Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (756)

Search Parameters:
Keywords = eIF1A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5523 KB  
Article
Bioinformatics-Guided Network Pharmacology Exploration of Taraxacum Officinale’s Renoprotective Effects Against Cisplatin-Induced Nephrotoxicity
by Ruiyi Hu, Shan Tang, Xufei Gao, Simin Qi, Shen Ren, Zi Wang, Xindian Li and Wei Li
Nutrients 2025, 17(19), 3092; https://doi.org/10.3390/nu17193092 - 29 Sep 2025
Abstract
Background/Objectives: Taraxacum officinale F.H.Wigg. (Asteraceae), an edible plant and commonly used Chinese herbal medicine, has significant anti-inflammatory and antioxidant effects in the form of its root water extract (TRWE). Therefore, this study was designed to elucidate the principal pharmacological effects and underlying [...] Read more.
Background/Objectives: Taraxacum officinale F.H.Wigg. (Asteraceae), an edible plant and commonly used Chinese herbal medicine, has significant anti-inflammatory and antioxidant effects in the form of its root water extract (TRWE). Therefore, this study was designed to elucidate the principal pharmacological effects and underlying mechanisms of water extract from Taraxacum roots (TRWE) against cisplatin-induced nephrotoxicity through an integrated approach combining network pharmacology and experimental validation. Methods: Mechanistic prediction was performed using network pharmacology, molecular docking, and GeneMANIA-based functional analysis, followed by experimental validation via H&E staining, TUNEL, biochemical assays (blood urea nitrogen, BUN; creatinine, CRE; malondialdehyde, MDA; superoxide dismutase, SOD; and catalase, CAT), and Western blotting. Results: Network pharmacology identified 52 kidney injury-associated targets of Taraxacum. Functional enrichment analysis indicated their roles in apoptosis and endoplasmic reticulum stress, particularly through the PERK-mediated UPR pathway, suggesting the PERK/eIF2α/ATF4 axis as a potential key regulatory node. Animal experiments suggested that 100, 200, and 400 mg/kg inhibited cisplatin-induced increases in BUN, CRE, and MDA; restored SOD/CAT levels; and alleviated kidney apoptosis and endoplasmic reticulum stress via the PERK/eIF2α/ATF4 pathway. Molecular docking suggested strong binding of phytochemicals (caftaric acid, CTA; chlorogenic acid, CGA; caffeic acid, CA; and cichoric acid, CCA) to PERK, eIF2α, and ATF4. Conclusions: This study predicts that the PERK/eIF2α/ATF4 signaling pathway may be a critical mediator of TRWE’s potential renoprotective effects against cisplatin-induced acute kidney injury, offering a potential theoretical basis for further mechanistic exploration. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 2100 KB  
Article
Fe2+-Sensing α-Synuclein Iron-Responsive Messenger RNA/eIF4F Complex Binding and Regulating mRNA Translation Activation and Repression
by Mateen A. Khan
Int. J. Mol. Sci. 2025, 26(19), 9320; https://doi.org/10.3390/ijms26199320 - 24 Sep 2025
Viewed by 50
Abstract
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein [...] Read more.
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein synthesis rates through an IRE mRNA. This investigation aimed to describe the way in which α-Syn IRE interacts with eIF4F and establish a relationship between binding affinity and translation efficiency. The strong binding affinity of α-Syn IRE with eIF4F was demonstrated by a fluorescence-based experiment, with Ka = 8.4 × 106 M−1 at 25 °C. Fe2+ further increased (~three-fold) the affinity of α-Syn IRE with eIF4F, outcompeting binding with IRP1. With an increase in temperature (10–30 °C), Kd values increased from 35.8 ± 1.6 nM to 158 ± 8.7 nM for the interaction of α-Syn IRE with eIF4F; however, adding Fe2+ demonstrated significantly increased affinity throughout the same temperature range. Thermodynamic analyses demonstrated that α-Syn IRE/eIF4F binding occurred spontaneously, with the presence of van der Waals and hydrogen bonding. Fe2+ enhanced the α-Syn IRE/eIF4F complex’s change in enthalpic and binding free energy contributions, which led to a more stable complex formation through the involvement of more hydrogen bonding. Exogenous addition of eIF4F in depleted WG or RR lysates restored α-Syn protein synthesis. Fe2+ further boosted α-Syn mRNA translation. IRP1 repressed α-Syn translation, although the addition of Fe2+ reversed this effect by boosting activator eIF4F binding and decreasing repressor IRP1 binding. These findings reveal the significance of iron in the α-synuclein mRNA regulatory process and validate its contribution as a strong enhancer of α-Syn mRNA translation. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

