Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = eclipse seasons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1236 KiB  
Review
A Comprehensive Review of Surface Ozone Variations in Several Indian Hotspots
by K. A. Keerthi Lakshmi, T. Nishanth, M. K. Satheesh Kumar and K. T. Valsaraj
Atmosphere 2024, 15(7), 852; https://doi.org/10.3390/atmos15070852 - 19 Jul 2024
Cited by 5 | Viewed by 3145
Abstract
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately [...] Read more.
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately influence the lifespan of various gases in the atmosphere. The elevated surface O3 levels resulting from anthropogenic activities have detrimental effects on both human health and agricultural productivity. This paper provides a comprehensive analysis of the variations in surface O3 levels across various regions in the Indian subcontinent, focusing on both spatial and temporal changes. The study is based on an in-depth review of literature spanning the last thirty years in India. Based on the findings of the latest study, the spatial distribution of surface O3 indicates a rise of approximately 50–70 ppbv during the summer and pre-monsoon periods in the northern region and Indo-Gangetic Plain. Moreover, elevated levels of surface O3 (40–70 ppbv) are observed during the pre-monsoon/summer season in the western, southern, and peninsular Indian regions. The investigation also underscores the ground-based observations of diurnal and seasonal alterations in surface O3 levels at two separate sites (rural and urban) in Kannur district, located in southern India, over a duration of nine years starting from January 2016. The O3 concentration exhibits an increasing trend of 7.91% (rural site) and 5.41% (urban site), ascribed to the rise in vehicular and industrial operations. This review also presents a succinct summary of O3 fluctuations during solar eclipses and nocturnal firework displays in the subcontinent. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
Susceptibility of Yellow Squash and Zucchini Cultivars to the Sweetpotato Whitefly, Bemisia tabaci Gennadius (MEAM1), in the Southeastern United States
by George N. Mbata, Yinping Li, Sanower Warsi and Alvin M. Simmons
Insects 2024, 15(6), 429; https://doi.org/10.3390/insects15060429 - 6 Jun 2024
Cited by 2 | Viewed by 4031
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) Middle East–Asia Minor 1 (MEAM1), causes significant losses to vegetable crops directly by sap-feeding, inducing plant physiological disorders, and elevating the build-up of sooty mold, and indirectly by transmitting plant viruses. In this study, we evaluated the [...] Read more.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) Middle East–Asia Minor 1 (MEAM1), causes significant losses to vegetable crops directly by sap-feeding, inducing plant physiological disorders, and elevating the build-up of sooty mold, and indirectly by transmitting plant viruses. In this study, we evaluated the susceptibility of 20 yellow squash and zucchini (Cucurbita pepo) cultivars to MEAM1, across three growing seasons in the southeastern United States. Weekly sampling of the numbers of MEAM1 adults, nymphs, and eggs were conducted from the fourth week after seed sowing and across 6 weeks during the summer and fall of 2021 and five weeks during the fall of 2022. In general, adult whitefly populations were high during the first week of sampling but decreased as the seasons progressed. The zucchini cultivar ‘Black Beauty’ harbored the most adults, while ‘Green Eclipse Zucchini’ was the least attractive zucchini cultivar to the adults in fall 2022. For yellow squash, ‘Early Summer’ (summer 2021) and ‘Amberpic 8455’ (summer 2021 and fall 2022) were the cultivars with the highest adult populations, while ‘Lioness’ (summer 2021) and ‘Gourmet Gold Hybrid’ (fall 2022) harbored the lowest adult counts. The whitefly egg counts across both vegetables trailed those of adults and peaked in the second week of sampling. The counts of nymphs increased as the seasons progressed, but there was a decline after the second week during fall 2021. For the yellow squash cultivars, ‘Gourmet Gold Hybrid’, (summer 2021 and fall 2022), ‘Lioness’, and ‘Fortune’ (summer 2021) recorded the highest yields. For zucchini, ‘Golden Glory’ (summer 2021) was the top performer. These results provide valuable information for whitefly management in yellow squash and zucchini based on host plant susceptibility and yield. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

