Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ecological sluice regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12895 KiB  
Article
Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem
by Ze Li, Lin Li and Jing Liu
Appl. Sci. 2025, 15(13), 6977; https://doi.org/10.3390/app15136977 - 20 Jun 2025
Viewed by 504
Abstract
To investigate the erosion and deposition evolution characteristics of the Xinqiman–Kelelik reach along the main stem of the Tarim River, this study analyzed river channel dynamics and planform morphological changes using Landsat satellite imagery (1993–2024) and hydrological data (water discharge and sediment load) [...] Read more.
To investigate the erosion and deposition evolution characteristics of the Xinqiman–Kelelik reach along the main stem of the Tarim River, this study analyzed river channel dynamics and planform morphological changes using Landsat satellite imagery (1993–2024) and hydrological data (water discharge and sediment load) from gauge stations. The results show that the thalweg line swings indefinitely in the river. The thalweg length increased by 29 km, while the mean channel width decreased by 0.28 km. The sinuosity index rose from 1.95 to 2.34, indicating a gradual intensification of channel curvature. The north bank is in a state of siltation, while the south bank is in a state of erosion. The riverbank exhibited an overall southward migration. The farmland area in the study area increased from 1510 hectares in 1993 to 5140 hectares in 2024. During this period, the thalweg near the water-diversion sluice continuously shifted toward the sluice side. To ensure flood protection safety for farmlands and villages on both banks, as well as ecological water diversion, river channel regulation and channel pattern control should be implemented. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Environmental Sciences)
Show Figures

Figure 1

17 pages, 9097 KiB  
Article
Dimensional Analysis of Hydrological Response of Sluice Gate Operations in Water Diversion Canals
by Hengchang Li, Zhenyong Cui, Jieyun Wang, Chunping Ning, Xiangyu Xu and Xizhi Nong
Water 2025, 17(11), 1662; https://doi.org/10.3390/w17111662 - 30 May 2025
Viewed by 459
Abstract
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial [...] Read more.
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial canals under the control of sluice gates is lacking, as are scientifically accurate calculations of sluice gate discharge. Therefore, addressing these gaps in long-distance artificial water transfer is of great importance. In this study, real-time operation data of 61 sluice gates, pertaining to the period from May 2019 to July 2021, including data on water levels, flow discharge, velocity, and sluice gate openings in the main canal of the Middle Route of the South-to-North Water Diversion Project of China, were analyzed. The discharge coefficient of each sluice gate was calculated by the dimensional analysis method, and the unit-width discharge was modeled as a function of gate opening (e), gravity acceleration (g), and energy difference (H). Through logarithmic transformation of the Buckingham Pi theorem-derived equation, a linear regression model was used. Data within the relative opening orifice flow regime were selected for fitting, yielding the discharge coefficients and stage–discharge relationships. The results demonstrate that during the study period, the water level, discharge, and velocity of the main canal showed an increasing trend year by year. The dimensional analysis results indicate that the stage–discharge response relationship followed a power function (Q(He)constant) and that there was a good linear relationship between lg(He) and lg(Ke) (R2 > 0.95, K=(q2/g)1/3). By integrating geometric, operational, and hydraulic parameters, the proposed method provides a practical tool and a scientific reference for analyzing sluice gates’ regulation and hydrological response characteristics, optimizing water allocation, enhancing ecological management, and improving operational safety in long-distance inter-basin water diversion projects. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

19 pages, 4428 KiB  
Article
Research on the Impact of Gate Engineering on Seawater Exchange Capacity
by Mingchang Li, Xinran Jiang and Aizhen Liu
J. Mar. Sci. Eng. 2025, 13(6), 1078; https://doi.org/10.3390/jmse13061078 - 29 May 2025
Viewed by 367
Abstract
Over the past two decades, extensive coastal development in China has led to numerous small-scale enclosed coastal water bodies. Due to complex shoreline geometries, these areas suffer from disturbed hydrodynamic conditions, weak water exchange, which quickly leads to sediment accumulation, and difficulty maintaining [...] Read more.
Over the past two decades, extensive coastal development in China has led to numerous small-scale enclosed coastal water bodies. Due to complex shoreline geometries, these areas suffer from disturbed hydrodynamic conditions, weak water exchange, which quickly leads to sediment accumulation, and difficulty maintaining ecological water levels, posing serious environmental threats. Enhancing seawater exchange capacity and achieving coordinated optimization of exchange efficiency and ecological water level are critical prerequisites for the environmental restoration of eutrophic enclosed coastal areas. This study takes the Ligao Block in Tianjin as a case study and proposes a real-time sluice gate regulation scheme. By incorporating hydrodynamic conditions, engineering layout, and present characteristics of the benthic substrate environment, the number, width, location, and operation modes of sluice gates are optimized to maximize water exchange efficiency while maintaining natural flow patterns. The result of the numerical simulation of hydrodynamic exchange and intelligent optimization analysis reveals that the optimal sluice gate operation strategy should be tailored to regional tidal flow characteristics and substrate conditions. Through intelligent scheduling of exchange sluice gates, systematic gate parameter optimization, and active control of gate opening, this approach achieves intelligent seawater exchange, optimized flow dynamics, active exchange, and sustained ecological water levels in enclosed coastal water bodies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 3523 KiB  
Article
Optimization of Ecological Dispatch and Hydrodynamic Improvements in Tidal River Channels Using SWMM Modeling: A Case Study of the Longjin Yangqi Area in Kurama Mountain
by Wentao Zhou and Weihong Liao
Water 2024, 16(22), 3336; https://doi.org/10.3390/w16223336 - 20 Nov 2024
Cited by 1 | Viewed by 870
Abstract
Being tidal-sensitive, the river channel in the Longjin Yangqi area of Cangshan, Fuzhou City, is challenged further because of rapid urbanization. Thus, resultant remediation efforts are crucial. This study aims analyzes hydrodynamic characteristics of the area and, secondly, proposes an ecological dispatch solution [...] Read more.
Being tidal-sensitive, the river channel in the Longjin Yangqi area of Cangshan, Fuzhou City, is challenged further because of rapid urbanization. Thus, resultant remediation efforts are crucial. This study aims analyzes hydrodynamic characteristics of the area and, secondly, proposes an ecological dispatch solution with evaluation of its effectiveness through the Storm Water Management Model (SWMM). The chief tasks cover imitating rainfall runoff, optimizing sluice gate activities, reorganizing pump management, and reshaping river morphology to bolster flood control and water quality. Improvements were shown through ecological dispatch strategies, which suggested increasing the channel width for the river and deepening the riverbed, thereby increasing the flood duration, lowering water levels, and less frequent flood occurrences. Optimizing sluice gate settings improved efficiency in the regulation of water flow and reduced scour or siltation problems. Various adjustments to pumping operations scattered over various times were based on live-data analysis, therefore enhancing water flow and the self-purification capacity of the water body. The SWMM was directly applied in this tidal river for urban water resource management with data processing from over 100,000 points in simulations. Wherever needed, changes to model parameters were made to improve its capability and enhance its appropriate use in future urban settings. As a whole, this study presents a plan for sustainable water resource management paired with environmental conditions for the benefit of over 500,000 urban residents in the Longjin Yangqi area. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 19147 KiB  
Article
Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River
by Jie Wu, Fan Gao, Bing He, Fangyu Sheng, Hailiang Xu, Kun Liu and Qin Zhang
Forests 2024, 15(11), 2005; https://doi.org/10.3390/f15112005 - 14 Nov 2024
Cited by 3 | Viewed by 1271
Abstract
Ecological sluices were constructed along the Tarim River to supplement the ecosystem’s water supply. However, the impact of water regulation by these sluices on the surface water area (SWA) and its relationship with the vegetation response remain unclear. To increase the efficiency of [...] Read more.
Ecological sluices were constructed along the Tarim River to supplement the ecosystem’s water supply. However, the impact of water regulation by these sluices on the surface water area (SWA) and its relationship with the vegetation response remain unclear. To increase the efficiency of ecological water use, it is crucial to study the response of SWA to water control by the ecological gates and its relationship with vegetation restoration. We utilized the Google Earth Engine (GEE) cloud platform, which integrates Landsat-5/7/8 satellite imagery and employs methods such as automated waterbody extraction via mixed index rule sets, field investigation data, Sen + MK trend analysis, mutation analysis, and correlation analysis. Through these techniques, the spatiotemporal variations in SWA in the middle reaches of the Tarim River (MROTR) from 1990–2022 were analyzed, along with the relationships between these variations and vegetation restoration. From 1990–2022, the SWA in the MROTR showed an increasing trend, with an average annual growth rate of 12.47 km2 per year. After the implementation of ecological gates water regulations, the SWA significantly increased, with an average annual growth rate of 28.8 km2 per year, while the ineffective overflow within 8 km of the riverbank notably decreased. The NDVI in the MROTR exhibited an upward trend, with a significant increase in vegetation on the northern bank after ecological sluice water regulation. This intervention also mitigated the downward trend of the medium and high vegetation coverage types. The SWA showed a highly significant negative correlation with low-coverage vegetation within a 5-km range of the river channel in the same year and a significant positive correlation with high-coverage vegetation within a 15-km range. The lag effect of SWA influenced the growth of medium- and high-coverage vegetation. These findings demonstrated that the large increase in SWA induced by ecological gate water regulation positively impacted vegetation restoration. This study provides a scientific basis for water resource regulation and vegetation restoration in arid regions globally. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

24 pages, 6603 KiB  
Article
Reservoir Regulation for Ecological Protection and Remediation: A Case Study of the Irtysh River Basin, China
by Dan Wang, Shuanghu Zhang, Guoli Wang, Yin Liu, Hao Wang and Jingjing Gu
Int. J. Environ. Res. Public Health 2022, 19(18), 11582; https://doi.org/10.3390/ijerph191811582 - 14 Sep 2022
Cited by 7 | Viewed by 2363
Abstract
Hydrological processes play a key role in ecosystem stability in arid regions. The operation of water conservancy projects leads to changes in the natural hydrological processes, thereby damaging the ecosystem balance. Ecological regulation is an effective non-engineering measure to relieve the influence of [...] Read more.
Hydrological processes play a key role in ecosystem stability in arid regions. The operation of water conservancy projects leads to changes in the natural hydrological processes, thereby damaging the ecosystem balance. Ecological regulation is an effective non-engineering measure to relieve the influence of water conservancy projects on ecosystems. However, there are still some problems, such as an insufficient understanding of hydraulic processes and difficulty evaluating the application effects. In this study, the theory of ecological reservoir regulation coupled with hydrological and ecological processes was examined and ecological protection and remediation were investigated using the valley forests and grasslands in the Irtysh River Basin as a case study. The results demonstrated that (1) to meet the demand of the hydrological processes in the valley forests and grasslands, in terms of ecological regulation, the peak flow and flood peak duration of the reservoir, named 635, in the Irtysh River Basin should be 1000 m3 s−1 and 168 h, respectively, and the total water volume of ecological regulation should be 605 million m³. Ecological regulation can guarantee that the floodplain range reaches 64.3% of the core area of ecological regulation and the inundation duration in most areas is between 4–8 d; (2) an insufficient ecological water supply would seriously affect the inundation effects. The inundation areas were reduced by 2.8, 5.1, 10.3, and 19.3%, respectively, under the four insufficient ecological water supply conditions (528, 482, 398, and 301 million m3), and the inundation duration showed a general decreasing trend; (3) the construction of ecological sluices and the optimization of the reservoir regulation rules could effectively relieve the influences of an insufficient ecological water supply. At water supply volumes of 528 and 482 million m3, the regulation rules should assign priority to the flood peak flow; at water supply volumes of 398 and 301 million m3, the regulation rules should assign priority to the flood peak duration. Consequently, this study provides a reference for ecological protection in arid regions and the optimization of ecological regulation theories. Full article
Show Figures

Figure 1

Back to TopTop