Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = earth fissures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3086 KiB  
Article
Earth Fissures During Groundwater Depletion and Recovery: A Case Study at Shitangwan, Wuxi, Jiangsu, China
by Guang-Ya Wang, Jin-Qi Zhu, Greg G. You, Dan Zhang, Jun Yu, Fu-Gang Gou and Jian-Qiang Wu
Hydrology 2025, 12(3), 62; https://doi.org/10.3390/hydrology12030062 - 19 Mar 2025
Viewed by 586
Abstract
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of [...] Read more.
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of techniques, including field monitoring via multilayered borehole extensometers, earth fissure monitoring for lateral and vertical movements, advanced geophysical exploration, and conventional geological investigations, this study aims to mitigate the risks associated with land subsidence and earth fissures. It is found that the groundwater has recovered to the levels in the 1980s, land subsidence and earth fissuring have ceased, and the earth fissuring is closely linked to the land subsidence. A bedrock ridge and a river course are underlying porous Quaternary sediments beneath the earth fissure. The formation of the earth fissure is the result of a combination of factors, including spatial and temporal variations in strata compression, rugged bedrock terrain, and the heterogeneity of the strata profile. Land subsidence is primarily attributed to the deep pumping aquifer and its adjacent aquitards, which are responsive to groundwater recovery with a time lag of a decade, and the land rebound accounts for 2% of the accumulated land subsidence. Estimations suggest that the depth of the earth fissure may have reached the bedrock ridge. The mechanism of the earth fissuring is the coupled effect of tension from the rotation of shallow soil strata along the bedrock ridge and shearing of strata driven by the differential compression of deep strata below the ridge level. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

21 pages, 13285 KiB  
Article
Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications
by Yan Li, Jianguo Wang, Shengyun Wei, Jian Hu, Zhinan Wang and Jiawen Ge
Minerals 2024, 14(12), 1227; https://doi.org/10.3390/min14121227 - 2 Dec 2024
Viewed by 1049
Abstract
Intermediate-acidic granites occur extensively in the Chazangcuo copper-lead-zinc mining area (hereinafter referred to as the Chazangcuo mining area) in Tibet, China. Exploring their rock types, sources, and tectonic settings is essential for understanding the genesis of granites in the region. This study investigated [...] Read more.
Intermediate-acidic granites occur extensively in the Chazangcuo copper-lead-zinc mining area (hereinafter referred to as the Chazangcuo mining area) in Tibet, China. Exploring their rock types, sources, and tectonic settings is essential for understanding the genesis of granites in the region. This study investigated the petrology of the Chazangcuo granites, as well as the geochemical characteristics of their major elements, trace elements, and rare earth elements (REEs). Results indicate that the Chazangcuo granites are high-K calc-alkaline metaluminous rocks. These granites are enriched in large-ion lithophile elements (LILEs; e.g., Rb and Ba), depleted in high-field-strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), with a relative enrichment in light rare earth elements (LREEs), and relatively depleted in heavy rare earth elements (HREEs), exhibiting a V-shaped distribution pattern and weak negative Eu anomalies. The granites are classified as typical I-type granites, displaying characteristics of crust-derived magmas with contributions from mantle sources and exhibiting significant fractional crystallization. The Chazangcuo granites were derived from the partial melting of mafic rocks, with protoliths formed in a moderate temperature environment. Influenced by the subduction of the Neotethys Ocean, the Chazangcuo granites were formed in an arc caused by the collision between the Indian and Eurasian plates (also referred to as the Indo–Eurasian collision) during the Late Triassic. Under the effect of geological activities such as upwelling of the asthenosphere and fluid intrusion and differentiation, metal mineralization was prompted to be distributed in the granite fissures, forming the Cu-Pb-Zn polymetallic deposits of Chazangcou in Tibet, suggesting that the granites are closely associated with mineralization. Full article
(This article belongs to the Special Issue Understanding Hydrothermal Ore Deposits)
Show Figures

