Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (194)

Search Parameters:
Keywords = effects of quantum gravity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2842 KiB  
Article
Impact of Loop Quantum Gravity on the Topological Classification of Quantum-Corrected Black Holes
by Saeed Noori Gashti, İzzet Sakallı, Hoda Farahani, Prabir Rudra and Behnam Pourhassan
Universe 2025, 11(8), 247; https://doi.org/10.3390/universe11080247 - 27 Jul 2025
Abstract
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of [...] Read more.
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of state parameters. Our findings revealed a consistent pattern of topological transitions: for λ=0.1, the system exhibited a single topological charge (ω=1) with total charge W=1, as λ increased to 0.8, the system transitioned to a configuration with two topological charges (ω=+1,1) and total charge W=0. When λ=1, corresponding to the Bekenstein–Hawking entropy limit, the system displayed a single topological charge (ω=+1) with W=+1, signifying thermodynamic stability. The persistence of this pattern across different fluid compositions—from exotic negative pressure environments to radiation—demonstrates the universal nature of quantum gravitational effects on black hole topology. Full article
15 pages, 1420 KiB  
Article
Spectral Dimensionality of Spacetime Around a Radiating Schwarzschild Black-Hole
by Mauricio Bellini, Juan Ignacio Musmarra, Pablo Alejandro Sánchez and Alan Sebastián Morales
Universe 2025, 11(8), 243; https://doi.org/10.3390/universe11080243 - 24 Jul 2025
Viewed by 82
Abstract
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe [...] Read more.
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe a non-commutative and nonlinear quantum algebra. The relation between classical and quantum perturbations of spacetime can be measured by the parameter z0. In this work we have found that when z=(1+3)/21.3660, a relativistic observer approaching the Schwarzschild horizon perceives a spectral dimension N(z)=4θ(z)12.8849, which is related to quantum gravitational interference effects in the environment of the black hole. Under these conditions, all studied Schwarzschild black holes with masses ranging from the Planck mass to 1046 times the Planck mass present the same stability configuration, which suggests the existence of a universal property of these objects under those particular conditions. The difference from the spectral dimension previously obtained at cosmological scales leads to the conclusion that the spacetime dimensionality is scale-dependent. Another important result presented here is the fundamental alteration of the effective gravitational potential near the horizon due to Hawking radiation. This quantum phenomenon prevents the potential from diverging to negative infinity as the observer approaches the Schwarzschild horizon. Full article
Show Figures

Figure 1

14 pages, 281 KiB  
Article
Leading Logarithm Quantum Gravity
by S. P. Miao, N. C. Tsamis and R. P. Woodard
Universe 2025, 11(7), 223; https://doi.org/10.3390/universe11070223 - 4 Jul 2025
Viewed by 179
Abstract
The continual production of long wavelength gravitons during primordial inflation endows graviton loop corrections with secular growth factors. During a prolonged period of inflation, these factors eventually overwhelm the small loop-counting parameter of GH2, causing perturbation theory to break down. [...] Read more.
The continual production of long wavelength gravitons during primordial inflation endows graviton loop corrections with secular growth factors. During a prolonged period of inflation, these factors eventually overwhelm the small loop-counting parameter of GH2, causing perturbation theory to break down. A technique was recently developed for summing the leading secular effects at each order in non-linear sigma models, which possess the same kind of derivative interactions as gravity. This technique combines a variant of Starobinsky’s stochastic formalism with a variant of the renormalization group. Generalizing the technique to quantum gravity is a two-step process, the first of which is the determination of the gauge fixing condition that will allow this summation to be realized; this is the subject of this paper. Moreover, we briefly discuss the second step, which shall obtain the Langevin equation, in which secular changes in gravitational phenomena are driven by stochastic fluctuations of the graviton field. Full article
18 pages, 353 KiB  
Article
Massive Graviton from Diffeomorphism Invariance
by João M. L. de Freitas and Iberê Kuntz
Universe 2025, 11(7), 219; https://doi.org/10.3390/universe11070219 - 2 Jul 2025
Viewed by 188
Abstract
In this work, we undertake a comprehensive study of the functional measure of gravitational path integrals within a general framework involving non-trivial configuration spaces. As in Riemannian geometry, the integration over non-trival configuration spaces requires a metric. We examine the interplay between the [...] Read more.
In this work, we undertake a comprehensive study of the functional measure of gravitational path integrals within a general framework involving non-trivial configuration spaces. As in Riemannian geometry, the integration over non-trival configuration spaces requires a metric. We examine the interplay between the functional measure and the dynamics of spacetime for general configuration-space metrics. The functional measure gives an exact contribution to the effective action at the one-loop level. We discuss the implications and phenomenological consequences of this correction, shedding light on the role of the functional measure in quantum gravity theories. In particular, we describe a mechanism in which the graviton acquires a mass from the functional measure without violating the diffeomorphism symmetry nor including Stückelberg fields. Since gauge invariance is not violated, the number of degrees of freedom goes as in general relativity. For the same reason, Boulware–Deser ghosts and the vDVZ discontinuity do not show up. The graviton thus becomes massive at the quantum level while avoiding the usual issues of massive gravity. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

