Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = elastomer molding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 782 KiB  
Article
Color Stability of Digital and Conventional Maxillofacial Silicone Elastomers Mixed with Nano-Sized Antimicrobials: An In Vitro Study
by Muhanad M. Hatamleh
Prosthesis 2025, 7(4), 96; https://doi.org/10.3390/prosthesis7040096 - 5 Aug 2025
Viewed by 49
Abstract
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a [...] Read more.
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a 10-week period. Methods: A total of nine groups (n = 10) of maxillofacial silicone elastomers were prepared. These included a control group (no additives), conventionally pigmented silicone, digitally pigmented silicone (Spectromatch system), and silicone mixed with ZnO or CHX at 1%, 3%, and 5% by weight. Specimens were fabricated in steel molds and cured at 100 °C for 1 h. Color measurements were performed at baseline and after 1, 4, 6, and 10 weeks using a Minolta Chroma Meter (CIELAB system, ΔE00 formula). Data were analyzed using two-way ANOVA and Tukey HSD post hoc tests (α = 0.05). Results: Color changes (ΔE00) ranged from 0.74 to 2.83 across all groups. The conventional pigmented silicone group showed the highest color difference (ΔE00 = 2.83), while the lowest was observed in the ZnO 1% group (ΔE00 = 0.74). Digital silicone and all antimicrobial-modified groups exhibited acceptable color stability (ΔE00 < 3.1). Time significantly affected color difference, with the largest change occurring during the first four weeks (p < 0.05), followed by stabilization. Regression analysis confirmed high color stability over time for all groups except the conventional pigmented group. Conclusions: This is one of the first studies to directly compare digital and conventional pigmentation methods combined with nano-antimicrobials in maxillofacial silicones. Maxillofacial silicone elastomers mixed with up to 5% ZnO or CHX maintained acceptable color stability over 10 weeks. Digital pigmentation is similar to conventional methods. The incorporation of nano-antimicrobials offers significant microbial resistance and improved color retention. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

14 pages, 8408 KiB  
Article
MRE Encapsulating MRG: Synergistic Improvement in Modulus Tunability and Energy Dissipation
by Mi Zhu, Wang Li, Qi Hou and Yanmei Li
Nanomaterials 2025, 15(13), 1031; https://doi.org/10.3390/nano15131031 - 3 Jul 2025
Viewed by 369
Abstract
Traditional magnetorheological elastomers (MREs) often suffer from limited modulus tunability and insufficient energy dissipation, which restrict their applications. This study prepared a novel composite material by an MR gel (MRG) embedded within the MRE, called the MRE encapsulating MRG, to synergistically enhance these [...] Read more.
Traditional magnetorheological elastomers (MREs) often suffer from limited modulus tunability and insufficient energy dissipation, which restrict their applications. This study prepared a novel composite material by an MR gel (MRG) embedded within the MRE, called the MRE encapsulating MRG, to synergistically enhance these properties. Annular and radial MRE encapsulating MRG configurations were fabricated using 3D-printed molds, and their dynamic mechanical performance was characterized under varying magnetic fields (0–1 T) via a rheometer. The results revealed that the composite materials demonstrated significantly improved magnetic-induced modulus and magnetorheological (MR) effects compared to conventional MREs. Specifically, the annular MRE encapsulating MRG exhibited a 238.47% increase in the MR effect and a 51.35% enhancement in the magnetic-induced modulus compared to traditional MREs. Correspondingly, the radial configuration showed respective improvements of 168.19% and 27.03%. Furthermore, both the annular and radial composites displayed superior energy dissipation capabilities, with loss factors 2.68 and 2.03 times greater than those of pure MREs, respectively. Dynamic response tests indicated that composite materials, particularly the annular MRE encapsulating MRG, achieve faster response times. These advancements highlight the composite’s potential for high-precision damping systems, vibration isolation, and adaptive control applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