24 pages, 8488 KB  
Article
Identification of Amino Acids That Regulate Angiogenesis and Alter Pathogenesis of a Mouse Model of Choroidal Neovascularization
by Chenchen Li, Jiawen Wu, Yingke Zhao, Jing Zhu, Xinyu Zhu, Yan Chen and Jihong Wu
Nutrients 2025, 17(18), 3006; https://doi.org/10.3390/nu17183006 - 19 Sep 2025
Cited by 1 | Viewed by 245
Abstract
Background: Metabolic stress from amino acid (AA) insufficiency is increasingly linked to pathological angiogenesis, but specific essential AA (EAA) roles remain undefined. Neovascular age-related macular degeneration (AMD), a major cause of blindness driven by aberrant ocular neovascularization, has limited efficacy with current [...] Read more.
Background: Metabolic stress from amino acid (AA) insufficiency is increasingly linked to pathological angiogenesis, but specific essential AA (EAA) roles remain undefined. Neovascular age-related macular degeneration (AMD), a major cause of blindness driven by aberrant ocular neovascularization, has limited efficacy with current VEGFA-targeting therapies. We sought to identify specific EAAs that regulate pathological angiogenesis and dissect their mechanisms to propose new therapeutic strategies. Methods: Human retinal microvascular endothelial cells (HRMVECs) were used to identify angiogenesis-regulating amino acids through systematic EAA screening. The molecular mechanism was investigated using shRNA-mediated knockdown of key stress response regulators (HRI, PKR, PERK, GCN2) and ATF4. Angiogenesis was assessed via tubule formation and migration assays. Therapeutic potential was examined in a laser-induced choroidal neovascularization (CNV) mouse model, evaluated by fluorescein angiography and histomorphometry. Results: Deprivation of methionine, lysine, and threonine potently induced capillary-like tube formation (p < 0.01). Mechanistically, restriction of these three EAAs activated HRI and GCN2 kinases, converging on eIF2α phosphorylation to induce ATF4 and its target VEGFA. Dual, but not single, knockdown of HRI and GCN2 abolished eIF2α-ATF4 signaling and angiogenic responses. Restricting these EAAs exacerbated CNV area in mice. Conclusions: Our findings reveal a coordinated HRI/GCN2-ATF4-VEGFA axis linking EAA scarcity to vascular remodeling, establishing proof-of-concept for targeting this pathway in CNV. This work highlights the therapeutic potential of modulating specific AA availability or targeting the HRI/GCN2-ATF4 axis to treat CNV. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

18 pages, 4063 KB  
Article
Welander Distal Myopathy-Associated TIA1 E384K Mutation Disrupts Stress Granule Dynamics Under Distinct Stress Conditions
by Beatriz Ramos-Velasco, José Alcalde and José M. Izquierdo
Biology 2025, 14(9), 1288; https://doi.org/10.3390/biology14091288 - 18 Sep 2025
Viewed by 294
Abstract
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains [...] Read more.
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains a major therapeutic challenge in protein aggregation disorders such as myopathies and neuropathies. In this study, we investigated the cellular response to various stress conditions in the context of the TIA1 E384K mutation, a founder variant implicated in both Welander distal myopathy (WDM) and amyotrophic lateral sclerosis (ALS). Cells were exposed to different stressors, including proteotoxic, proteostatic, chemotoxic, and osmotic insults, and the behavior of TIA1-related SGs was analyzed. Our findings reveal a distinct yet conserved pattern in the dynamics of TIA1-dependent SG formation and clearance, influenced by the specific type of stressor and modulated by eIF2α Ser35 phosphorylation. These results indicate that the WDM-associated TIA1 mutation leads to aberrant SG dynamics across different stress conditions. Collectively, these observations support the idea that TIA1 E384K-associated SG dysregulation plays a role in WDM and ALS pathogenesis and underscores the importance of multiple stress contexts in disease progression. Full article
Show Figures