Figure 1

19 pages, 12317 KiB  
Article
Numerical Analysis of the Dynamic Response of a High-Speed Railway Foundation across a Ground Fissure Zone—A Case Study of the Datong–Xi’an High-Speed Railway Crossing a Ground Fissure in the Taiyuan Basin, China
by Qingyu Xie, Qiangbing Huang, Chenyang Miao, Linfeng Gao and Guohui He
Appl. Sci. 2024, 14(20), 9329; https://doi.org/10.3390/app14209329 - 13 Oct 2024
Cited by 1 | Viewed by 1091
Abstract
The interaction between train vibration load and ground fissure disasters affects the safe operation of trains. However, the interaction between the high-speed railway foundation and the train vibration in the cross-ground fissure zone is not clear. To reveal the dynamic behavior characteristics of [...] Read more.
The interaction between train vibration load and ground fissure disasters affects the safe operation of trains. However, the interaction between the high-speed railway foundation and the train vibration in the cross-ground fissure zone is not clear. To reveal the dynamic behavior characteristics of train vibration load crossing the ground fissure zone, the Da’xi high-speed railway passing through the ground fissure zone in the Taiyuan Basin is taken as the research object; the dynamic response of the high-speed railway foundation crossing the ground fissure zone at different angles was analyzed through dynamic finite element numerical simulation and orthogonal tests. The results show that when the high-speed railway crosses the ground fissure, the dynamic response fluctuates greatly at the ground fissure, which is manifested in the displacement and acceleration increase in the hanging wall and decrease in the footwall. The composite foundation reduces the fluctuation range and influences the scope of displacement, acceleration, and stress in the foundation of the ground fissure zone. The smaller the intersection angle between the high-speed railway and the ground fissure, the larger the influence range of displacement and stress, and the stability of acceleration at the hanging wall and footwall is poor. It is suggested that the high-speed railway pass through the ground fissure at a large angle. Additionally, the displacement fluctuation of the hanging wall and footwall can be controlled by increasing the pile length in the active area of the ground fissure. Full article
Show Figures

Figure 1

12 pages, 3994 KiB  
Article
Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station
by Ioannis Contopoulos, Janusz Mlynarczyk, Jerzy Kubisz and Vasilis Tritakis
Atmosphere 2024, 15(9), 1134; https://doi.org/10.3390/atmos15091134 - 19 Sep 2024
Cited by 3 | Viewed by 1783
Abstract
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such [...] Read more.
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such as radon, through subterranean fissures that develop in the lead-up to the quake. This discharge augments the ionization at the lower atmospheric layers, instigating disturbances that extend from the Earth’s surface to the lower ionosphere. A critical component of the LAIC sequence involves the distinctive perturbations of Extremely Low Electromagnetic Frequencies (ELF) within the Schumann Resonances (SR) spectrum of 2 to 50 Hz, detectable days ahead of the seismic event. Our study examines 10 earthquakes that transpired over a span of 3.5 months—averaging nearly three quakes monthly—which concurrently generated 45 discernible potential precursor seismic signals. Notably, each earthquake originated in Southern Greece, within a radius of 30 to 250 km from the observatory on Mount Parnon. Our research seeks to resolve two important issues. The first concerns the association between specific ELF signals and individual earthquakes—a question of significant importance in seismogenic regions like Greece, where earthquakes occur frequently. The second inquiry concerns the parameters that determine the detectability of an earthquake by a given station, including the requisite proximity and magnitude. Initial findings suggest that SR signals can be reliably linked to a particular earthquake if the observatory is situated within the earthquake’s preparatory zone. Conversely, outside this zone, the correlation becomes indeterminate. Additionally, we observe a differentiation in SR signals based on whether the earthquake took place over land or offshore. The latter category exhibits unique signal behaviors, potentially attributable to the water layers above the epicenter acting as a barrier to the ascending gases, thereby affecting the atmospheric–ionospheric ionization process. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