31 pages, 8222 KiB  
Article
Multifunctional 3D-Printable Photocurable Elastomer with Self-Healing Capability Derived from Waste Cooking Oil
by Pengyu Wang, Jiahui Sun, Mengyu Liu, Chuanyang Tang, Yang Yang, Guanzhi Ding, Qing Liu and Shuoping Chen
Molecules 2025, 30(8), 1824; https://doi.org/10.3390/molecules30081824 - 18 Apr 2025
Viewed by 532
Abstract
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening [...] Read more.
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening esterification. By copolymerizing WMFAEE with hydroxypropyl acrylate (HPA), a novel photocurable elastomer was developed, which could be amenable to molding using an LCD light-curing 3D printer. The resulting WMFAEE-HPA elastomer exhibits exceptional mechanical flexibility (elongation at break: 645.09%) and autonomous room-temperature self-healing properties, achieving 57.82% recovery of elongation after 24 h at 25 °C. Furthermore, the material demonstrates weldability (19.97% retained elongation after 12 h at 80 °C) and physical reprocessability (7.75% elongation retention after initial reprocessing). Additional functionalities include pressure-sensitive adhesion (interfacial toughness: 70.06 J/m2 on glass), thermally triggered shape memory behavior (fixed at −25 °C with reversible deformation/recovery at ambient conditions), and notable biodegradability (13.25% mass loss after 45-day soil burial). Molecular simulations reveal that the unique structure of the WMFAEE monomer enables a dual mechanism of autonomous self-healing at room temperature without external stimuli: chain diffusion and entanglement-driven gap closure, followed by hydrogen bond-mediated network reorganization. Furthermore, the synergy between monomer chain diffusion/entanglement and dynamic hydrogen bond reorganization allows the WMFAEE-HPA system to achieve a balance of multifunctional integration. Moreover, the integration of these multifunctional attributes highlights the potential of this WCO-derived photocurable elastomer for various possible 3D printing applications, such as flexible electronics, adaptive robotics, environmentally benign adhesives, and so on. It also establishes a paradigm for converting low-cost biowastes into high-performance smart materials through precision molecular engineering. Full article
Show Figures

Graphical abstract

19 pages, 2778 KiB  
Article
The Potential of Using Shungite Mineral from Eastern Kazakhstan in Formulations for Rubber Technical Products
by Sergey V. Nechipurenko, Valeriya V. Bobrova, Andrey V. Kasperovich, Mubarak Ye. Yermaganbetov, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Bayana B. Yermukhambetova, Grigoriy A. Mun and Galiya S. Irmukhametova
Materials 2025, 18(1), 114; https://doi.org/10.3390/ma18010114 - 30 Dec 2024
Cited by 1 | Viewed by 777
Abstract
This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products. It has been [...] Read more.
This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products. It has been shown that due to the high content of carbon and silicon components in the composition of shungite mineral micropowders, their use as a filler in elastomer formulations significantly improves the physical and mechanical properties of rubber technical products (RTPs) manufactured using such compositions. It was determined that the use of SM as a partial replacement for carbon black in rubbers intended for molded rubber technical products contributes to a reduction in Mooney viscosity (up to 26.8%) and optimal vulcanization time (up to 23.7%), achieving rubbers with the required set of physical–mechanical properties and with an enhancing sealing capability (up to 19.7%). It has been established that the use of shungite mineral micropowders as a complete replacement for industrial chalk increases the strength of rubber products (RTPs) by up to 18.5% and enhances their resistance to liquid aggressive environments. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 12494 KiB  
Article
Development of High-Aspect-Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding
by Da Seul Shin, Jin Wook Park, Chang Woo Gal, Jina Kim, Woo Seok Yang, Seon Yeong Yang, Min Jik Kim, Ho Jae Kwak, Sang Min Park and Jong Hyun Kim
Polymers 2024, 16(21), 3003; https://doi.org/10.3390/polym16213003 - 25 Oct 2024
Cited by 1 | Viewed by 1288
Abstract
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined [...] Read more.
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix was designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites was analyzed using the static and dynamic viscosity results for both the on and off magnetic states, which reflected the particle dipole interaction and subsequent particle alignment during the field-induced injection molding process. To develop a high-aspect-ratio soft magnetic microarray, X-ray lithography was applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of the CIP was designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieved the uniform and large bending actuation of up to approximately 81° with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