14 pages, 805 KiB  
Article
Ultra-Cold Neutrons in qBounce Experiments as Laboratory for Test of Chameleon Field Theories and Cosmic Acceleration
by Derar Altarawneh and Roman Höllwieser
J. Nucl. Eng. 2025, 6(3), 20; https://doi.org/10.3390/jne6030020 - 26 Jun 2025
Viewed by 256
Abstract
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density [...] Read more.
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density environments since they interact with matter in a density-dependent way. This paper analyzes the effect of chameleon fields on the quantum gravitational states of ultra-cold neutrons (UCNs) in qBounce experiments with mirrors. We discuss the deformation of the neutron wave function due to chameleon interactions and quantum systems in potential wells from gravitational forces and chameleon fields. Unlike other works that aim to put bounds on the chameleon field parameters, this work focuses on the quantum mechanics of the chameleonic neutron. The results deepen our understanding of the interplay between quantum states and modified gravity, as well as fundamental physics experiments carried out in the laboratory. Full article
Show Figures

Figure 1

13 pages, 243 KiB  
Article
Complex Riemannian Spacetime and Singularity-Free Black Holes and Cosmology
by John W. Moffat
Axioms 2025, 14(6), 459; https://doi.org/10.3390/axioms14060459 - 12 Jun 2025
Viewed by 560
Abstract
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker [...] Read more.
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker (FLRW) Big Bang cosmology. By extending the relevant coordinates into the complex plane and carefully choosing integration contours, we show that it is possible to regularize these singularities, resulting in physically meaningful, singularity-free solutions when projected back onto real spacetime. The removal of the singularity at the Big Bang allows for a bounce cosmology. The approach offers a potential bridge between classical general relativity and quantum gravity effects, suggesting a way to resolve longstanding issues in gravitational physics without requiring a full theory of quantum gravity. Full article
(This article belongs to the Special Issue Complex Variables in Quantum Gravity)
Show Figures

Figure 1

21 pages, 465 KiB  
Article
Unbreakable SU(3) Atoms of Vacuum Energy: A Solution to the Cosmological Constant Problem
by Ahmed Farag Ali
Symmetry 2025, 17(6), 888; https://doi.org/10.3390/sym17060888 - 5 Jun 2025
Viewed by 758
Abstract
Quantum field theory (QFT) and general relativity (GR) are pillars of modern physics, each supported by extensive experimental evidence. QFT operates within Lorentzian spacetime, while GR ensures local Lorentzian geometry. Despite their successes, these frameworks diverge significantly in their estimations of vacuum energy [...] Read more.
Quantum field theory (QFT) and general relativity (GR) are pillars of modern physics, each supported by extensive experimental evidence. QFT operates within Lorentzian spacetime, while GR ensures local Lorentzian geometry. Despite their successes, these frameworks diverge significantly in their estimations of vacuum energy density, leading to the cosmological constant problem—a discrepancy where QFT estimates exceed observed values by 123 orders of magnitude. This paper addresses this inconsistency by tracing the cooling evolution of the universe’s gauge symmetries—from SU(3)×SU(2)×U(1) at high temperatures to SU(3) alone near absolute zero—motivated by the experimental Meissner effect. This symmetry reduction posits that SU(3) forms the fundamental “atoms” of vacuum energy. Our analysis demonstrates that the calculated number of SU(3) vacuum atoms reconciles QFT’s predictions with empirical observations, effectively resolving the cosmological constant problem. The third law of thermodynamics, by preventing the attainment of absolute zero, ensures the stability of SU(3) vacuum atoms, providing a thermodynamic foundation for quark confinement. This stability guarantees a strictly positive mass gap defined by the vacuum energy density and implies a Lorentzian quantum structure of spacetime. Moreover, it offers insights into the origins of both gravity/gauge duality and gravity/superconductor duality. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