20 pages, 3230 KiB  
Article
SLR Validation and Evaluation of BDS-3 MEO Satellite Precise Orbits
by Ran Li, Chen Wang, Hongyang Ma, Yu Zhou, Chengpan Tang, Ziqian Wu, Guang Yang and Xiaolin Zhang
Remote Sens. 2024, 16(11), 2016; https://doi.org/10.3390/rs16112016 - 4 Jun 2024
Cited by 3 | Viewed by 1228
Abstract
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing [...] Read more.
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing a basis for comprehensive evaluation of the BDS-3 satellite orbit. We utilized the SLR data from February to May 2023 to comprehensively evaluate the orbits of BDS-3 MEO satellites from different analysis centers (ACs). The results show that, whether during the eclipse season or the yaw maneuver season, the accuracy was not significantly decreased in the BDS-3 MEO orbit products released from the Center for Orbit Determination in Europe (CODE), Wuhan University (WHU), and the Deutsches GeoForschungsZentrum (GFZ) ACs, and the STD (Standard Deviation) of SLR residuals of those three ACs are all less than 5 cm. Among these, CODE had the smallest SLR residuals, with 9% and 12% improvement over WHU and GFZ, respectively. Moreover, the WHU precise orbits exhibit the smallest systematic biases, whether during non-eclipse seasons, eclipse seasons, or satellite yaw maneuver seasons. Additionally, we found some BDS-3 satellites (C32, C33, C34, C35, C45, and C46) exhibit orbit errors related to the Sun elongation angle, which indicates that continued effort for the refinement of the non-conservative force model further to improve the orbit accuracy of BDS-3 MEO satellites are in need. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

10 pages, 413 KiB  
Review
Eclipses: A Brief History of Celestial Mechanics, Astrometry and Astrophysics
by Costantino Sigismondi and Paolo De Vincenzi
Universe 2024, 10(2), 90; https://doi.org/10.3390/universe10020090 - 13 Feb 2024
Viewed by 3019
Abstract
Solar and lunar eclipses are indeed the first astronomical phenomena which have been recorded since very early antiquity. Their periodicities gave birth to the first luni-solar calendars based on the Methonic cycle since the sixth century before Christ. The Saros cycle of 18.03 [...] Read more.
Solar and lunar eclipses are indeed the first astronomical phenomena which have been recorded since very early antiquity. Their periodicities gave birth to the first luni-solar calendars based on the Methonic cycle since the sixth century before Christ. The Saros cycle of 18.03 years is due to the Chaldean astronomical observations. Their eclipses’ observations reported by Ptolemy in the Almagest (Alexandria of Egypt, about 150 a.C.) enabled modern astronomers to recognize the irregular rotation rate of the Earth. The Earth’s rotation is some hours in delay after the last three millenia if we use the present rotation to simulate the 721 b.C. total eclipse in Babylon. This is one of the most important issues in modern celestial mechanics, along with the Earth’s axis nutation of 18 yr (discovered in 1737), precession of 25.7 Kyr (discovered by Ipparchus around 150 b.C.) and obliquity of 42 Kyr motions (discovered by Arabic astronomers and assessed from the Middle Ages to the modern era, IX to XVIII centuries). Newtonian and Einstenian gravitational theories explain fully these tiny motions, along with the Lense–Thirring gravitodynamic effect, which required great experimental accuracy. The most accurate lunar and solar theories, or their motion in analytical or numerical form, allow us to predict—along with the lunar limb profile recovered by a Japanese lunar orbiter—the appearance of total, annular solar eclipses or lunar occultations for a given place on Earth. The observation of these events, with precise timing, may permit us to verify the sphericity of the solar profile and its variability. The variation of the solar diameter on a global scale was claimed firstly by Angelo Secchi in the 1860s and more recently by Jack Eddy in 1978. In both cases, long and accurate observational campaigns started in Rome (1877–1937) and Greenwich Observatories, as well as at Yale University and the NASA and US Naval Observatory (1979–2011) with eclipses and balloon-borne heliometric observations. The IOTA/ES and US sections as well as the ICRA continued the eclipse campaigns. The global variations of the solar diameter over a decadal timescale, and at the millarcsecond level, may reflect some variation in solar energy output, which may explain some past climatic variations (such as the Allerød and Dryas periods in Pleistocene), involving the outer layers of the Sun. “An eclipse never comes alone”; in the eclipse season, lasting about one month, we can have also lunar eclipses. Including the penumbral lunar eclipses, the probability of occurrence is equi-distributed amongst lunar and solar eclipses, but while the lunar eclipses are visible for a whole hemisphere at once, the solar eclipses are not. The color of the umbral shadow on the Moon was known since antiquity, and Galileo (1632, Dialogo sopra i Massimi Sistemi del Mondo) shows clearly these phenomena from copper color to a totally dark, eclipsed full Moon. Three centuries later, André Danjon was able to correlate that umbral color with the 11-year cycle of solar activity. The forthcoming American total solar eclipse of 8 April 2024 will be probably the eclipse with the largest mediatic impact of the history; we wish that also the scientific impulse toward solar physics and astronomy will be relevant, and the measure of the solar diameter with Baily’s beads is indeed one of the topics significantly related to the Sun–Earth connections. Full article
(This article belongs to the Special Issue Remo Ruffini Festschrift)
Show Figures