34 pages, 14710 KiB  
Article
Research on Spatiotemporal Continuous Information Perception of Overburden Compression–Tensile Strain Transition Zone during Mining and Integrated Safety Guarantee System
by Gang Cheng, Ziyi Wang, Bin Shi, Tianlu Cai, Minfu Liang, Jinghong Wu and Qinliang You
Sensors 2024, 24(17), 5856; https://doi.org/10.3390/s24175856 - 9 Sep 2024
Cited by 1 | Viewed by 1556
Abstract
The mining of deep underground coal seams induces the movement, failure, and collapse of the overlying rock–soil body, and the development of this damaging effect on the surface causes ground fissures and ground subsidence on the surface. To ensure safety throughout the life [...] Read more.
The mining of deep underground coal seams induces the movement, failure, and collapse of the overlying rock–soil body, and the development of this damaging effect on the surface causes ground fissures and ground subsidence on the surface. To ensure safety throughout the life cycle of the mine, fully distributed, real-time, and continuous sensing and early warning is essential. However, due to mining being a dynamic process with time and space, the overburden movement and collapse induced by mining activities often have a time lag effect. Therefore, how to find a new way to resolve the issue of the existing discontinuous monitoring technology of overburden deformation, obtain the spatiotemporal continuous information of the overlying strata above the coal seam in real time and accurately, and clarify the whole process of deformation in the compression–tensile strain transition zone of overburden has become a key breakthrough in the investigation of overburden deformation mechanism and mining subsidence. On this basis, firstly, the advantages and disadvantages of in situ observation technology of mine rock–soil body were compared and analyzed from the five levels of survey, remote sensing, testing, exploration, and monitoring, and a deformation and failure perception technology based on spatiotemporal continuity was proposed. Secondly, the evolution characteristics and deformation failure mechanism of the compression–tensile strain transition zone of overburden were summarized from three aspects: the typical mode of deformation and collapse of overlying rock–soil body, the key controlling factors of deformation and failure in the overburden compression–tensile strain transition zone, and the stability evaluation of overburden based on reliability theory. Finally, the spatiotemporal continuous perception technology of overburden deformation based on DFOS is introduced in detail, and an integrated coal seam mining overburden safety guarantee system is proposed. The results of the research can provide an important evaluation basis for the design of mining intensity, emergency decisions, and disposal of risks, and they can also give important guidance for the assessment of ground geological and ecological restoration and management caused by underground coal mining. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensor for Mining)
Show Figures

Figure 1

17 pages, 8083 KiB  
Article
Prediction of Ground Subsidence Induced by Groundwater Mining Using Three-Dimensional Variable-Parameter Fully Coupled Simulation
by Jingjing Du, Yan Zhang, Zujiang Luo and Chenghang Zhang
Water 2024, 16(17), 2487; https://doi.org/10.3390/w16172487 - 1 Sep 2024
Viewed by 1765
Abstract
In order to predict the ground settlement in a scientific, intuitive, and simple way, based on the theory of Bio-consolidation, a three-dimensional fluid-solid coupled numerical calculation programme FGS-3D for ground settlement was compiled by using the Fortran 95 language, and a front-end operation [...] Read more.
In order to predict the ground settlement in a scientific, intuitive, and simple way, based on the theory of Bio-consolidation, a three-dimensional fluid-solid coupled numerical calculation programme FGS-3D for ground settlement was compiled by using the Fortran 95 language, and a front-end operation platform was developed by using Microsoft VisualBasic, so that a three-dimensional variable-parameter fully coupled viscoelastic-plastic model of ground settlement was constructed using the city of Yancheng as an example, and the development of ground settlement and horizontal displacement changes from 2021 to 2030 were predicted. The results show that the three-dimensional fully coupled finite-element numerical model of building load, groundwater seepage, and soil deformation established by the above computer development program can directly create a hydrogeological conceptual model of groundwater mining and predict ground settlement, so as to achieve the visualisation of the three-dimensional seepage of groundwater and the fully coupled simulation of ground subsidence in the whole process of groundwater mining. Under the joint action of construction load and groundwater mining, the water level of the aquifer in Yancheng City rises by 1.26 m on average in the main groundwater mining area of the group III pressurised aquifer, forming two smaller landing funnels, and the lowest water level of the two landing funnels is −15 m. Full article
(This article belongs to the Special Issue Studies on Water Resource and Environmental Policies)
Show Figures