18 pages, 251 KiB  
Article
Complex Riemannian Spacetime: Removal of Black Hole Singularities and Black Hole Paradoxes
by John W. Moffat
Axioms 2025, 14(6), 440; https://doi.org/10.3390/axioms14060440 - 4 Jun 2025
Viewed by 321
Abstract
An approach is presented to resolve key paradoxes in black hole physics through the application of complex Riemannian spacetime. We extend the Schwarzschild metric into the complex domain, employing contour integration techniques to remove singularities while preserving the essential features of the original [...] Read more.
An approach is presented to resolve key paradoxes in black hole physics through the application of complex Riemannian spacetime. We extend the Schwarzschild metric into the complex domain, employing contour integration techniques to remove singularities while preserving the essential features of the original solution. A new regularized radial coordinate is introduced, leading to a singularity-free description of black hole interiors. Crucially, we demonstrate how this complex extension resolves the long-standing paradox of event horizon formation occurring only in the infinite future of distant observers. By analyzing trajectories in complex spacetime, we show that the horizon can form in finite complex time, reconciling the apparent contradiction between proper and coordinate time descriptions. This approach also provides a framework for the analytic continuation of information across event horizons, resolving the Hawking information paradox. We explore the physical interpretation of the complex extension versus its projection onto real spacetime. The gravitational collapse of a dust sphere with negligible dust is explored in the complex spacetime extension. The approach offers a mathematically rigorous framework for exploring quantum gravity effects within the context of classical general relativity. Full article
(This article belongs to the Special Issue Complex Variables in Quantum Gravity)
24 pages, 274 KiB  
Review
Steven Weinberg’s Life for Physics
by Ralf Hofmann
Symmetry 2025, 17(6), 840; https://doi.org/10.3390/sym17060840 - 27 May 2025
Viewed by 1243
Abstract
This is a personal review of Steven Weinberg’s scientific autobiography “A Life in Physics”. A reflection on both, personal aspects and scientific milestones of Professor Weinberg’s role-model life is conducted to honour his lasting accomplishments as a great physicist, academic teacher, and public [...] Read more.
This is a personal review of Steven Weinberg’s scientific autobiography “A Life in Physics”. A reflection on both, personal aspects and scientific milestones of Professor Weinberg’s role-model life is conducted to honour his lasting accomplishments as a great physicist, academic teacher, and public activist in progressing high-energy particle theory and theoretical cosmology, and in raising public support for fundamental physics. Full article
16 pages, 506 KiB  
Article
Near-Horizon Carnot Engines Beyond Schwarzschild: Exploring Black Brane Thermodynamics
by Lotte Mertens and Jasper van Wezel
Entropy 2025, 27(5), 491; https://doi.org/10.3390/e27050491 - 1 May 2025
Viewed by 372
Abstract
Sadi Carnot’s seminal work laid the foundation for exploring the effects of thermodynamics across diverse domains of physics, stretching from quantum to cosmological scales. Here, we build on the principles of the original Carnot heat engine, and apply it in the context of [...] Read more.
Sadi Carnot’s seminal work laid the foundation for exploring the effects of thermodynamics across diverse domains of physics, stretching from quantum to cosmological scales. Here, we build on the principles of the original Carnot heat engine, and apply it in the context of a particular toy model black brane. This theoretical construct of an effectively two-dimensional, stable, and stationary gravitational object in four-dimensional spacetime derives from a hypothetical flat planet collapsed under the influence of gravity. By constructing a thermodynamic cycle involving three such black branes, we explore the possibility of energy extraction or mining, driven by the temperature gradients and gravitational potential differences characteristic of curved spacetime. Analytic solutions obtainable within this toy model illuminate key aspects of black hole thermodynamics in general, particularly for spacetimes that are not asymptotically flat. Central to these findings is the relation between gravitationally induced temperature ratios and entropy changes, which collectively offer a novel perspective on obtainable energy transfer processes around gravitational structures. This analysis highlights potential implications for understanding energy dynamics in gravitational systems in general, including for black hole evaporation and experimentally implemented black hole analogues. The presented findings not only emphasise the universality of the thermodynamic principles first uncovered by Carnot, but also suggest future research directions in gravitational thermodynamics. Full article
Show Figures