Figure 1

25 pages, 15557 KiB  
Article
IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica
by Juan Carlos Valdés-Abreu, Marcos Díaz, Manuel Bravo and Yohadne Stable-Sánchez
Remote Sens. 2023, 15(19), 4810; https://doi.org/10.3390/rs15194810 - 3 Oct 2023
Cited by 5 | Viewed by 2030
Abstract
This is one of the first papers to study the ionospheric effects of two solar eclipses that occurred in South America and Antarctica under geomagnetic activity in different seasons (summer and autumn) and their impact on the equatorial ionization anomaly (EIA). The changes [...] Read more.
This is one of the first papers to study the ionospheric effects of two solar eclipses that occurred in South America and Antarctica under geomagnetic activity in different seasons (summer and autumn) and their impact on the equatorial ionization anomaly (EIA). The changes in total electron content (TEC) during the 15 February 2018 and 30 April 2022 partial solar eclipses will be analyzed. The study is based on more than 390 GPS stations, Swarm-A, and DMSP F18 satellite measurements, such as TEC, electron density, and electron temperature. The ionospheric behaviors over the two-fifth days on both sides of each eclipse were used as a reference for estimating TEC changes. Regional TEC maps were created for the analysis. Background TEC levels were significantly higher during the 2022 eclipse than during the 2018 eclipse because ionospheric levels depend on solar index parameters. On the days of the 2018 and 2022 eclipses, the ionospheric enhancement was noticeable due to levels of geomagnetic activity. Although geomagnetic forcing impacted the ionosphere, both eclipses had evident depletions under the penumbra, wherein differential vertical TEC (DVTEC) reached values <−40%. The duration of the ionospheric effects persisted after 24 UT. Also, while a noticeable TEC depletion (DVTEC ∼−50%) of the southern EIA crest was observed during the 2018 eclipse (hemisphere summer), an evident TEC enhancement (DVTEC > 30%) at the same crest was seen during the eclipse of 2022 (hemisphere autumn). Swarm-A and DMSP F18 satellite measurements and analysis of other solar eclipses in the sector under quiet conditions supported the ionospheric behavior. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Graphical abstract

22 pages, 9115 KiB  
Article
Assessing Heat Tolerance in Creeping Bentgrass Lines Based on Physiological Responses
by Qianqian Fan and David Jespersen
Plants 2023, 12(1), 41; https://doi.org/10.3390/plants12010041 - 22 Dec 2022
Cited by 10 | Viewed by 2366
Abstract
Heat stress is a major concern for the growth of cool-season creeping bentgrass (Agrostis stolonifera L.). Nonetheless, there is a lack in a clear and systematic understanding of thermotolerance mechanisms for this species. This study aimed to assess heat tolerance in experimental [...] Read more.
Heat stress is a major concern for the growth of cool-season creeping bentgrass (Agrostis stolonifera L.). Nonetheless, there is a lack in a clear and systematic understanding of thermotolerance mechanisms for this species. This study aimed to assess heat tolerance in experimental lines and cultivars to determine important physiological and biochemical traits responsible for improved tolerance, including the use of OJIP fluorescence. Ten creeping bentgrass lines were exposed to either control (20/15 °C day/night) or high temperature (38/33 °C day/night) conditions for 35 d via growth chambers at Griffin, GA. Principal component analysis and clustering analysis were performed to rank stress performance and divide lines into different groups according to their tolerance similarities, respectively. At the end of the trial, S11 729-10 and BTC032 were in the most thermotolerant group, followed by a group containing BTC011, AU Victory and Penncross. Crenshaw belonged to the most heat-sensitive group while S11 675-02 and Pure Eclipse were in the second most heat-sensitive group. The exceptional thermotolerance in S11 729-10 and BTC032 was associated with their abilities to maintain cell membrane stability and protein metabolism, plus minimize oxidative damages. Additionally, among various light-harvesting steps, energy trapping, dissipation and electron transport from QA to PQ were more heat-sensitive than electron transport from QA to final PSI acceptors. Along with the strong correlations between multiple OJIP parameters and other traits, it reveals that OJIP fluorescence could be a valuable tool for dissection of photosynthetic processes and identification of the critical steps responsible for photosynthetic declines, enabling a more targeted heat-stress screening. Our results indicated that variability in the level of heat tolerance and associated mechanisms in creeping bentgrass germplasm could be utilized to develop new cultivars with improved thermotolerance. Full article
(This article belongs to the Special Issue Stress Biology of Turfgrass)
Show Figures