Figure 1

13 pages, 4212 KiB  
Article
Developmental Characteristics and Genesis of Ground Fissures in Wangjiacun, Emei Plateau, Yuncheng Basin, China
by Feida Li, Feiyong Wang, Fujiang Wang and Guoqing Li
Sustainability 2024, 16(9), 3649; https://doi.org/10.3390/su16093649 - 26 Apr 2024
Cited by 1 | Viewed by 1516
Abstract
The Yuncheng Basin is part of the Fenwei Graben System, which has developed ground fissure hazards that have caused serious damage to farmland, houses, and roads and have brought about huge economic losses. Located in Wanrong County on the Emei Plateau in the [...] Read more.
The Yuncheng Basin is part of the Fenwei Graben System, which has developed ground fissure hazards that have caused serious damage to farmland, houses, and roads and have brought about huge economic losses. Located in Wanrong County on the Emei Plateau in the northwestern part of the Yuncheng Basin in China, the Wangjiacun ground fissure is a typical and special ground fissure developed in loess areas, and its formation is closely related to tectonic joints and the collapsibility of loess. In order to reveal the formation and genesis of the Wangjiacun ground fissure, the geological background, developmental characteristics, and genesis pattern of the Wangjiacun ground fissures were studied in detail. A total of three ground fissures have developed in this area: a linear fissure (f1) is distributed in an NNE-SSW direction, with a total length of 334 m; a circular fissure (f2) is located near the pool, with a total length of 720 m; f2-1, a linear fissure near f2, has a fissure length of 110 m and an NE orientation. This study shows that tectonic joints in loess areas are the main controlling factors of the linear fissure (f1); differential subsidence in the pool caused by collapsible loess is the main source of motivation for the formation of the circular fissures (f2, f2-1), and tensile stresses produced by the edges of subsidence funnels lead to the cracking of shallow rock and soil bodies to form ground fissures (f2, f2-1). This study enriches the theory of ground fissure genesis and is of great significance for disaster prevention and the mitigation of ground fissures in loess areas. Full article
Show Figures

Figure 1

15 pages, 5683 KiB  
Article
Variability in Mechanical Properties and Cracking Behavior of Frozen Sandstone Containing En Echelon Flaws under Compression
by Weimin Liu, Li Han, Di Wu, Hailiang Jia and Liyun Tang
Appl. Sci. 2024, 14(8), 3427; https://doi.org/10.3390/app14083427 - 18 Apr 2024
Cited by 2 | Viewed by 999
Abstract
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with [...] Read more.
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with three open en echelon fissures were observed using high-speed photography and acoustic emissions during uniaxial compression tests. The aim was to investigate sandstone’s strength, deformability, and failure process in order to elucidate the effects of freezing on its mechanical properties. In the frozen-saturated and dried states, the uniaxial compression strength (UCS) initially decreases and then increases with an increase in fissure inclination angle. Conversely, the UCS of samples in the saturated state continuously increases. The UCS follows a decreasing trend, as follows: frozen-saturated state > dried state > saturated state. The initial crack angle decreases as the fissure inclination increases in all states, irrespective of temperature and moisture conditions. However, the initial crack stress and time show an increasing trend. The uniaxial compression strength (UCS) of frozen fissured sandstone is influenced by four mechanisms: (1) ice provides support to the rock under compression, (2) ice fills microcracks, (3) unfrozen water films act as a cementing agent under tension or shearing loads, and (4) frost damage leads to softening of the rock. Full article
Show Figures