17 pages, 9317 KiB  
Article
Development of Technologies for Processing Polypropylene Foil Waste and Their Use in the Production of Finished Products
by Damian Dziadowiec, Karina Walburg, Danuta Matykiewicz, Jacek Andrzejewski and Marek Szostak
Materials 2024, 17(21), 5192; https://doi.org/10.3390/ma17215192 - 24 Oct 2024
Viewed by 1162
Abstract
This work aims to assess the possibility of using packaging industry waste to modify polypropylene products (PPs). The products were made in the form of extruded foil and injected samples. The products were produced using regranulate made of polypropylene cast foil. Maleic anhydride-modified [...] Read more.
This work aims to assess the possibility of using packaging industry waste to modify polypropylene products (PPs). The products were made in the form of extruded foil and injected samples. The products were produced using regranulate made of polypropylene cast foil. Maleic anhydride-modified polypropylene (MAPP) and polyolefin elastomer (POE) with a glycidyl ester functional group were used to modify the polypropylene. The samples were produced based on 50% foil waste reground and 50% pure PP. The rheological properties of the blends were assessed using the melt mass flow rate (MFR) technique; thermal properties using the differential scanning calorimetry method (DSC). The products manufactured using the injection molding method were subjected to an analysis of mechanical properties, such as tensile strength and impact strength. Also, in the case of film samples, tensile strength was assessed. Color-change assessments with CIE L*a*b* were carried out for all materials. Injection-molded products based on recycled metallized cast foil showed favorable mechanical properties such as tensile strength (1 MAPP = 26.7 MPa; 2 MAPP = 27.1 MPa), which was higher than the original material (cPP = 20.7 MPa). Also, for the films produced from regrind, the tensile strength was at a level similar (1 MAPP = 24.6 MPa; 2 MAPP/POE = 25.1 MPa) to the films extruded from virgin materials (cPP = 24.9 MPa). The introduction of a POE additive to the blends resulted in increased impact strength (1 MAPP/POE = 31 kJ/mol; 2MAPP/POE = 18 kJ/mol; 3 MAPP/POE = 11 kJ/mol) in relation to unmodified samples (cPP = 7 kJ/mol). The introduction of a POE additive to the tested mixtures improved the impact strength of the injected products by almost 4 times for sample 1 MAPP/POE and 2.5 times for sample 2 MAPP/POE in comparison to virgin cPP. These studies confirmed that foil waste can be successfully used to modify polypropylene products shaped both in the injection and extrusion processes. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Figure 1

16 pages, 3882 KiB  
Article
Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins
by Jakub Czakaj, Daria Pakuła, Julia Głowacka, Bogna Sztorch and Robert E. Przekop
J. Compos. Sci. 2024, 8(10), 384; https://doi.org/10.3390/jcs8100384 - 24 Sep 2024
Cited by 2 | Viewed by 3272
Abstract
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties [...] Read more.
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties of the blends, such as tensile strength, tensile modulus, elongation at maximum load, and impact resistance, were investigated. The water contact angle, melt flow rate (MFR), and differential scanning calorimetry were ascertained to evaluate the blends. The blend samples exhibited the following properties: all POM/EVA blends showed reduced crystallinity compared to neat POM; the 80% PMMA/20% MMA-nBA-MMA blend showed improved impact resistance by 243% compared to the neat PMMA. An antiplasticization effect was observed for POM/EVA 1% blends and PMMA/EVA 1% blends, with MFR reduced by 1% and 3%, respectively. The MFR of the PP/IIR 1% blend increased by 5%, then decreased below the MFR near the polymer for the remaining IIR concentrations. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

17 pages, 3777 KiB  
Article
Three-Dimensionally Printed Microsystems to Facilitate Flow-Based Study of Cells from Neurovascular Barriers of the Retina
by Adam Leverant, Larissa Oprysk, Alexandra Dabrowski, Kelly Kyker-Snowman and Maribel Vazquez
Micromachines 2024, 15(9), 1103; https://doi.org/10.3390/mi15091103 - 30 Aug 2024
Viewed by 4003
Abstract
Rapid prototyping has produced accessible manufacturing methods that offer faster and more cost-effective ways to develop microscale systems for cellular testing. Commercial 3D printers are now increasingly adapted for soft lithography, where elastomers are used in tandem with 3D-printed substrates to produce in [...] Read more.
Rapid prototyping has produced accessible manufacturing methods that offer faster and more cost-effective ways to develop microscale systems for cellular testing. Commercial 3D printers are now increasingly adapted for soft lithography, where elastomers are used in tandem with 3D-printed substrates to produce in vitro cell assays. Newfound abilities to prototype cellular systems have begun to expand fundamental bioengineering research in the visual system to complement tissue engineering studies reliant upon complex microtechnology. This project used 3D printing to develop elastomeric devices that examined the responses of retinal cells to flow. Our experiments fabricated molds for elastomers using metal milling, resin stereolithography, and fused deposition modeling via plastic 3D printing. The systems were connected to flow pumps to simulate different flow conditions and examined phenotypic responses of endothelial and neural cells significant to neurovascular barriers of the retina. The results indicated that microdevices produced using 3D-printed methods demonstrated differences in cell survival and morphology in response to external flow that are significant to barrier tissue function. Modern 3D printing technology shows great potential for the rapid production and testing of retinal cell responses that will contribute to both our understanding of fundamental cell response and the development of new therapies. Future studies will incorporate varied flow stimuli as well as different extracellular matrices and expanded subsets of retinal cells. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

17 pages, 4190 KiB  
Article
From Formulation to Application: Effects of Plasticizer on the Printability of Fluoro Elastomer Compounds and Additive Manufacturing of Specialized Seals
by Mookkan Periyasamy, AA Mubasshir, Stiven Kodra, Sangeetham Chandramouli, Ronald Campbell, David O. Kazmer and Joey L. Mead
Micromachines 2024, 15(5), 622; https://doi.org/10.3390/mi15050622 - 5 May 2024
Cited by 5 | Viewed by 2063
Abstract
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a [...] Read more.
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a custom-designed ram material extruder, Additive Ram Material Extruder (ARME), for printing fully compounded thermoset elastomers. The plasticizer’s effectiveness was assessed based on its ability to address challenges such as high compound viscosity and post-print shrinkage, as well as its impact on interlayer adhesion. The addition of the PFPE plasticizer significantly reduced the FKM compound’s viscosity (by 70%) and post-print shrinkage (by 65%). While the addition of the plasticizer decreased the tensile strength of the control compound, specimens printed with the plasticized FKM retained 34% of the tensile strength of compression-molded samples, compared to only 23% for the unplasticized compound. Finally, the feasibility of seals and gaskets manufacturing using both conventional and unconventional additive manufacturing (AM) approaches was explored. A hybrid method combining AM and soft tooling for compression molding emerged as the optimal method for seal and gasket fabrication. Full article
Show Figures

Figure 1

11 pages, 4602 KiB  
Article
Analytical Investigation of Replica-Molding-Enabled Nanopatterned Tribocharging Process on Soft-Material Surfaces
by In Ho Cho, Myung Gi Ji and Jaeyoun Kim
Micromachines 2024, 15(3), 417; https://doi.org/10.3390/mi15030417 - 21 Mar 2024
Cited by 1 | Viewed by 1849
Abstract
Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final [...] Read more.
Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final tribocharge pattern by separately applying two models, namely cohesive zone failure and cumulative fracture energy, as a function of the mold nanotexture’s aspect ratio. These models deepen our understanding of the triboelectrification phenomenon. Full article
Show Figures

Figure 1

24 pages, 9586 KiB  
Article
The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing—The Use of Multilayered Foil Waste as the Blend Component
by Mikołaj Garwacki, Igor Cudnik, Damian Dziadowiec, Piotr Szymczak and Jacek Andrzejewski
Materials 2024, 17(5), 1083; https://doi.org/10.3390/ma17051083 - 27 Feb 2024
Cited by 13 | Viewed by 3191
Abstract
The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today’s engineering. The subject of this research was the melt processing of multilayered PET-based [...] Read more.
The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today’s engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose. Full article
(This article belongs to the Special Issue Polymers: From Waste to Potential Reuse)
Show Figures

Figure 1

32 pages, 12307 KiB  
Review
Polymer Composites in 3D/4D Printing: Materials, Advances, and Prospects
by Ayyaz Mahmood, Fouzia Perveen, Shenggui Chen, Tayyaba Akram and Ahmad Irfan
Molecules 2024, 29(2), 319; https://doi.org/10.3390/molecules29020319 - 9 Jan 2024
Cited by 27 | Viewed by 7400
Abstract
Additive manufacturing (AM), commonly referred to as 3D printing, has revolutionized the manufacturing landscape by enabling the intricate layer-by-layer construction of three-dimensional objects. In contrast to traditional methods relying on molds and tools, AM provides the flexibility to fabricate diverse components directly from [...] Read more.
Additive manufacturing (AM), commonly referred to as 3D printing, has revolutionized the manufacturing landscape by enabling the intricate layer-by-layer construction of three-dimensional objects. In contrast to traditional methods relying on molds and tools, AM provides the flexibility to fabricate diverse components directly from digital models without the need for physical alterations to machinery. Four-dimensional printing is a revolutionary extension of 3D printing that introduces the dimension of time, enabling dynamic transformations in printed structures over predetermined periods. This comprehensive review focuses on polymeric materials in 3D printing, exploring their versatile processing capabilities, environmental adaptability, and applications across thermoplastics, thermosetting materials, elastomers, polymer composites, shape memory polymers (SMPs), including liquid crystal elastomer (LCE), and self-healing polymers for 4D printing. This review also examines recent advancements in microvascular and encapsulation self-healing mechanisms, explores the potential of supramolecular polymers, and highlights the latest progress in hybrid printing using polymer–metal and polymer–ceramic composites. Finally, this paper offers insights into potential challenges faced in the additive manufacturing of polymer composites and suggests avenues for future research in this dynamic and rapidly evolving field. Full article
Show Figures