Figure 1

12 pages, 235 KiB  
Article
Casimir Effect and the Cosmological Constant
by Jaume Giné
Symmetry 2025, 17(5), 634; https://doi.org/10.3390/sym17050634 - 23 Apr 2025
Viewed by 1263
Abstract
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty [...] Read more.
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty principle that influences the quantum measurement process, the existence of a minimal measurable length can be heuristically deduced. The existence of this minimal measurable length leads to an apparent discretization of spacetime, as distinguishing below this minimal length becomes impossible. In topologically non-trivial cosmological models, the Casimir effect is significant since it alters the spectrum of vacuum fluctuations and leads to a non-zero Casimir energy density. This suggests that the topology of the Universe could influence its vacuum energy, potentially affecting its expansion dynamics. In this sense, the Casimir effect could contribute to the observed acceleration of the Universe’s expansion. Here, we use the Casimir effect to determine the value of the electromagnetic zero-point energy in the Universe, applying it to the regions outside and inside the Universe horizon or Hubble horizon and assuming the existence of this minimal length. The Casimir effect is directly related to the boundary conditions imposed by the geometry and symmetries of the Hubble horizon. The agreement of the obtained value with the observed cosmological constant is not exact and therefore the contribution of non-electromagnetic radiation (gravitational effects) must be take into account. Full article
(This article belongs to the Section Physics)
23 pages, 444 KiB  
Article
Center Symmetry Breaking in Calabi–Yau Compactifications
by Ivano Basile and Pouya Golmohammadi
Symmetry 2025, 17(4), 490; https://doi.org/10.3390/sym17040490 - 25 Mar 2025
Viewed by 342
Abstract
It is widely believed that global symmetries must be broken in Quantum Gravity. This includes higher-form symmetries, which are commonplace in supergravity coupled to vector multiplets. Recently, a quantitative criterion for the breaking of (higher-form) symmetries in effective field theories of gravity has [...] Read more.
It is widely believed that global symmetries must be broken in Quantum Gravity. This includes higher-form symmetries, which are commonplace in supergravity coupled to vector multiplets. Recently, a quantitative criterion for the breaking of (higher-form) symmetries in effective field theories of gravity has been proposed. We studied this criterion in the context of center one-form symmetries broken by BPS states in Calabi–Yau compactifications of type IIA string theory and M-theory. In a simple toy model, we evaluated the parameters quantifying the extent of symmetry breaking for large and small values of the moduli, comparing the scales of significant breaking with other relevant physical scales. Full article
(This article belongs to the Special Issue Symmetries, and Symmetry Breaking in String Theory)
Show Figures