Figure 1

14 pages, 2755 KiB  
Article
Impacts of Arc Length and ECOM Solar Radiation Pressure Models on BDS-3 Orbit Prediction
by Ran Li, Chunmei Zhao, Jiatong Wu, Hongyang Ma, Yang Zhang, Guang Yang, Hong Yuan and Hongyu Zhao
Remote Sens. 2022, 14(16), 3990; https://doi.org/10.3390/rs14163990 - 16 Aug 2022
Cited by 1 | Viewed by 1842
Abstract
The BeiDou global navigation satellite system (BDS-3) has already provided worldwide navigation and positioning services for which the high-precision BDS-3-predicting orbit is the foundation. The arc length of the observed orbits and the solar radiation pressure (SRP) are two important factors for producing [...] Read more.
The BeiDou global navigation satellite system (BDS-3) has already provided worldwide navigation and positioning services for which the high-precision BDS-3-predicting orbit is the foundation. The arc length of the observed orbits and the solar radiation pressure (SRP) are two important factors for producing precise orbit predictions. The contribution studies the influences of these factors on BDS-3 orbit prediction. Three-month data from 1 July 2021 to 30 September 2021 are used to analyze optimal arc lengths and different ECOM SRP models for obtaining precise BDS-3 orbit predictions. The results show that the best-fitting arc length for the BDS-3 MEO/IGSO satellite is 42–48 h by comparing the final precise ephemeris and SLR validation. Furthermore, the ECOM9 SRP model shows improved orbit-prediction accuracy than that of the ECOM5 SRP model when the satellites move in and out of the eclipse season. As for the ECOM9 SRP model, the user range error (URE) accuracy of 6 h orbit predictions when satellites are in and outside of the eclipse season is 0.036 m and 0.030 m, respectively. In addition, the orbit prediction accuracy of the BDS-3 satellites does not decrease significantly since BDS-3 satellites apply the continuous yaw-steering (CYS) attitude mode during the eclipse season. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques)
Show Figures

Graphical abstract

14 pages, 2996 KiB  
Article
Label-Free Quantification (LFQ) of Fecal Proteins for Potential Pregnancy Detection in Polar Bears
by Erin Curry, Megan E. Philpott, Jessye Wojtusik, Wendy D. Haffey, Michael A. Wyder, Kenneth D. Greis and Terri L. Roth
Life 2022, 12(6), 796; https://doi.org/10.3390/life12060796 - 27 May 2022
Cited by 2 | Viewed by 2508
Abstract
Reliable pregnancy diagnostics would be beneficial for monitoring polar bear (Ursus maritimus) populations both in situ and ex situ, but currently there is no method of non-invasive pregnancy detection in this species. Recent reports in several carnivore species described the identification [...] Read more.
Reliable pregnancy diagnostics would be beneficial for monitoring polar bear (Ursus maritimus) populations both in situ and ex situ, but currently there is no method of non-invasive pregnancy detection in this species. Recent reports in several carnivore species described the identification of fecal proteins that may serve as pregnancy biomarkers; however, repeatability has been limited. The objective of the current analysis was to utilize an unbiased, antibody-free, label-free method for the identification and quantification of fecal proteins to determine if differences associated with pregnancy are detectable in polar bears. Protein was extracted from fecal samples (n = 48) obtained from parturient (n = 6) and non-parturient (n = 6) profiles each at four timepoints: pre-breeding season, embryonic diapause, early placental pregnancy, and mid-placental pregnancy. Protein was prepared and analyzed on the Thermo Orbitrap Eclipse nanoLC-MS/MS system. A total of 312 proteins was identified and quantified; however, coefficients of variation (CV) were high for both abundance ratio variability (384.8 ± 61.0% SEM) and within group variability (86.8 ± 1.5%). Results of this study suggest that the inconsistencies in specific protein concentrations revealed previously by antibody-based assays may not be due to that methodology’s limitations, but rather, are reflective of true variation that exists among samples. Full article
Show Figures

