study of Slovakia
by Miloš Poliak, Kristián Čulík, Milada Huláková and Erik Kováč
World Electr. Veh. J. 2025, 16(8), 409; https://doi.org/10.3390/wevj16080409 - 22 Jul 2025
Viewed by 219
Abstract
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on [...] Read more.
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on previous research on the energy consumption of battery electric trucks (BETs) and assesses the economic efficiency of electric vehicles in freight transport through a cost calculation. The primary objective was to determine the conditions under which a BET becomes cost-effective for a transport operator. These findings are practically relevant for freight carriers. Unlike other studies, this article does not focus on total cost of ownership (TCO) but rather compares the variable and fixed costs of BETs and conventional internal combustion engine trucks (ICETs). In this article, the operating costs of BETs were calculated and modeled based on real-world measurements of a tested vehicle. The research findings indicate that BETs are economically efficient, primarily when state subsidies are provided, compensating for the significant difference in purchase costs between BETs and conventional diesel trucks. This study found that optimizing operational conditions (daily routes) enables BETs to reach a break-even point at approximately 110,000 km per year, even without subsidies. Another significant finding is that battery capacity degradation leads to a projected annual operating cost increase of approximately 4%. Full article
Show Figures

Figure 1

28 pages, 15254 KiB  
Article
Detailed Forecast for the Development of Electric Trucks and Tractor Units and Their Power Demand in Hamburg by 2050
by Edvard Avdevičius, Amra Jahic and Detlef Schulz
Energies 2025, 18(14), 3719; https://doi.org/10.3390/en18143719 - 14 Jul 2025
Viewed by 317
Abstract
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, [...] Read more.
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, emphasizing the shift from conventional to electric vehicles. Utilizing historical registration data and existing commercial and institutional reports from 2007 to 2024, the analysis estimates future distributions of electric heavy-duty vehicles across Hamburg’s 103 city quarters. Distinct approaches are evaluated to explore potential heavy-duty vehicle distribution in the city, employing Mixed-Integer Linear Programming to quantify and minimize distribution uncertainties. Power demand forecasts at this detailed geographical level enable effective infrastructure planning and strategy development. The findings serve as a foundation for Hamburg’s transition to electric heavy-duty vehicles, ensuring a sustainable, efficient, and reliable energy supply aligned with the city’s growing electrification requirements. Full article
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1597
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

24 pages, 4137 KiB  
Article
Optimized Support System for Mobility in the Logistics Processes of Routes with Electric Trucks
by Patrícia Gomes Dallepiane, Camilo Sepulveda Rangel, Leandro Mallmann, Felipe Gomes Dallepiane and Luciane Silva Neves
Sustainability 2025, 17(10), 4607; https://doi.org/10.3390/su17104607 - 17 May 2025
Viewed by 682
Abstract
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable [...] Read more.
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable energy sources. In this context, this article proposes a methodology to support sustainable mobility optimization considering the variables related to the logistical problems of electric vehicles (recharging time and autonomy), which allows for routes to be compared based on the shortest time, lowest costs, and shortest distance for delivering goods while integrating recharge time windows into optimized routes. The study results reveal that additional recharging can significantly impact total travel time and total costs due to variable tariffs at charging stations. Consequently, the model assists in improving resource management and delivery schedule management, thereby increasing operational efficiency and correcting potential conflicts or delays. Therefore, the method provides mobility as a service and offers greater flexibility to decision-makers in selecting the path that best meets delivery objectives, aiming to propose solutions to reduce the impact on the logistics process through the adoption of electric trucks in last-mile freight transport. Full article
Show Figures