Figure 1

40 pages, 1110 KiB  
Article
Time Scales of Slow-Roll Inflation in Asymptotically Safe Cosmology
by József Nagy, Sándor Nagy and Kornél Sailer
Universe 2025, 11(3), 77; https://doi.org/10.3390/universe11030077 - 21 Feb 2025
Viewed by 446
Abstract
Making use of the well-known renormalization group (RG) scale dependences of the gravitational couplings in the framework of the two-parameter Einstein–Hilbert (EH) theory of gravity, the single scalar field-driven cosmological inflation is discussed in a spatially homogeneous, isotropic, and flat model universe. The [...] Read more.
Making use of the well-known renormalization group (RG) scale dependences of the gravitational couplings in the framework of the two-parameter Einstein–Hilbert (EH) theory of gravity, the single scalar field-driven cosmological inflation is discussed in a spatially homogeneous, isotropic, and flat model universe. The inflaton field is represented by a one-component real, non-self-interacting, massive scalar field minimally coupled to gravity. Cases without and with the incorporation of the RG scaling of the inflaton mass are compared with each other and with the corresponding classical case. It is shown that the quantum improvement drastically alters the timing of the slow-roll inflation with the desirable number N,60 e-foldings, as compared with the classical case. Furthermore, accounting for the RG flow of the inflaton mass has an enormous effect on the timing of the desirable slow roll, too. Although providing the desirable slow-roll inflation, none of the versions of the investigated quantum-improved toy models provide a realistic value of the amplitude of the scalar perturbations. Full article
Show Figures

Figure 1

7 pages, 190 KiB  
Communication
Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons
by John W. Moffat
Universe 2025, 11(1), 28; https://doi.org/10.3390/universe11010028 - 20 Jan 2025
Cited by 2 | Viewed by 906
Abstract
This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO. We demonstrate that a graviton scattering and quantum optics model succeeds in explaining the observed arm displacements, while the classical gravitational wave approach and a quantum graviton [...] Read more.
This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO. We demonstrate that a graviton scattering and quantum optics model succeeds in explaining the observed arm displacements, while the classical gravitational wave approach and a quantum graviton energy method also successfully predict the correct results. We provide a detailed analysis of why the quantum graviton energy approach succeeds, highlighting the importance of collective behavior and the quantum–classical correspondence in gravitational wave physics. Our findings contribute to the ongoing discussion about the quantum nature of gravity and its observable effects in macroscopic physics. Full article
(This article belongs to the Section Astroinformatics and Astrostatistics)
30 pages, 651 KiB  
Article
Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation
by Mauricio Contreras González, Roberto Ortiz Herrera and José González Suárez
Axioms 2025, 14(1), 60; https://doi.org/10.3390/axioms14010060 - 15 Jan 2025
Viewed by 880
Abstract
This paper explores the implications of modifying the canonical Heisenberg commutation relations over two simple systems, such as the free particle and the tunnel effect generated by a step-like potential. The modified commutation relations include position-dependent and momentum-dependent terms analyzed separately. For the [...] Read more.
This paper explores the implications of modifying the canonical Heisenberg commutation relations over two simple systems, such as the free particle and the tunnel effect generated by a step-like potential. The modified commutation relations include position-dependent and momentum-dependent terms analyzed separately. For the position deformation case, the corresponding free wave functions are sinusoidal functions with a variable wave vector k(x). In the momentum deformation case, the wave function has the usual sinusoidal behavior, but the energy spectrum becomes non-symmetric in terms of momentum. Tunneling probabilities depend on the deformation strength for both cases. Also, surprisingly, the quantum mechanical model generated by these modified commutation relations is related to the Black–Scholes model in finance. In fact, by taking a particular form of a linear position deformation, one can derive a Black–Scholes equation for the wave function when an external electromagnetic potential is acting on the particle. In this way, the Scholes model can be interpreted as a quantum-deformed model. Furthermore, by identifying the position coordinate x in quantum mechanics with the underlying asset S, which in finance satisfies stochastic dynamics, this analogy implies that the Black–Scholes equation becomes a quantum mechanical system defined over a random spatial geometry. If the spatial coordinate oscillates randomly about its mean value, the quantum particle’s mass would correspond to the inverse of the variance of this stochastic coordinate. Further, because this random geometry is nothing more than gravity at the microscopic level, the Black–Scholes equation becomes a possible simple model for understanding quantum gravity. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop