Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = effective sound velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 2413 KiB  
Article
Effect of PPO/PEO Ratio on the Phase Behavior of Reverse Pluronics
by Alejandro Aguilar-Ramírez, César Alexsander Machado-Cervantes, Raúl Ortega-Córdova, Víctor Vladimir Amílcar Fernández-Escamilla, Yahya Rharbi, Gabriel Landázuri-Gómez, Emma Rebeca Macías-Balleza and J. Félix Armando Soltero-Martínez
Polymers 2025, 17(15), 2061; https://doi.org/10.3390/polym17152061 - 28 Jul 2025
Viewed by 350
Abstract
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved [...] Read more.
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved by varying the PPO/PEO ratio and the molecular weight, on the phase behavior of three reverse Pluronics: 10R5 [(PPO)8–(PEO)22–(PPO)8], 17R4 [(PPO)14–(PEO)24–(PPO)14] and 31R1 [(PPO)26–(PEO)7–(PPO)26]. A broad set of physical measurements, including density, sound velocity, viscosity, and surface tension, was used to characterize the physical properties of the solutions. These data were complemented by additional techniques such as direct observation, dynamic light scattering, and rheological measurements. Based on the primary measurements, molar volume, apparent adiabatic compressibility, and hydration profiles were subsequently derived. Phase diagrams were constructed for each system over concentration ranges of 0.1–90 wt.% and temperatures between 6 and 70 °C, identifying distinct regions corresponding to random networks, flower-like micelles, and micellar networks. Notably, the 31R1/water system does not form flower-like micelles, whereas both the 17R4/water and 10R5/water systems display such structures, albeit in a narrow interval, that shift toward higher concentrations and temperatures with increasing PPO/PEO ratio. Altogether, the present study provides new insights into the physicochemical behavior of reverse Pluronic systems, offering a foundation for their rational design as hydrophobic nanocarriers, either as standalone entities or in conjunction with other copolymers. Full article
(This article belongs to the Special Issue Self-Assembly of Block Copolymers and Nanoparticles)
Show Figures

Graphical abstract

20 pages, 1539 KiB  
Article
Preliminary Study for Raicilla Authentication by PCA and Cluster on Some Physicochemical Properties
by Alejandra Carreon-Alvarez, Florentina Zurita, Clara Carreon-Alvarez, Marciano Sanchez-Tizapa, Héctor Huerta, Nancy Tepale and Juan Pablo Morán-Lázaro
Beverages 2025, 11(4), 107; https://doi.org/10.3390/beverages11040107 - 24 Jul 2025
Viewed by 894
Abstract
Raicilla is a distinctive Mexican beverage produced in two central regions of Jalisco. This study aimed to analyze the physicochemical parameters of 25 raicilla alcoholic drinks originating from the Coast and Sierra regions. Each of the 25 raicilla brands underwent measurements of pH, [...] Read more.
Raicilla is a distinctive Mexican beverage produced in two central regions of Jalisco. This study aimed to analyze the physicochemical parameters of 25 raicilla alcoholic drinks originating from the Coast and Sierra regions. Each of the 25 raicilla brands underwent measurements of pH, conductivity, alcohol content, total solids, viscosity, sound velocity, density, and refractive index. Notably, these measurements are cost-effective and their analysis is straightforward. The results were analyzed using principal component analysis (PCA) and cluster analysis. According to the PCA, two main components were identified, explaining 81.77% of the total variability of the physicochemical measurements of the distinct Coast and Sierra regions. Furthermore, applying Fisher’s LSD to the Sierra raicilla cluster allowed for the identification of variations. Specifically, samples from the Sierra zone groups were identified through cluster analysis, demonstrating similarities in physicochemical parameters; both statistical methods indicated no significant differences in the physicochemical parameters between a more acidic pH, higher conductivity, and greater density than those from the Coast zone. After the analysis was carried out, it was possible to find similarities and differences between the raicilla produced in the two regions, so it is possible to assume that using these results could facilitate the authentication of raicilla. Full article
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 404
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Viewed by 245
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

18 pages, 4389 KiB  
Article
Acoustic Wave Propagation Characteristics of Maize Seed and Surrounding Region with the Double Media of Seed–Soil
by Yadong Li, Caiyun Lu, Hongwen Li, Jin He, Zhinan Wang and Chengkun Zhai
Agriculture 2025, 15(14), 1540; https://doi.org/10.3390/agriculture15141540 - 17 Jul 2025
Viewed by 334
Abstract
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations [...] Read more.
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations and analyze propagation characteristics. The effects of the compression ratio (0/6/12%), excitation frequency (20/40/60 kHz), and amplitude (5/10/15 μm) on signal variation and attenuation were analyzed. The results show consistent trends: time/frequency domain signal intensity increased with a higher compression ratio and amplitude but decreased with frequency. Comparing ultrasonic signals at soil particles before and after the seed along the propagation path shows that the seed significantly absorbs and attenuates ultrasonic waves. Time domain intensity drops 93.99%, and first and residual wave frequency peaks decrease by 88.06% and 96.39%, respectively. Additionally, comparing ultrasonic propagation velocities in the double media of seed–soil and the single soil medium reveals that the velocity in the seed is significantly higher than that in the soil. At compression ratios of 0%, 6%, and 12%, the sound velocity in the seed is 990.47%, 562.72%, and 431.34% of that in the soil, respectively. These findings help distinguish seed presence and provide a basis for ultrasonic seed position monitoring after sowing. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 495
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

24 pages, 5486 KiB  
Article
Revealing the Influence of Material Properties of Shaped Charge Liner on Penetration Performance via Numerical Simulation and Machine Learning
by Yan Wang, Jinxu Liu, Xingwei Liu, Xinya Feng, Yifan Du and Jie Cao
Materials 2025, 18(12), 2742; https://doi.org/10.3390/ma18122742 - 11 Jun 2025
Viewed by 409
Abstract
The metallic shaped charge liner (SCL) is widely utilized in the defense industry, oil perforation, cutting, and other industrial fields due to the powerful penetration performance. However, quantitative law and underlying mechanisms of material properties affecting SCL penetration performance are unclear. Based on [...] Read more.
The metallic shaped charge liner (SCL) is widely utilized in the defense industry, oil perforation, cutting, and other industrial fields due to the powerful penetration performance. However, quantitative law and underlying mechanisms of material properties affecting SCL penetration performance are unclear. Based on the real and virtual material properties, by combining numerical simulation with machine learning, the influence of material properties on SCL penetration performance was systematically studied. The findings in the present work provided new insights into the penetration mechanism and corresponding influencing factors of the metal jet. It indicated that penetration depth was dominated by the melting point, specific heat, and density of the SCL materials rather than the conventionally perceived plasticity and sound velocity. Average perforation diameter was dominated by the density and plasticity of the SCL materials. Particularly, the temperature rise and thermal softening effect of the SCL controlled by the melting point and specific heat have a significant effect on the “self-consumption” of the metal jet and further on the penetration ability. Additionally, the density of the SCL influences the penetration depth deeply via dynamic pressure of the jet, but the influence of density on penetration depth decreases with the increase in density. The correlation between the key properties and penetration performance was obtained according to a quadratic polynomial regression algorithm, by which the penetration potential of SCL materials can be quantitatively evaluated. Overall, the present study provides a new SCL material evaluation and design method, which can help to expand the traditional penetration regime of the SCL in terms of the penetration depth and perforation and is expected to be used for overcoming the pierced and lateral enhancement trade-off. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

12 pages, 1336 KiB  
Article
High-Precision Positioning Method for Robot Acoustic Ranging Based on Self-Optimization of Base Stations
by Zekai Zhang, Jiayu Chen, Bishu Gao, Yefeng Sun, Xiaofeng Ling, Zheyuan Li and Liang Gong
Appl. Sci. 2025, 15(10), 5478; https://doi.org/10.3390/app15105478 - 13 May 2025
Viewed by 410
Abstract
In response to the demand for high-precision positioning within confined or indoor environments, the application of acoustic ranging methods has been widely adopted by numerous engineers. Currently, time-of-flight (TOF)-based acoustic ranging positioning systems face challenges such as the susceptibility of sound velocity to [...] Read more.
In response to the demand for high-precision positioning within confined or indoor environments, the application of acoustic ranging methods has been widely adopted by numerous engineers. Currently, time-of-flight (TOF)-based acoustic ranging positioning systems face challenges such as the susceptibility of sound velocity to environmental factors and the loss of acoustic signals at both short and long distances, which leads to a reduction in positioning accuracy. This paper addresses these issues by proposing a high-precision confidence interval weighting method for acoustic ranging and further introduces a method for base station deployment and self-optimization positioning within fixed indoor base station scenarios. The method is based on trilateration positioning, establishing criteria for the division of central and boundary areas. It categorizes mobile terminal nodes based on their coordinates from the previous moment, selects distance information from nearby base stations in different modes, and employs weights for decision-making and computation, ultimately yielding two-dimensional positioning coordinates. Experiments demonstrate that the proposed method can effectively enhance the positioning accuracy of acoustic positioning systems compared to traditional four-base station weighted average positioning algorithms. Full article
Show Figures

Figure 1

33 pages, 15081 KiB  
Article
Research on the Acoustic Attenuation Performance and Optimization of Split-Stream Rushing Exhaust Mufflers in the Presence of Acoustic–Structure Coupling Effects
by Peiyan Huang, Pei Wu, He Su, Jing Xue, Haijun Zhang, Yongan Zhang and Yuchen Guo
Appl. Sci. 2025, 15(9), 4722; https://doi.org/10.3390/app15094722 - 24 Apr 2025
Viewed by 359
Abstract
The split-stream rushing exhaust muffler is a design that improves acoustic attenuation performance and reduces exhaust resistance by lowering the internal airflow velocity. In the past, researchers often applied a rigid treatment to the muffler wall when studying this new muffler and neglected [...] Read more.
The split-stream rushing exhaust muffler is a design that improves acoustic attenuation performance and reduces exhaust resistance by lowering the internal airflow velocity. In the past, researchers often applied a rigid treatment to the muffler wall when studying this new muffler and neglected the acoustic–structure coupling effect. As a result, differences existed between the calculated results and practical situations. This research employed COMSOL 6.2 software to perform finite element calculations on the acoustic performance of this muffler under acoustic–structural coupling. It analyzed the causes of transmission loss discrepancies with and without the acoustic–structural coupling effect, and the findings were validated experimentally. Building upon this foundation, further optimization and refinement of the muffler’s structural parameters were conducted. The results demonstrated that the transmission loss curve under the acoustic–structure coupling effect followed a similar trend to that observed without the acoustic–structure coupling effect. However, the transmission loss curve changed owing to the influence of the acoustic–structure coupling effect on sound pressure, which resulted in a 6.24% decrease in the average transmission loss. The transmission loss curve accounting for the acoustic–structure coupling effect aligned more closely with the test results than the curve that did not account for the coupling effect. Furthermore, this study delved into the influences of the wall thickness, inner tube diameter, and inner tube length on the muffler’s acoustic performance under acoustic–structural coupling. Subsequently, the muffler was optimized based on the findings. Full article
Show Figures

Figure 1

22 pages, 24655 KiB  
Article
Numerical Analyses of Aerodynamic and Aeroacoustic Interaction Characteristics of Rear-Mounted Propeller on Highspeed Helicopter
by Dazhi Sun, Xi Chen, Qijun Zhao and Weicheng Bao
Aerospace 2025, 12(4), 343; https://doi.org/10.3390/aerospace12040343 - 15 Apr 2025
Viewed by 1220
Abstract
To study the interference effects of the fuselage/rear-mounted propeller on the aerodynamic and aeroacoustic characteristics at a forward speed of Ma = 0.323, a multi-component flowfield simulation and an aeroacoustic prediction method were employed. Firstly, hybrid grids were adopted in the embedded grid [...] Read more.
To study the interference effects of the fuselage/rear-mounted propeller on the aerodynamic and aeroacoustic characteristics at a forward speed of Ma = 0.323, a multi-component flowfield simulation and an aeroacoustic prediction method were employed. Firstly, hybrid grids were adopted in the embedded grid system, and a new boundary identification method was developed to address the overlap problem by adjusting the grid boundary based on entities. The simulations were based on the URANS and FW-H equations. The employed numerical analysis methods were validated through comparisons with experimental data. Then, the aerodynamic and aeroacoustic characteristics of the propeller were analyzed, and the interference of the fuselage with the propeller was discussed in detail. Key findings included the following. Under fuselage interference, the sound pressure level (SPL) of the propeller at those observers near the forward flight direction increased dramatically, by more than 10 dB, especially in the range of two to six times the fundamental frequency. A downward vertical velocity reduced the SPLs beneath the fuselage, while an upward one had the opposite effect. The flat/vertical tails’ deceleration effect caused a thrust surge in the propeller, with most magnitudes around 20%. At different forward speeds, the thrust surge and SPL changes were similar. Full article
(This article belongs to the Special Issue Aerodynamics and Aeroacoustics of Unsteady Flow)
Show Figures

Figure 1

18 pages, 10372 KiB  
Article
Acoustic Fabry–Perot Resonance Detector for Passive Acoustic Thermometry and Sound Source Localization
by Yan Yue, Zhifei Dong and Zhi-mei Qi
Sensors 2025, 25(8), 2445; https://doi.org/10.3390/s25082445 - 12 Apr 2025
Viewed by 458
Abstract
Acoustic temperature measurement (ATM) and sound source localization (SSL) are two important applications of acoustic sensors. The development of novel acoustic sensors capable of both ATM and SSL is an innovative research topic with great interest. In this work, an acoustic Fabry-Perot resonance [...] Read more.
Acoustic temperature measurement (ATM) and sound source localization (SSL) are two important applications of acoustic sensors. The development of novel acoustic sensors capable of both ATM and SSL is an innovative research topic with great interest. In this work, an acoustic Fabry-Perot resonance detector (AFPRD) and its cross-shaped array were designed and fabricated, and the passive ATM function of the AFPRD and the SSL capability of the AFPRD array were simulated and experimentally verified. The AFPRD consists of an acoustic waveguide and a microphone with its head inserted into the waveguide, which can significantly enhance the microphone’s sensitivity via the FP resonance effect. As a result, the frequency response curve of AFPRD can be easily measured using weak ambient white noise. Based on the measured frequency response curve, the linear relationship between the resonant frequency and the resonant mode order of the AFPRD can be determined, the slope of which can be used to calculate the ambient sound velocity and air temperature. The AFPRD array was prepared by using four bent acoustic waveguides to expand the array aperture, which combined with the multiple signal classification (MUSIC) algorithm can be used for distant multi-target localization. The SSL accuracy can be improved by substituting the sound speed measured in real time into the MUSIC algorithm. The AFPRD’s passive ATM function was verified in an anechoic room with white noise as low as 17 dB, and the ATM accuracy reached 0.4 °C. The SSL function of the AFPRD array was demonstrated in the outdoor environment, and the SSL error of the acoustic target with a sound pressure of 35 mPa was less than 1.2°. The findings open up a new avenue for the development of multifunctional acoustic detection devices and systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical and Optoelectronic Acoustic Sensors)
Show Figures

Figure 1

18 pages, 4873 KiB  
Article
Computational Modeling of the Effect of Nitrogen on the Plasma Spray Process with Ar–H2–N2 Mixtures
by Byeongryun Jeon, Hansol Kwon, Yeon Woo Yoo, Do Hyun Kim, Youngjin Park, Yong-jin Kang, Anthony B. Murphy and Hunkwan Park
Processes 2025, 13(4), 1155; https://doi.org/10.3390/pr13041155 - 10 Apr 2025
Viewed by 680
Abstract
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, [...] Read more.
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, remains inadequately characterized. In this study, a three-dimensional MHD simulation using OpenFOAM (v2112) was performed on a Metco 9MB plasma torch operating in an Ar–H2–N2 environment under the LTE assumption to investigate the effect of nitrogen addition. The simulation revealed that increasing nitrogen levels results in a dual effect on the temperature distribution: temperatures rise near the cathode tip and decrease downstream, likely due to variations in the net emission coefficient and enthalpy characteristics of nitrogen. Furthermore, although the outlet velocity remained largely unaffected, the Mach number increased as the nitrogen reduced the speed of sound. These findings provide essential insights for optimizing ternary gas mixtures to enhance coating efficiency in thermal spray applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 13853 KiB  
Article
Investigation on the Full-Aperture Diffraction Efficiency of AOTF Based on Tellurium Dioxide Crystals
by Zhiyuan Mi, Huijie Zhao, Qi Guo, Zhoujun Zhong and Chengsheng Zhou
Photonics 2025, 12(4), 335; https://doi.org/10.3390/photonics12040335 - 2 Apr 2025
Viewed by 487
Abstract
The influence of acoustic field distribution and temperature variations on the full-aperture diffraction efficiency of non-collinear acousto-optic tunable filters (AOTFs) was investigated based on tellurium dioxide crystals. The strong acoustic anisotropy of the crystal induces non-uniform acoustic energy distribution, limiting the overall diffraction [...] Read more.
The influence of acoustic field distribution and temperature variations on the full-aperture diffraction efficiency of non-collinear acousto-optic tunable filters (AOTFs) was investigated based on tellurium dioxide crystals. The strong acoustic anisotropy of the crystal induces non-uniform acoustic energy distribution, limiting the overall diffraction efficiency. To analyze this effect, the acoustic field distribution within a large-aperture AOTF was simulated, and the diffraction efficiency across different aperture regions was evaluated and experimentally validated. The results demonstrate that sound beam contraction and acoustic energy non-uniformity significantly reduce the peak diffraction efficiency and increase the power required to achieve high diffraction efficiency. Additionally, temperature-induced variations in acoustic velocity alter the acoustic field structure, leading to spatially non-uniform changes in diffraction efficiency. Both simulations and experimental measurements confirm that while the overall impact of temperature on full-aperture diffraction efficiency remains relatively small, localized variations are pronounced, highlighting potential inaccuracies in single-beam-based efficiency measurements. Full article
Show Figures

Figure 1

13 pages, 1754 KiB  
Article
Cross-Modal Interactions and Movement-Related Tactile Gating: The Role of Vision
by Maria Casado-Palacios, Alessia Tonelli, Claudio Campus and Monica Gori
Brain Sci. 2025, 15(3), 288; https://doi.org/10.3390/brainsci15030288 - 8 Mar 2025
Viewed by 1205
Abstract
Background: When engaging with the environment, multisensory cues interact and are integrated to create a coherent representation of the world around us, a process that has been suggested to be affected by the lack of visual feedback in blind individuals. In addition, the [...] Read more.
Background: When engaging with the environment, multisensory cues interact and are integrated to create a coherent representation of the world around us, a process that has been suggested to be affected by the lack of visual feedback in blind individuals. In addition, the presence of voluntary movement can be responsible for suppressing somatosensory information processed by the cortex, which might lead to a worse encoding of tactile information. Objectives: In this work, we aim to explore how cross-modal interaction can be affected by active movements and the role of vision in this process. Methods: To this end, we measured the precision of 18 blind individuals and 18 age-matched sighted controls in a velocity discrimination task. The participants were instructed to detect the faster stimulus between a sequence of two in both passive and active touch conditions. The sensory stimulation could be either just tactile or audio–tactile, where a non-informative sound co-occurred with the tactile stimulation. The measure of precision was obtained by computing the just noticeable difference (JND) of each participant. Results: The results show worse precision with the audio–tactile sensory stimulation in the active condition for the sighted group (p = 0.046) but not for the blind one (p = 0.513). For blind participants, only the movement itself had an effect. Conclusions: For sighted individuals, the presence of noise from active touch made them vulnerable to auditory interference. However, the blind group exhibited less sensory interaction, experiencing only the detrimental effect of movement. Our work should be considered when developing next-generation haptic devices. Full article
(This article belongs to the Special Issue Multisensory Perception of the Body and Its Movement)
Show Figures

Figure 1

Back to TopTop