Figure 1

24 pages, 2970 KiB  
Article
Real Energy Efficiency of Road Vehicles
by Óscar S. Serrano-Guevara, José I. Huertas and Michael Giraldo
Energies 2025, 18(8), 1933; https://doi.org/10.3390/en18081933 - 10 Apr 2025
Viewed by 710
Abstract
There is an urgent need for a method of evaluating the real energy performance of vehicles that eliminates the effects of external conditions (topography, altitude, and road conditions) and human factors (driving styles), especially in the case of heavy-duty vehicles. Governmental authorities require [...] Read more.
There is an urgent need for a method of evaluating the real energy performance of vehicles that eliminates the effects of external conditions (topography, altitude, and road conditions) and human factors (driving styles), especially in the case of heavy-duty vehicles. Governmental authorities require results on the energy performance of vehicles to develop strategies that result in reductions in greenhouse gas emissions, while fleet managers require results regarding the energy efficiency of existing vehicle technologies to select the technologies that minimize energy consumption and, therefore, operational costs. Aiming to address this need, we propose a method for evaluating the global energy efficiency of road vehicles by monitoring at 1 Hz the operational variables of a vehicle under normal conditions of use for a long time. The variables monitored are engine RPM and vehicle location, speed, payload, and energy consumption. This method was verified using 49 vehicles, representing 23 vehicle technologies. These vehicles varied in size (light duty and heavy duty), application (cars, buses, and freight), energy sources (gasoline, diesel, and electric), and operational conditions (Chile, Ecuador, Colombia, and México). Testing was conducted across various altitudes (0–3600 masl) and topographies (flat and mountainous regions). The results showed that the energy efficiencies for gasoline-fueled light-duty vehicles ranged from 17 to 30%, those for diesel-fueled heavy-duty vehicles ranged from 25 to 42%, and those for electric heavy-duty vehicles (HDVs) ranged from 70 to 80%. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

19 pages, 3446 KiB  
Article
Hybrid Model for Motorway EV Fast-Charging Demand Analysis Based on Traffic Volume
by Bojan Rupnik, Yuhong Wang and Tomaž Kramberger
Systems 2025, 13(4), 272; https://doi.org/10.3390/systems13040272 - 9 Apr 2025
Cited by 1 | Viewed by 597
Abstract
The expected growth of electric vehicle (EV) usage will not only increase the energy demand but also bring the requirement to provide the necessary electrical infrastructure to handle the load. While charging infrastructure is becoming increasingly present in urban areas, special attention is [...] Read more.
The expected growth of electric vehicle (EV) usage will not only increase the energy demand but also bring the requirement to provide the necessary electrical infrastructure to handle the load. While charging infrastructure is becoming increasingly present in urban areas, special attention is required for transit traffic, not just for passengers but also for freight transport. Differences in the nature of battery charging compared to that of classical refueling require careful planning in order to provide a resilient electrical infrastructure that will supply enough energy at critical locations during peak hours. This paper presents a hybrid simulation model for analyzing fast-charging demand based on traffic flow, projected EV adoption, battery characteristics, and environmental conditions. The model integrates a probabilistic model for evaluating the charging requirements based on traffic flows with a discrete-event simulation (DES) framework to analyze charger utilization, waiting queues, and energy demand. The presented case of traffic flow on Slovenian motorways explored the expected power demands at various seasonal traffic intensities. The findings provide valuable insight for planning the charging infrastructure, the electrical grid, and also the layout by anticipating the number of vehicles seeking charging services. The modular design of the model allowed replacing key parameters with different traffic projections, supporting a robust scenario analysis and adaptive infrastructure planning. Replacing the parameters with real-time data opens the path for integration into a digital twin framework of individual EV charging hubs, providing the basis for development of an EV charging hub network digital twin. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