Figure 1

17 pages, 12637 KiB  
Article
Land Use Sustainability: Assessment of the Dynamic Response of Typical Bedrock-Buried-Hill Earth Fissure Sites in the Su-Xi-Chang Area
by Ge Cao, Yahong Deng, Huandong Mu, Jiang Chang, You Xuan and Dexin Niu
Sustainability 2024, 16(8), 3117; https://doi.org/10.3390/su16083117 - 9 Apr 2024
Cited by 1 | Viewed by 1234
Abstract
Disaster prevention and the mitigation of earth fissures is a key issue in the sustainable development of urban land. Structures directly avoiding earth fissures are not conducive to the rational planning and efficient utilization of urban construction. The Su-Xi-Chang area, which consists of [...] Read more.
Disaster prevention and the mitigation of earth fissures is a key issue in the sustainable development of urban land. Structures directly avoiding earth fissures are not conducive to the rational planning and efficient utilization of urban construction. The Su-Xi-Chang area, which consists of the cities of Suzhou, Wuxi, and Changzhou, surrounded by Taihu Lake, has developed bedrock buried-hill earth fissures that are rare in the rest of the country. Existing research results have identified the genesis mechanisms, distribution patterns, and developmental characteristics of this type of fissure. Not only does the slow-variable activity of earth fissures cause direct damage to surface and underground structures, but in addition, when an earthquake occurs, the presence of earth fissures may cause the seismic response of the site to be altered or even strengthened, leading to unknown damage or the possible destruction of structures near the fissures. However, no studies have been conducted to assess the dynamic effects of bedrock-buried-hill earth fissure sites. Therefore, in this research, based on six typical bedrock-buried-hill-type earth fissures in the Su-Xi-Chang area, and in order to accurately reveal the dynamic amplification effect law of the earth fissure sites, systematic spectral analyses and comparisons of the microtremor signals were carried out by using the linear analysis method (Direct Fourier Transform Analysis) and the nonlinear analysis method (Hilbert–Huang Transform). The results show that bedrock-buried-hill-type earth fissures have a significant amplification effect on the dynamic response of the site; the amplification effect of bedrock-buried-hill fissure sites follows the same attenuation pattern, and the furthest range of the dynamic response on the site is about 25 m, beyond which the original seismic fortification level can be maintained; the extreme value of the amplification factor of the two sides of this type of site, as derived from the Fourier and HHT methods, is about double, and the nearest earth fissure region should be considered to have a raised seismic fortification intensity of more than double the original. The Hilbert–Huang transform method has good applicability for processing microtremor data, and nonlinear signal analysis methods can be considered comprehensive for future microtremor signal processing. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Resilient Built Environment)
Show Figures

Figure 1

19 pages, 3386 KiB  
Article
Differences and Causal Mechanisms in the Lithospheric Thermal Structures in the Cratons in East China: Implications for Their Geothermal Resource Potential
by Jinhui Wu, Yibo Wang, Lijuan He, Lijuan Wang, Junpeng Guan, Jun Chen, Zhuting Wang, Yaqi Wang and Shengbiao Hu
Energies 2024, 17(7), 1752; https://doi.org/10.3390/en17071752 - 6 Apr 2024
Cited by 1 | Viewed by 1486
Abstract
The thermal structure of the lithosphere is key to understanding its thickness, properties, evolution, and geothermal resources. Cratons are known for their low heat flow and deep lithospheric roots. However, present-day cratons in East China have geothermal characteristics that are highly complex, with [...] Read more.
The thermal structure of the lithosphere is key to understanding its thickness, properties, evolution, and geothermal resources. Cratons are known for their low heat flow and deep lithospheric roots. However, present-day cratons in East China have geothermal characteristics that are highly complex, with variable heat flow values, diverging from the typical thermal state of cratons. In this study, we conducted a detailed analysis of the geothermal geological background of the cratons in East China, summarizing the thermal state and tectono-thermal processes of different tectonic units, calculating the temperature at various depths, and discussing differences in temperature and thermal reservoirs at different depths. The observed lithospheric thermal thickness within the North Jiangsu Basin and the Bohai Bay Basin is notably reduced in comparison to that of the Jianghan Basin and the Southern North China Basin. The phenomenon of craton destruction during the Late Mesozoic emerges as a pivotal determinant, enhancing the geothermal resource prospects of both the Bohai Bay Basin and the North Jiangsu Basin. Our findings contribute significantly to the augmentation of theoretical frameworks concerning the origins of heat sources in global cratons. Furthermore, they offer invaluable insights for the methodical exploration, evaluation, advancement, and exploitation of geothermal resources. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

13 pages, 28286 KiB  
Article
Research on Collapse Detection in Old Coal Mine Goafs Based on Space–Sky–Earth Remote Sensing Survey
by Jiayi Yao, Keming Han, Wu Zhu and Yanbo Cao
Remote Sens. 2024, 16(7), 1164; https://doi.org/10.3390/rs16071164 - 27 Mar 2024
Cited by 2 | Viewed by 1670
Abstract
A considerable number of coal mines employed room and pillar mining in the last century in northern China, where the goaf remained stable for a period of time; however, with the increased exposure of coal pillars, their collapse may gradually increase. The stability [...] Read more.
A considerable number of coal mines employed room and pillar mining in the last century in northern China, where the goaf remained stable for a period of time; however, with the increased exposure of coal pillars, their collapse may gradually increase. The stability assessment of these old rooms and pillar goafs is challenging due to their concealment, irregular mining patterns, and the long passage of time. The methodology developed in this study, based on “space-sky-earth” remote sensing such as InSAR to trace historical deformation, the UAV observation of current surface damage, and comparison of mining spaces, can rapidly detect on a large scale the collapse of old goafs and the trend of damage. This study is conducted with an example of a coal mine in Yulin, Northern China, where obtained quantitative surface deformation values were integrated with qualitative surface damage interpretation results, followed by a yearly analysis of the overlying rock movement in accordance with the underground coal mining process. The results show that from 2007 to 2021, corresponding surface deformation and damage occurred following mining progress. However, the room and pillar goaf areas had not undergone any surface deformation, nor had there been incidents of landslides or ground fissures; therefore, it was speculated that no roof collapse had occurred in this region. The surface deformation and damage associated with underground coal mining are complex and influenced by the coal seam occurrence, mining methods, strata lithology, terrain slope, temporal evolution, and anthropogenic modifications. These phenomena are representative of the coal mining area, and this methodology can provide a reference for similar endeavors. Full article
Show Figures

Figure 1

13 pages, 3097 KiB  
Article
Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils
by Chen Fang, Ying Li, Chunsheng Gu and Baodong Xing
Coatings 2024, 14(1), 105; https://doi.org/10.3390/coatings14010105 - 12 Jan 2024
Cited by 2 | Viewed by 1306
Abstract
Recently, stability analyses of structures built of granite residual soils, for example, earth dams or other urban structures, particularly when under vibration, are being recognized as much more important than previously imagined. In such analyses, it is emphasized that the residual strength should [...] Read more.
Recently, stability analyses of structures built of granite residual soils, for example, earth dams or other urban structures, particularly when under vibration, are being recognized as much more important than previously imagined. In such analyses, it is emphasized that the residual strength should be utilized considering the seismic effect. Therefore, the residual strength of granite residual soils must be evaluated accurately in order to reduce the damage to structures built on them. This paper presented a laboratory study designed to examine the effect of fine-grained particles (FGPs; particle size ≤ 0.075 mm) on residual strength by the multistage procedure of the Bromhead ring shear test and evaluate the physical indexes forecasting the residual strength of granite residual soils using soil samples composed of fifteen different percentages of FGPs artificially adjusted from a reservoir embankment soil sample. The results showed that the residual strength decreased along with the increase in FGPs and that the residual frictional angle was rarely dependent on the ratio of FGPs when the ratio was over 90%. Even in the residual state, a small amplitude of fluctuation in shear stress still existed and was affected by the coarse-grained particles (CGPs; particle size ≥ 0.075 mm), such as the quartz particles in the granite residual soils. It was also found that the amplitude of fluctuation was smaller when the FGP fraction was greater. In addition, under the same normal stress, the peak strength and residual strength decreased with an increase in the ratio of FGPs. Then, they remained almost the same when the ratios of FGPs were equal to 85% and 90%, respectively, and the post-peak attenuation tended to increase initially with an increase in the FGPs and then remained almost the same. Moreover, based on the sensitivity analysis, the order of influence of physical indexes on the residual frictional angle was also ranked for the granite residual soils. Full article
Show Figures

Figure 1

16 pages, 22363 KiB  
Article
Dynamic Effect of the Earth Fissure Sites in the Yuncheng Basin, China
by Ge Cao, Yahong Deng, Jiang Chang, You Xuan, Nainan He and Huandong Mu
Appl. Sci. 2023, 13(17), 9923; https://doi.org/10.3390/app13179923 - 1 Sep 2023
Cited by 3 | Viewed by 1584
Abstract
Earth fissures are widely distributed worldwide, and the Fenwei Basin in China is one of the regions with the most significant number and scale of fissures in the world. The Yuncheng Basin is an important constituent basin of the Fenwei Basin in China, [...] Read more.
Earth fissures are widely distributed worldwide, and the Fenwei Basin in China is one of the regions with the most significant number and scale of fissures in the world. The Yuncheng Basin is an important constituent basin of the Fenwei Basin in China, where earth fissures are densely developed and cause severe damage. In particular, the impact of earth fissures on the seismic response of the site is still unknown and is an urgent problem that needs to be solved. Based on microtremor tests, three types of typical earth fissure sites in the Yuncheng Basin were selected for field testing. Through spectrum analysis, the dynamic response characteristics of the earth fissure sites were determined. The results show that the dynamic response of the site is significantly affected by the earth fissures. The dynamic response strength of the site is the largest on both sides of the earth fissures, and it decreases and gradually stabilizes with increasing distance from the fissures. The influence range of the earth fissures on the hanging side is slightly longer than the heading side. Full article
(This article belongs to the Special Issue Geohazards: Risk Assessment, Mitigation and Prevention)
Show Figures