Figure 1

17 pages, 4967 KiB  
Article
Advancing the Solar Radiation Pressure Model for BeiDou-3 IGSO Satellites
by Fengyu Xia, Shirong Ye, Dezhong Chen, Longjiang Tang, Chen Wang, Maorong Ge and Frank Neitzel
Remote Sens. 2022, 14(6), 1460; https://doi.org/10.3390/rs14061460 - 18 Mar 2022
Cited by 13 | Viewed by 3302
Abstract
In the absence of detailed surface information, empirical solar radiation pressure (SRP) models, such as the five-parameter Empirical CODE Orbit Model (ECOM1) and its extended version-ECOM2, are widely used for modeling SRP forces acting on GNSS satellites. This study shows that the orbits [...] Read more.
In the absence of detailed surface information, empirical solar radiation pressure (SRP) models, such as the five-parameter Empirical CODE Orbit Model (ECOM1) and its extended version-ECOM2, are widely used for modeling SRP forces acting on GNSS satellites. This study shows that the orbits of BeiDou-3 Inclined Geosynchronous Orbit satellites (IGSOs) determined with the ECOM1 model suffer from systematic once-per-revolution radial orbit errors, which can be partly reduced by the ECOM2 model. To eliminate such orbit errors, the BeiDou-3 IGSO optical coefficients are solved by using an adjustable box-wing (ABW) model and then introduced into an a priori box-wing SRP model to enhance the ECOM1 model (ECOM1 + BW). In the ABW solution, in addition to satellite body and solar panels, the contributions of the communication payloads installed on BeiDou-3 IGSO ±X panels on the SRP are also considered, which markedly improves the stability of the optical coefficient estimates. The efficiency of the developed a priori box-wing model is demonstrated through eliminated once-per-revolution radial orbit errors and decreased day boundary discontinuities. However, the orbit solutions still show significant degradations during eclipse seasons. The results of the first yaw-attitude analysis for eclipsing BeiDou-3 IGSOs show that their yaw behaviors are the same as those of BeiDou-3 CAST (China Academy of Space Technology) MEOs (Medium Earth Orbit satellites), and have been well considered in the study. This rules out the possibility that attitude errors are the potential reason for the orbit deterioration. By introducing a once-per-revolution sine term in the Sun direction (Ds term) and keeping Ds active during the Earth’s shadow transitions to the ECOM1 + BW model, the orbit performance inside the eclipse seasons is significantly improved and can be comparable to that outside the eclipse seasons. Full article
(This article belongs to the Special Issue Precise Orbit Determination with GNSS)
Show Figures

Figure 1

16 pages, 20205 KiB  
Article
Impact of GPS/BDS Satellite Attitude Quaternions on Precise Point Positioning with Ambiguity Resolution
by Songfeng Yang, Qiyuan Zhang, Xi Zhang and Donglie Liu
Remote Sens. 2021, 13(15), 3035; https://doi.org/10.3390/rs13153035 - 2 Aug 2021
Cited by 3 | Viewed by 3144
Abstract
Precise point positioning with ambiguity resolution (PPP-AR) based on multiple global navigation satellite system (multi-GNSS) constellations is an important high-precision positioning tool. However, some unmodeled satellite and receiver biases (such as errors in satellite attitude) make it difficult to fix carrier-phase ambiguities. In [...] Read more.
Precise point positioning with ambiguity resolution (PPP-AR) based on multiple global navigation satellite system (multi-GNSS) constellations is an important high-precision positioning tool. However, some unmodeled satellite and receiver biases (such as errors in satellite attitude) make it difficult to fix carrier-phase ambiguities. In order to fix ambiguities of eclipsing satellites, accurate integer clock and satellite attitude products (i.e., attitude quaternion) have been provided by the International GNSS Service (IGS). Nevertheless, the quality of these products and their positioning performance in multi-GNSS PPP-AR have not been investigated yet. Using the PRIDE PPP-AR II software associated with the corresponding rapid satellite orbit, integer clock and attitude quaternion products of Wuhan University (WUM), we carried out GPS/BDS PPP-AR using 30 days of data in an eclipsing season of 2020. We found that about 75% of GPS, 60% of BDS-2 and 57% of BDS-3 narrow-lane ambiguity residuals after integer clock corrections fall within ±0.1 cycles in the case of using nominal attitudes. However, when using attitude quaternions, these percentages will rise to 80% for GPS, 70% for BDS-2 and 60% for BDS-3. GPS/BDS daily kinematic PPP-AR after integer clock and nominal attitude corrections can usually achieve a positioning precision of about 10, 10 and 30 mm for the east, north and up components, respectively. In contrast, the counterparts are 8, 8 and 20 mm when using attitude quaternions. Compared with the case of using attitude quaternions only at the network end for the integer clock estimation, using attitude quaternions only at the user end shows a pronounced improvement of 15% in the east component and less than 10% in the north and up components. Therefore, we suggest PPP users apply integer clock and satellite attitude quaternion products to realize more efficient ambiguity fixing, especially in satellite eclipsing seasons. Full article
Show Figures

Figure 1

20 pages, 9805 KiB  
Article
Introducing Twitter Daily Estimates of Residents and Non-Residents at the County Level
by Yago Martín, Zhenlong Li, Yue Ge and Xiao Huang
Soc. Sci. 2021, 10(6), 227; https://doi.org/10.3390/socsci10060227 - 14 Jun 2021
Cited by 8 | Viewed by 4797
Abstract
The study of migrations and mobility has historically been severely limited by the absence of reliable data or the temporal sparsity of available data. Using geospatial digital trace data, the study of population movements can be much more precisely and dynamically measured. Our [...] Read more.
The study of migrations and mobility has historically been severely limited by the absence of reliable data or the temporal sparsity of available data. Using geospatial digital trace data, the study of population movements can be much more precisely and dynamically measured. Our research seeks to develop a near real-time (one-day lag) Twitter census that gives a more temporally granular picture of local and non-local population at the county level. Internal validation reveals over 80% accuracy when compared with users’ self-reported home location. External validation results suggest these stocks correlate with available statistics of residents/non-residents at the county level and can accurately reflect regular (seasonal tourism) and non-regular events such as the Great American Solar Eclipse of 2017. The findings demonstrate that Twitter holds the potential to introduce the dynamic component often lacking in population estimates. This study could potentially benefit various fields such as demography, tourism, emergency management, and public health and create new opportunities for large-scale mobility analyses. Full article
Show Figures

Figure 1

12 pages, 531 KiB  
Article
Safety-Aware Optimal Attitude Pointing for Low-Thrust Satellites
by Helen Henninger, James Biggs and Karl von Ellenrieder
Appl. Sci. 2021, 11(7), 3002; https://doi.org/10.3390/app11073002 - 27 Mar 2021
Cited by 1 | Viewed by 1963
Abstract
In geostationary orbit, long eclipses and the seasonal variations in the direction and intensity of the solar input can cause damage to sensitive equipment during attitude maneuvers, which may inadvertently point the equipment towards the Sun. The requirement that transmitting and receiving antennae [...] Read more.
In geostationary orbit, long eclipses and the seasonal variations in the direction and intensity of the solar input can cause damage to sensitive equipment during attitude maneuvers, which may inadvertently point the equipment towards the Sun. The requirement that transmitting and receiving antennae remain pointed towards the Earth creates further restrictions to pointing directions. The aim of the study is to construct a novel geometric and reinforcement-learning-based method to determine attitude guidance maneuvers that maintain the equipment in safe and operational orientations throughout an attitude maneuver. The attitude trajectory is computed numerically using the geometric framing of Pontryagin’s maximum principle applied to the vehicle kinematics using the global matrix Lie group representation on SO(3), and the angular velocities are shaped using free parameters. The values of these free parameters are determined by a reinforcement learning algorithm to avoid the forbidden areas while maintaining the pointing in operational areas (modeled as subsets of the two-sphere of all possible pointing directions of a particular axis). The method is applied to a model geosynchronous satellite and demonstrated in a simulation. Full article
(This article belongs to the Special Issue Advances in Aerial, Space, and Underwater Robotics)
Show Figures