Figure 1

19 pages, 4596 KB  
Article
Neuroprotective Effects of Low-Dose Graphenic Materials on SN4741 Embryonic Stem Cells Against ER Stress and MPTP-Induced Oxidative Stress
by David Vallejo Perez, Monica Navarro, Beatriz Segura-Segura, Rune Wendelbo, Sara Bandrés-Ciga, Miguel A. Arraez, Cinta Arraez and Noela Rodriguez-Losada
Int. J. Mol. Sci. 2025, 26(18), 8821; https://doi.org/10.3390/ijms26188821 - 10 Sep 2025
Viewed by 206
Abstract
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that [...] Read more.
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that GMs promote significant morphological changes in neuronal cells after prolonged exposure, enhancing both differentiation and cellular adhesion. Through structural analysis, we unveiled a complex organization of GMs and a marked upregulation of tyrosine hydroxylase (TH), a key marker of mature dopaminergic neurons. Under oxidative stress induced by MPP+, GMs significantly reduced the release of lactate dehydrogenase (LDH), indicating protection against mitochondrial damage. Moreover, GMs substantially decreased the levels of α-synuclein (α-Syn), a protein closely associated with neurodegenerative disorders such as Parkinson’s disease. Notably, partially reduced graphene oxide (PRGO) and fully reduced graphene oxide (FRGO) films were particularly effective at reducing α-Syn-associated toxicity compared to positive controls. Under conditions of endoplasmic reticulum (ER) stress triggered by Tunicamycin, GMs—especially PRGO microflakes—modulated the unfolded protein response (UPR) pathway. This effect was evidenced by the increased expression of BIP/GRP78 and the decreased phosphorylation of stress sensors such as PERK and eIF2α; this suggests that a protective role is played against ER stress. Additionally, GMs enhanced the synthesis of Torsin 1A, a chaperone protein involved in correcting protein folding defects, with PRGO microflakes showing up to a fivefold increase relative to the controls. Through the cFos analysis, we further revealed a pre-adaptive cellular response in GM-treated cells exposed to MPP+, with PRGO microflakes inducing a significant twofold increase in cFos expression compared to the positive control, indicating partial protection against oxidative stress. In conclusion, these results underscore GMs’ capacity to modulate the critical cellular pathways involved in oxidative, mitochondrial, and ER stress responses, positioning them as promising candidates for future neuroprotective and therapeutic strategies. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

15 pages, 810 KB  
Review
Granular Insights on Innate and Intrinsic Immunity to Flaviviruses
by Janine Hvizdos, Alex C. Hofler and Shelton S. Bradrick
Microorganisms 2025, 13(9), 2091; https://doi.org/10.3390/microorganisms13092091 - 8 Sep 2025
Viewed by 489
Abstract
Interaction between pathogenic human RNA viruses and host stress granules is an active area of research. Understanding how viruses manipulate, evade, and/or parasitize stress granules and related assemblies may lead to novel approaches for therapeutic and vaccine development. However, knowledge gaps remain, and [...] Read more.
Interaction between pathogenic human RNA viruses and host stress granules is an active area of research. Understanding how viruses manipulate, evade, and/or parasitize stress granules and related assemblies may lead to novel approaches for therapeutic and vaccine development. However, knowledge gaps remain, and the field is laden with conflicting conclusions. Stress granules have been implicated to serve as hubs for antiviral signaling pathways, thereby serving to indirectly restrict virus infection through enhancing innate immune responses. More recent evidence suggests that stress granules can exert intrinsic anti-viral properties through direct sequestration of viral RNAs without impacting immune signaling. Here we critically review the literature relevant to specific members of the Flaviviridae with particular focus on Zika virus. Full article
(This article belongs to the Special Issue Zika Virus Infection and Immune Response)
Show Figures