15 pages, 433 KiB  
Article
Exploration of Crash Features of Electric Vehicles with Traffic Crash Data in Changshu, China
by Rongxian Long, Chenhui Liu, Song Yan, Xiaofeng Yang and Guangcan Li
World Electr. Veh. J. 2025, 16(3), 185; https://doi.org/10.3390/wevj16030185 - 19 Mar 2025
Viewed by 1056
Abstract
The rapid development of electric vehicles (EVs) around the world has resulted in new challenges for road safety. Identifying the features of EV crashes is a precondition for developing effective countermeasures. However, due to the short history of EV development, existing studies on [...] Read more.
The rapid development of electric vehicles (EVs) around the world has resulted in new challenges for road safety. Identifying the features of EV crashes is a precondition for developing effective countermeasures. However, due to the short history of EV development, existing studies on EV crashes are quite limited. China, which has the largest EV market in the world, has witnessed a substantial increase in EV crashes in recent years. Therefore, this study comprehensively investigated the characteristics of EV crashes by analyzing the 2023 traffic crash data from Changshu. This is a pioneering study that discusses EV safety by comparing real EV crashes and ICEV crashes from a city in China, the largest EV market in the world. It was found that EV crashes had a higher fatality rate compared to internal combustion engine vehicle (ICEV) crashes. Compared to ICEV crashes, EV crashes are more likely to hit pedestrians and occur during the starting phase. Among the vehicles involved in crashes, the proportion of EVs used for passenger and freight transport was higher than that of ICEVs. In addition, for EV crashes, the proportion of female drivers was much higher, but the proportion of elderly drivers was much lower. Thus, to identify the significant factors influencing crash severity, a logistic regression model was built. The results confirm that EV crashes are more likely to be more fatal than ICEV crashes. In addition, hitting pedestrians and light trucks and crashes occurring in rural areas, at intersections, during winter, and on weekdays could significantly increase the risk of fatalities. These findings are expected to provide new perspectives for improving EV safety within the wave of automotive electrification. Full article
Show Figures

Figure 1

25 pages, 2143 KiB  
Article
Assessing the Socioeconomic Impacts of an Inductive Electric Road System (ERS) for Decarbonizing Freight Transport: A Case Study for the TEN-T Corridor AP-7 in Spain
by Rubén Flores-Gandur, José Manuel Vassallo and Natalia Sobrino
Sustainability 2025, 17(5), 2283; https://doi.org/10.3390/su17052283 - 5 Mar 2025
Cited by 1 | Viewed by 1952
Abstract
Electric Road Systems (ERS) are emerging technologies that enable electricity transfer to electric vehicles in motion. However, their implementation presents challenges due to high energy demands and infrastructure requirements. This technology offers a significant opportunity for decarbonizing road freight transport, one of the [...] Read more.
Electric Road Systems (ERS) are emerging technologies that enable electricity transfer to electric vehicles in motion. However, their implementation presents challenges due to high energy demands and infrastructure requirements. This technology offers a significant opportunity for decarbonizing road freight transport, one of the most carbon-intensive sectors, contributing to the European Union’s climate goals. This study hypothesizes that implementing an inductive ERS for freight transport along the AP-7 corridor in Spain will generate environmental benefits—primarily through greenhouse gas (GHG) emission reductions—that outweigh the associated socioeconomic costs, making it a viable decarbonization strategy. To test this hypothesis, an impact assessment framework based on Cost–Benefit Analysis (CBA) is conducted, incorporating climate change and other environmental benefits. The framework is applied to a section of the Mediterranean Highway Corridor AP-7 in Spain. The results indicate that the most significant benefits are derived from positive environmental impacts and lower vehicle operation costs. Through a sensitivity analysis, our research identifies key variables affecting the system’s socioeconomic profitability, including payload capacity, volatility of energy prices and shadow prices of GHG emissions. The study provides insights for policymakers to optimize ERS deployment strategies, ensuring maximum social benefits while addressing economic and environmental challenges. Full article
Show Figures

Figure 1

19 pages, 4206 KiB  
Article
Last Mile Urban Freight Distribution: A Modelling Framework to Estimate E-Cargo Bike Freight Attraction Demand Share
by Luca Mantecchini, Francesco Paolo Nanni Costa and Valentina Rizzello
Future Transp. 2025, 5(1), 31; https://doi.org/10.3390/futuretransp5010031 - 5 Mar 2025
Viewed by 1663
Abstract
Urban freight transportation is facing significant challenges due to increasing demand, driven by globalization, e-commerce growth, and the adoption of just-in-time logistics. These trends have led to rising vehicle flows in urban areas, negatively impacting sustainability, economic efficiency, and road safety. In response, [...] Read more.
Urban freight transportation is facing significant challenges due to increasing demand, driven by globalization, e-commerce growth, and the adoption of just-in-time logistics. These trends have led to rising vehicle flows in urban areas, negatively impacting sustainability, economic efficiency, and road safety. In response, cities are exploring innovative last-mile delivery strategies that emphasize sustainability, flexibility, and cost efficiency. Among these strategies, cargo bikes—particularly electric cargo bikes (e-cargo bikes)—are emerging as promising low-emission solutions for urban freight distribution. However, despite their potential, a generalized methodology for estimating their demand share in urban contexts remains underdeveloped. This study proposes a comprehensive modelling framework to evaluate the freight demand share that can be addressed by e-cargo bikes, integrating quantity, restocking service, modal, and delivery sub-models, calibrated using data from a case study in Italy. The results demonstrate that e-cargo bikes could fulfil up to 20% of urban freight demand, depending on the category of goods transported, and underscore the feasibility of integrating e-cargo bikes into urban logistics systems. However, critical challenges related to scalability and cost-effectiveness persist, highlighting the need for further research and reliable cost data to support broader implementation. Full article
Show Figures