Graphical abstract

16 pages, 6519 KiB  
Article
Effects of Recycled Polymer on Melt Viscosity and Crystallization Temperature of Polyester Elastomer Blends
by Ji-Eun Lee, Jin-Woo Lee, Jae-Wang Ko, Kyung-Il Jo, Hyun-Ju Park and Ildoo Chung
Materials 2023, 16(17), 6067; https://doi.org/10.3390/ma16176067 - 4 Sep 2023
Cited by 2 | Viewed by 2541
Abstract
As the world is paying attention to the seriousness of environmental pollution, the need for a resource circulation economy is emerging due to the development of eco-friendly industrial groups. In particular, the recycling of thermoplastic elastomers without cross-link has been highlighted in the [...] Read more.
As the world is paying attention to the seriousness of environmental pollution, the need for a resource circulation economy is emerging due to the development of eco-friendly industrial groups. In particular, the recycling of thermoplastic elastomers without cross-link has been highlighted in the plastics field, which has rapidly developed the industry. Growing interests have been directed towards the advancement of thermoplastic polyether–ester elastomer (TPEE) as a material suitable for the circular economy owing to its remarkable recyclability, both in terms of mechanical and chemical processes. Due to its excellent processability, simple mechanical recycling is easy, which is a driving force towards achieving price competitiveness in the process. In molding TPEE resin, it is essential to check the thermal properties of the resin itself because the thermal properties, including the melting and crystallization temperatures of the resin, depend on the design of the polymer. In this study, the thermal and mechanical performances of TPEE blends were evaluated by manufacturing compounds by changing the amount of recycled resin and additives. When the recycled resin was added, the melt flow index (MFI) changed rapidly as the temperature of the melt flow index measurement increased. Rapid changes in MFI make the fiber spinning process uncontrollable and must be controlled by optimizing the addition of compatibilizers. Based on the thermal property results, compatibilizers such as Lotader and Elvaloy series exhibited minimal change in glass transition temperature, even with greater amounts added. This makes them well-suited as compatibilizers for fiber spinning. Full article
Show Figures

Figure 1

18 pages, 7029 KiB  
Article
Design and Additive Manufacturing of a Continuous Servo Pneumatic Actuator
by Gabriel Dämmer, Hartmut Bauer, Michael Lackner, Rüdiger Neumann, Alexander Hildebrandt and Zoltán Major
Micromachines 2023, 14(8), 1622; https://doi.org/10.3390/mi14081622 - 17 Aug 2023
Cited by 4 | Viewed by 2632
Abstract
Despite an emerging interest in soft and rigid pneumatic lightweight robots, the pneumatic rotary actuators available to date either are unsuitable for servo pneumatic applications or provide a limited angular range. This study describes the functional principle, design, and manufacturing of a servo [...] Read more.
Despite an emerging interest in soft and rigid pneumatic lightweight robots, the pneumatic rotary actuators available to date either are unsuitable for servo pneumatic applications or provide a limited angular range. This study describes the functional principle, design, and manufacturing of a servo pneumatic rotary actuator that is suitable for continuous rotary motion and positioning. It contains nine radially arranged linear bellows actuators with rollers that push forward a cam profile. Proportional valves and a rotary encoder are used to control the bellows pressures in relation to the rotation angle. Introducing freely programmable servo pneumatic commutation increases versatility and allows the number of mechanical components to be reduced in comparison to state-of-the-art designs. The actuator presented is designed to be manufacturable using a combination of standard components, selective laser sintering, elastomer molding with novel multi-part cores and basic tools. Having a diameter of 110 mm and a width of 41 mm, our prototype weighs less than 500 g, produces a torque of 0.53 Nm at 1 bar pressure and a static positioning accuracy of 0.31° with no limit of angular motion. By providing a description of design, basic kinematic equations, manufacturing techniques, and a proof of concept, we enable the reader to envision and explore future applications. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

24 pages, 9900 KiB  
Article
Rapid Micromolding of Sub-100 µm Microfluidic Channels Using an 8K Stereolithographic Resin 3D Printer
by Arpith Vedhanayagam, Michael Golfetto, Jeffrey L. Ram and Amar S. Basu
Micromachines 2023, 14(8), 1519; https://doi.org/10.3390/mi14081519 - 28 Jul 2023
Cited by 11 | Viewed by 5484
Abstract
Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has [...] Read more.
Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm3 chip) that will be attractive for many microfluidics labs. Full article
(This article belongs to the Special Issue 3D-Printed Microdevices: From Design to Applications)
Show Figures

Figure 1

Back to TopTop