Figure 1

15 pages, 251 KiB  
Article
Total Eclipse of the Zoo: Animal Behavior during a Total Solar Eclipse
by Adam Hartstone-Rose, Edwin Dickinson, Lisa M. Paciulli, Ashley R. Deutsch, Leon Tran, Grace Jones and Kaitlyn C. Leonard
Animals 2020, 10(4), 587; https://doi.org/10.3390/ani10040587 - 31 Mar 2020
Cited by 7 | Viewed by 9677
Abstract
The infrequency of a total solar eclipse renders the event novel to those animals that experience its effects and, consequently, may induce anomalous behavioral responses. However, historical information on the responses of animals to eclipses is scant and often conflicting. In this study, [...] Read more.
The infrequency of a total solar eclipse renders the event novel to those animals that experience its effects and, consequently, may induce anomalous behavioral responses. However, historical information on the responses of animals to eclipses is scant and often conflicting. In this study, we qualitatively document the responses of 17 vertebrate taxa (including mammals, birds, and reptiles) to the 2017 total solar eclipse as it passed over Riverbanks Zoo and Garden in Columbia, South Carolina. In the days leading up to the eclipse, several focal teams, each consisting of researchers, animal keepers, and student/zoo volunteers conducted baseline observations using a combination of continuous ad libitum and scan sampling of each animal during closely matched seasonal conditions. These same focal teams used the same protocol to observe the animals in the hours preceding, during, and immediately following the eclipse. Additionally, for one species—siamangs (Symphalangus syndactylus)—live video/audio capture was also employed throughout observations to capture behavior during vocalizations for subsequent quantitative analysis. Behavioral responses were classified into one or more of four overarching behavioral categories: normal (baseline), evening, apparent anxiety, and novel. Thirteen of seventeen observed taxa exhibited behaviors during the eclipse that differed from all other observation times, with the majority (8) of these animals engaging in behaviors associated with their evening or nighttime routines. The second predominant behavior was apparent anxiety, documented in five genera: baboons (Papio hamadryas), gorillas (Gorilla gorilla gorilla), giraffes (Giraffa cf. camelopardalis), flamingos (Phoenicopterus ruber), and lorikeets (Trichoglossus moluccanus and Trichoglossus haematodus). Novel behaviors characterized by an increase in otherwise nearly sedentary activity were observed only in the reptiles, the Galapagos tortoise (Chelonoidis nigra) and the Komodo dragon (Varanus komodoensis). While the anthropogenic influences on animal behaviors—particularly those relating to anxiety—cannot be discounted, these observations provide novel insight into the observed responses of a diverse vertebrate sample during a unique meteorological stimulus, insights that supplement the rare observations of behavior during this phenomenon for contextualizing future studies. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
12 pages, 566 KiB  
Article
Comparing Social Media Observations of Animals During a Solar Eclipse to Published Research
by Robert Ritson, Dustin H. Ranglack and Nate Bickford
Animals 2019, 9(2), 59; https://doi.org/10.3390/ani9020059 - 14 Feb 2019
Cited by 5 | Viewed by 5837
Abstract
A wide variety of environmental stimuli can influence the behavior of animals including temperature, weather, light, lunar and seasonal cycles, seismic activity, as well as other perturbations to their circadian rhythm. Solar eclipses offer a unique opportunity to evaluate the relative influence of [...] Read more.
A wide variety of environmental stimuli can influence the behavior of animals including temperature, weather, light, lunar and seasonal cycles, seismic activity, as well as other perturbations to their circadian rhythm. Solar eclipses offer a unique opportunity to evaluate the relative influence of unexpected darkness on behavior of animals due to their sudden interference with local light levels and meteorology. Though occasionally bizarre, modern studies have lent support to the idea that at least some individuals of certain species display altered behavior during these events. A comparison of informal observations of animal behavior during solar eclipse from social media (i.e., March for Science Facebook discussion) to those conducted scientifically (published literature) can elucidate how well this topic is being covered. Describing which species and behaviors are covered in each source can reveal gaps in the literature which can emphasize areas for future research. We enumerated a total of 685 observations of approximately 48 different types of animals reacting to the 2017 Great American Solar Eclipse from over 800 posts on the discussion. The animals most frequently reported on social media as reacting to the eclipse were invertebrates (40% of social media observations) and birds (35% of social media observations). A total of 26 published studies recorded 169 behavior observations of approximately 131 different animal species. The group with the highest number of observations in the literature were birds with 62 records (37% of literature observations). Most observations reported decreases in activity (38.7% of bird observations) followed by increases in vocalization (24.2% of bird observations). There were approximately 30 different species of invertebrate observed (24% of literature observations), most frequently reported of which were zooplankton (14.6% of invertebrate observations). Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

Back to TopTop