Figure 1

16 pages, 3277 KiB  
Article
Electric Long-Haul Trucks and High-Power Charging: Modelling and Analysis of the Required Infrastructure in Germany
by Tobias Tietz, Tu-Anh Fay, Tilmann Schlenther and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(2), 96; https://doi.org/10.3390/wevj16020096 - 12 Feb 2025
Cited by 3 | Viewed by 1961
Abstract
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of [...] Read more.
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of battery electric trucks (BETs) with on-route high-power charging (HPC) offers a promising solution. Planning and setting up the required infrastructure is a critical success factor here. We propose a methodology to evaluate the charging infrastructure needed to support the large-scale introduction of heavy-duty BETs in Germany, considering different levels of electrification, taking the European driving and rest time regulations into account. Our analysis employs MATSim, an activity-based multi-agent transport simulation, to assess potential bottlenecks in the charging infrastructure and to simulate the demand-based distribution of charging stations. The MATSim simulation is combined with an extensive pre-processing of transport-related data and a suitable post-processing. This approach allows for a detailed examination of the required charging infrastructure, considering the impacts of depot charging solutions and the dynamic nature of truck movements and charging needs. The results indicate a significant need to augment HPC with substantial low power overnight charging facilities and highlight the importance of strategic infrastructure development to accommodate the growing demand for chargers for BETs. By simulating various scenarios of electrification, we demonstrate the critical role of demand-oriented infrastructure planning in reducing emissions from the road freight sector until 2030. This study contributes to the ongoing discourse on sustainable transportation, offering insights into the infrastructure requirements and planning challenges associated with the transition to battery electric heavy-duty vehicles. Full article
Show Figures

Figure 1

17 pages, 2068 KiB  
Article
Requirements and Test Stand Development for ERS Pantographs
by Alexander Prinz, Kil Young Lee, Abhishek Gupta, Dietmar Göhlich and Sangyoung Park
World Electr. Veh. J. 2025, 16(2), 86; https://doi.org/10.3390/wevj16020086 - 8 Feb 2025
Viewed by 1069
Abstract
Electric road systems (ERSs) are a promising solution for electrifying heavy-duty freight transport by providing traction and charging power from the power lines installed along the road. Development of ERSs has been accelerated in the last decade, and several pilot projects have been [...] Read more.
Electric road systems (ERSs) are a promising solution for electrifying heavy-duty freight transport by providing traction and charging power from the power lines installed along the road. Development of ERSs has been accelerated in the last decade, and several pilot projects have been successfully implemented, proving the high level of maturity that the technology has achieved. One crucial step that could be initiated before a rollout is the standardization and certification of ERS infrastructure and system components. For instance, pantographs for overhead ERSs face unique challenges, in that the power transfer should be safe and reliable in the presence of dynamic longitudinal and lateral movements of the vehicle. To tackle this problem, we outline the requirements for overhead ERSs and ERS pantograph testing. Among the key requirements are the rising and lowering times, response to lateral maneuvers, such as lane changes, and high electrical current during stillstand. We introduce our developed test stands capable of testing various aspects of an ERS pantograph. The lateral test stand was developed to test basic functionalities and simulate lateral movements. A second test stand was implemented, to test high currents and the subsequent temperature development. Furthermore, a digital test stand used for planning, design, and modeling is introduced. Full article
Show Figures