Figure 1

17 pages, 4777 KB  
Article
Epigallocatechin Gallate Ameliorates Granulosa Cell Developmental via the Eukaryotic Initiation Factor 2 Alpha/Activating Transcription Factor 4 Pathway in Hyperthyroid Female Rats
by Ying Sun, Mingqi Wu, Haoyuan Feng, Yilin Yao, Rui Chen, Yanzhou Yang and Cheng Zhang
Antioxidants 2025, 14(9), 1092; https://doi.org/10.3390/antiox14091092 - 6 Sep 2025
Viewed by 1500
Abstract
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of [...] Read more.
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of green tea, possesses strong antioxidant properties. Numerous studies have demonstrated that EGCG positively influences reproductive function in both humans and animals. However, whether EGCG directly affects follicular development under conditions of TH dysregulation remains poorly understood. The primary objective of this study was to investigate the impact of hyperthyroidism on ovarian development, examine whether EGCG could mitigate the adverse effects of TH dysregulation, and elucidate the underlying molecular mechanisms. In the T4-induced hyperthyroidism rat model, ovarian tissues were serially sectioned for Hematoxylin-Eosin (HE) and Masson’s trichrome staining to assess morphological changes, and follicle numbers were quantified at each developmental stage. Granulosa cell (GC) viability, proliferation, and apoptosis induced by T3 were evaluated using CCK8, EdU, and TUNEL assays, respectively. Antioxidant enzyme activity was measured, and the expression levels of related proteins were analyzed via Western blotting. Results showed that hyperthyroidism altered ovarian structure, significantly increasing the number of atretic follicles. Levels of antioxidant enzymes, including Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-PX), and Catalase (CAT), were markedly decreased, whereas the lipid peroxidation product malondialdehyde (MDA) was significantly elevated. Furthermore, all ERS-related proteins, phosphorylated Eukaryotic Initiation Factor 2 Alpha (p-eIF2α), Activating Transcription Factor 4 (ATF4), C/EBP homologous protein (CHOP), and Caspase-3, were upregulated, accompanied by decreased glucose-regulated protein 78 (GRP78) expression. Treatment with EGCG alleviated these detrimental effects of hyperthyroidism. At the cellular level, high concentrations of T3 reduced GC viability and proliferation while increasing apoptosis. Reactive oxygen species levels were elevated, and GRP78 expression was decreased. Notably, all T3-induced effects were reversed by EGCG treatment. In summary, this study demonstrates that hyperthyroidism induces oxidative stress in GCs, which triggers endoplasmic reticulum stress via the eIF2α/ATF4 pathway and leads to apoptosis. EGCG mitigates apoptosis by enhancing antioxidant capacity, thereby preserving ovarian function. These findings establish EGCG as a protective agent for maintaining ovarian health and fertility. Full article
Show Figures