Figure 1

23 pages, 29458 KiB  
Article
Paleoproterozoic U Mineralization in Huayangchuan Deposit, Xiaoqinling Area: Evidence from the U–Rich Granitic Pegmatite
by Putao Li, Yongjun Li, Pingyang Gu, Shiping He, Yujun Zhuang and Ruiming Chen
Minerals 2023, 13(7), 936; https://doi.org/10.3390/min13070936 - 13 Jul 2023
Cited by 2 | Viewed by 1440
Abstract
The Huayangchuan uranium deposit, located in the west of the Xiaoqinling belt on the southern margin of the North China Craton, is a large U–Nb–Pb deposit accompanied with rare–earth elements. The Huayangchuan uranium deposit, discovered in the 1950s, has long been known as [...] Read more.
The Huayangchuan uranium deposit, located in the west of the Xiaoqinling belt on the southern margin of the North China Craton, is a large U–Nb–Pb deposit accompanied with rare–earth elements. The Huayangchuan uranium deposit, discovered in the 1950s, has long been known as a carbonatite–type uranium deposit. Recently, new geological work has found uranium mineralization in many granitic pegmatite veins in the Huayangchuan deposit and adjacent areas. Here, we report a systematic investigation of the petrography, whole–rock geochemistry, zircon U–Pb ages, and in situ Lu–Hf isotopic characteristics of newly discovered U–rich granitic pegmatite veins in the west of Huayangchuan deposit. The petrological results showed that the lithology of the samples is granite pegmatite. The U–Pb ages of zircon were 1826.3 ± 7.9 and 1829 ± 11 Ma. Microscopically, the paragenetic characteristics of zircon, betafite, and uraninite exist in the intergranular fissures of K–feldspar and quartz, reflecting metallogenic phenomena in the rock formation process. Almost all whole–rock samples were rich in SiO2 (64.37−70.69 wt.%), total alkalis (K2O + Na2O = 8.50–10.30 wt.%), and Al2O3 (12.20–14.41 wt.%) but poor in TiO2 (0.23–0.73 wt.%), MgO (0.38–0.90 wt.%), CaO (1.23–2.22 wt.%), P2O5 (0.14–0.83 wt.%), and MnO (0.04–0.57 wt.%). Additionally, they showed enrichment of LILEs (such as Rb, Ba, Th, U, and K), depletion of HFSEs (such as Ta, P, Ti, and Hf), and no alkaline dark minerals, and the characteristics are intraplate A1–type granite. The A1–type granite displayed low zircon εHf(t) values (−19.42–−15.02) with zircon two–stage Hf model aged 3.10–2.76 Ga, indicating that the U–rich granitic pegmatite was derived predominantly from partial melting of the ancient continental crust (such as the early Taihua group formed in Archean–Neoarchean). Combined with the above results and regional geological data, the U–rich granitic pegmatite discovered in the Huayangchuan deposit was formed in a post–collisional regime after the Luliang movement in the late Paleoproterozoic. This study suggests that future uranium prospecting work in this area should focus on late Paleoproterozoic U–rich granitic pegmatites. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 9274 KiB  
Article
Multi-Source SAR-Based Surface Deformation Monitoring and Groundwater Relationship Analysis in the Yellow River Delta, China
by Yilin Liu, Yi Zhang, Faqiang Zhao, Renwei Ding, Lihong Zhao, Yufen Niu, Feifei Qu and Zilong Ling
Remote Sens. 2023, 15(13), 3290; https://doi.org/10.3390/rs15133290 - 27 Jun 2023
Cited by 8 | Viewed by 2410
Abstract
Land motions are significantly widespread in the Yellow River delta (YRD). There is, however, a lack of understanding of the delta-wide comprehensive deformation mode and its dynamic mechanism, especially triggered by groundwater extraction. This paper adopts an integrated analysis of multidisciplinary data of [...] Read more.
Land motions are significantly widespread in the Yellow River delta (YRD). There is, however, a lack of understanding of the delta-wide comprehensive deformation mode and its dynamic mechanism, especially triggered by groundwater extraction. This paper adopts an integrated analysis of multidisciplinary data of image geodesy, geophysics, geology and hydrogeology to provide insights into Earth surface displacement patterns and dynamics in the YRD. Delta-scale land motions were measured for the first time using L-band ALOS images processed using multi-temporal InSAR, illustrating multiple obvious surface sinking regions and a maximum annual subsidence velocity of up to 130 mm. Then, the InSAR-constrained distributed point source model with optimal kernel parameters, a smoothness factor of 10 and a model grid size of 300 m was established and confirmed to be rational, reliable and accurate for modeling analysis over the YRD. Remarkable horizontal surface displacements, moving towards and converging on a sinking center, were recovered by means of modeling and measured using InSAR, with a maximum rate of up to 60 mm per year, which can trigger significant disasters, such as ground fissures and building damage. In addition, the annual total water storage variation at the delta scale, the most meaningful outcome, can be calculated and reaches a total of approximately 12,010 × 103 m3 in Guangrao city, efficiently filling the gap of GRACE and in situ investigations for delta-wide aquifer monitoring. Finally, a comparative analysis of time series InSAR measurements, modeling outcomes, and fault and groundwater data was conducted, and the strong agreement demonstrates that faults control aquifer distribution and hence the spatial distribution of groundwater-withdrawal-related regional land subsidence. Moreover, the obvious asymmetric displacements, demonstrating a northeasterly displacement trend, further reveal that faults control aquifer distribution and Earth surface deformation. These findings are useful for understanding the land motion patterns and dynamics, helping to sustainably manage groundwater and control disasters in the YRD and elsewhere worldwide. Full article
(This article belongs to the Special Issue InSAR Imaging of Coastal Geohazards)
Show Figures

Graphical abstract

Back to TopTop