Figure 1

18 pages, 5882 KiB  
Article
CO2e Life-Cycle Assessment: Twin Comparison of Battery–Electric and Diesel Heavy-Duty Tractor Units with Real-World Data
by Hannes Piepenbrink, Heike Flämig and Alexander Menger
Future Transp. 2025, 5(1), 12; https://doi.org/10.3390/futuretransp5010012 - 2 Feb 2025
Viewed by 2236
Abstract
In 2023, the EU set the target to reduce greenhouse gas (GHG) emissions by 55% until 2030 compared to 1990. The European Transport Policy sees battery–electric vehicles as a key technology to decarbonize the transport sector, so governments support the adoption through dedicated [...] Read more.
In 2023, the EU set the target to reduce greenhouse gas (GHG) emissions by 55% until 2030 compared to 1990. The European Transport Policy sees battery–electric vehicles as a key technology to decarbonize the transport sector, so governments support the adoption through dedicated funding programs. Battery–electric trucks hold great potential to decarbonize the transport sector, especially for high-impact, heavy-duty trucks. Theoretical life-cycle assessments (LCA) predict a lower CO2e emission impact from battery–electric trucks compared to conventional diesel trucks. Yet, one concern repeatedly mentioned by potential users is the doubt about the ecological advantage of battery–electric vehicles. This is rooted in the problem of a much higher CO2e impact of the lithium-ion batteries production process. As heavy-duty trucks have a much larger battery, the hypothec in the construction phase of the vehicle is significantly higher, which must be regained during the use phase. Although theoretical assessments exist, CO2e evaluations using real-world application data are almost nonexistent, as the technology is at the very start of the adoption curve. Exemplary is the fact that there were only 72 registered battery–electric heavy-duty tractor trucks throughout the whole of Germany at the start of 2023. This paper aims to deliver one of the first real-world quantifications using operational data for the actual reduction impact of battery–electric heavy-duty trucks compared to diesel trucks. This study uses the methodology of the life-cycle assessment approach according to ISO 14040/14044 to gain a systematic and holistic technology comparison. For this LCA, the system boundaries are considered from cradle to cradle. This includes the production of raw materials and energy, the manufacturing of the trucks, the use phase, and the recycling afterward. The research objects of this study are battery–electric and diesel Volvo FM trucks, which have been in use by the German freight company Nord-Spedition GmbH since May 2023. The GREET® database is used to assess the emission impact of the material production and manufacturing process. The Volvo tractor trucks resemble a critical case, as the vehicles have a battery size of 540 kWh—around 11 times larger than a usual passenger car. The operation data is directly provided by the logistics company to observe fuel/electricity consumption. Other factors are assessed through company interviews as well as a wide literature research. Finally, a large question mark concerning total emissions lies in the cradle-to-cradle capabilities of large-scale lithium-ion batteries and the electricity grid mix. Different scenarios are being considered to assess potential disposal or recycling paths as well as different electricity grid developments and their impact on the overall balance. The findings estimate the total emissions reduction potential to range between 34% and 69%, varying with assumptions on the electricity grid transition and recycling opportunities. This study displays one of the first successful early-stage integrations of battery–electric heavy-duty trucks into the daily operation of a freight company and can be used to showcase the ecological advantage of the technology. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

27 pages, 2409 KiB  
Article
Supply Chain Management in Smart City Manufacturing Clusters: An Alternative Approach to Urban Freight Mobility with Electric Vehicles
by Agnieszka Deja, Wojciech Ślączka, Magdalena Kaup, Jacek Szołtysek, Lyudmyla Dzhuguryan and Tygran Dzhuguryan
Energies 2024, 17(21), 5284; https://doi.org/10.3390/en17215284 - 24 Oct 2024
Cited by 2 | Viewed by 1959
Abstract
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and [...] Read more.
The development of green production types such as personalized production and shared manufacturing, which use additive technologies in city multifloor manufacturing clusters (CMFMCs), has led to an increase in last-mile parcel delivery (LMPD) activity. This study investigates the integration of electric vehicles and crowdshipping systems into smart CMMCs to improve urban logistics operations related to the distribution of products to consumers. The aim of this study is to improve the LMPD performance of these integrated systems and to provide alternative solutions for sustainable city logistics using the potential of crowdshipping and vehicle sharing fleets (VSFs) in the city logistics nodes (CLNs) of CMFMCs. The issues presented by the loading–unloading operations and sustainable crowdshipping scenarios for LMPD in CMFMCs are considered. This paper presents a new performance evaluation model for crowdshipping LMPD in CMFMCs using VSFs. The case study shows that the proposed model enables the analysis of LMPD performance in CMFMCs, taking into account their finite production capacity, and that it facilitates the planning of cargo turnover and the structure of VSFs consisting of e-bicycles, e-cars, and e-light commercial vehicles (e-LCVs). The model is verified based on a case study for sustainable LMPD scenarios using VSFs. The proposed model enables the planning of both short- and long-term logistics operations with the specified performance indicator of VSF usage in CMFMCs. The validity of using the integrated potential of crowdshipping and vehicle sharing services for LMPD under demand uncertainty in CMFMCs is discussed. This study should prove useful for decision-making and planning processes related to LMPD in CMFMCs and large cities. Full article
(This article belongs to the Special Issue Blockchain, IoT and Smart Grids Challenges for Energy II)
Show Figures

Figure 1

22 pages, 3043 KiB  
Article
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
by Mohamed Ali Saafi, Victor Gordillo, Omar Alharbi and Madeleine Mitschler
Energies 2024, 17(19), 4925; https://doi.org/10.3390/en17194925 - 1 Oct 2024
Cited by 2 | Viewed by 1642
Abstract
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore, long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context, the road [...] Read more.
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore, long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context, the road freight sector faces significant challenges in decarbonization, driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work, we develop the Mobility and Energy Transportation Analysis (META) Model, a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles, META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology, a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis, including intangible costs associated with heavy-duty technologies, such as recharging/refueling time, cargo capacity limitations, and consumer acceptance towards emerging technologies across different regions. Based on the study results, the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU, MCC options could reach greater than 50% market shares of all ICE vehicle sales, equivalent to a combined 35% of all new sales shares by 2035. Full article
Show Figures

Figure 1

15 pages, 1117 KiB  
Article
Optimal Agent-Based Pickup and Delivery with Time Windows and Electric Vehicles
by Ionuț Murarețu and Costin Bădică
Appl. Sci. 2024, 14(17), 7528; https://doi.org/10.3390/app14177528 - 26 Aug 2024
Cited by 1 | Viewed by 1157
Abstract
The traditional methods of transporting goods and people in urban areas using vehicles powered by internal combustion engines are major contributors to pollution. As a result, an increasing number of logistics companies are transitioning to electric vehicles (EVs) for daily operations, replacing traditional [...] Read more.
The traditional methods of transporting goods and people in urban areas using vehicles powered by internal combustion engines are major contributors to pollution. As a result, an increasing number of logistics companies are transitioning to electric vehicles (EVs) for daily operations, replacing traditional engines. This shift opens research avenues regarding the integration of EVs into delivery workflows and how this can contribute to greener cities. This study tackles the EV routing problem, focusing on balancing battery constraints and optimizing routes. We formulated the problem as a pickup and delivery with time windows, incorporating electric energy consumption constraints, and utilized consensus mechanisms in an agent-based simulation context. Our evaluation used 15 scenarios, capturing variations in vehicle configurations, order generation rates, and battery and freight capacities. We compared two order allocation strategies: “Closest Allocation” and “Negotiation” consensus-based allocation. The results confirmed that the consensus-based strategy outperformed the “Closest Allocation” in metrics such as remaining orders, orders not handled in time, total distance traveled, total recharging cost, and total number of recharges. These findings have significant implications for urban planners, logistic companies, and policymakers, demonstrating that an agent-based simulation context for electric vehicles using consensus-based strategies can enhance delivery efficiency and promote sustainability. Full article
(This article belongs to the Special Issue Research Progress on the Application of Multi-agent Systems)
Show Figures

Figure 1

Back to TopTop