Figure 1

18 pages, 20579 KB  
Article
Isolation and Characterization of a Novel Porcine Teschovirus 2 Strain: Incomplete PERK-Mediated Unfolded Protein Response Supports Viral Replication
by Xiaoying Feng, Yiyang Du, Yueqing Lv, Xiaofang Wei, Chang Cui, Yibin Qin, Bingxia Lu, Zhongwei Chen, Kang Ouyang, Ying Chen, Zuzhang Wei, Weijian Huang, Ying He and Yifeng Qin
Viruses 2025, 17(9), 1200; https://doi.org/10.3390/v17091200 - 31 Aug 2025
Viewed by 712
Abstract
Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of [...] Read more.
Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of PTV was isolated from the feces of a pig exhibiting symptoms of diarrhea, utilizing PK-15 cell lines. The structural integrity of the viral particles was confirmed via transmission electron microscopy, and the viral growth kinetics and characteristics were evaluated in PK-15 cells. High-throughput sequencing facilitated the acquisition of the complete viral genome, and subsequent phylogenetic analysis and full-genome alignment identified the strain as belonging to the PTV 2 genotype. Further investigation revealed that infection with the PTV-GXLZ2024 strain induces phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in PK-15 cells, indicating activation of the unfolded protein response (UPR) through the PERK pathway, with minimal involvement of the IRE1 or ATF6 pathways. Notably, ATF4 protein expression was progressively downregulated throughout the infection, while downstream CHOP protein levels remained unchanged, indicating an incomplete UPR induced by PTV-GXLZ2024. Furthermore, PERK knockdown was found to enhance the replication of PTV-GXLZ2024. This study provides critical insights into the molecular mechanisms underlying PTV pathogenesis and establishes a foundation for future research into its evolutionary dynamics and interactions with host organisms. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 5170 KB  
Article
APOBEC3B Promotes SARS-CoV-2 Through Activation of PKR/eIF2⍺ and AMPD2 Dysregulation
by Benjamin Fixman, Lavanya Manjunath, Philip Sell, Shanshan Wang, Tamara Margaryan, Connor Qiu, Hanjing Yang, Rémi Buisson and Xiaojiang S. Chen
Viruses 2025, 17(9), 1176; https://doi.org/10.3390/v17091176 - 28 Aug 2025
Viewed by 774
Abstract
APOBEC3B (A3B) has been implicated in host–virus interactions, but its role in SARS-CoV-2 infection is unclear. Here, we demonstrate that A3B is overexpressed in bronchoalveolar lavage fluid (BALF) cells from severe COVID-19 patients compared to those with mild disease. A3B knockdown in Caco-2 [...] Read more.
APOBEC3B (A3B) has been implicated in host–virus interactions, but its role in SARS-CoV-2 infection is unclear. Here, we demonstrate that A3B is overexpressed in bronchoalveolar lavage fluid (BALF) cells from severe COVID-19 patients compared to those with mild disease. A3B knockdown in Caco-2 cells significantly reduces SARS-CoV-2 infectivity, likely through attenuation of the PKR-mediated integrated stress response, a pathway proposed to promote SARS-CoV-2. Single-cell RNA sequencing (scRNA-seq) data suggest that BALF cells from severe COVID-19 patients exhibit a repressed state for cellular translation, potentially mediated by eIF2α phosphorylation. However, in A549-ACE2 cells, SARS-CoV-2 does not activate PKR, but A3B knockdown still reduces SARS-CoV-2 infectivity, suggesting an alternative mechanism of action in different cellular contexts. To further investigate A3B’s role in severe COVID-19, we employed Geneformer, a transformer-based machine learning model, which predicted that A3B knockout would perturb AMPD2 (adenosine monophosphate deaminase 2), a key enzyme in purine metabolism and immune regulation. We validated this prediction using bulk RNA-seq and clinical scRNA-seq data, confirming that AMPD2 expression is downregulated in severe COVID-19 but restored upon A3B knockdown. Together, these findings suggest that A3B plays a proviral role in SARS-CoV-2 infection by modulating translational control and immune regulatory networks, warranting further studies to elucidate the underlying mechanistic details. Full article
(This article belongs to the Special Issue Host-Mediated Viral Mutations: APOBECs, ADARs, and Beyond)
Show Figures

Graphical abstract

24 pages, 4449 KB  
Article
Stabilizing the Baseline: Reference Gene Evaluation in Three Invasive Reynoutria Species
by Marta Stafiniak, Wojciech Makowski, Adam Matkowski and Monika Bielecka
Int. J. Mol. Sci. 2025, 26(17), 8265; https://doi.org/10.3390/ijms26178265 - 26 Aug 2025
Viewed by 482
Abstract
Accurate normalization is crucial for reliable gene expression quantification and depends on stably expressed housekeeping genes (HKGs) as internal controls. However, HKGs expression varies with developmental stage, tissue type, and treatments, potentially introducing bias and compromising data accuracy. Thus, validating candidate reference genes [...] Read more.
Accurate normalization is crucial for reliable gene expression quantification and depends on stably expressed housekeeping genes (HKGs) as internal controls. However, HKGs expression varies with developmental stage, tissue type, and treatments, potentially introducing bias and compromising data accuracy. Thus, validating candidate reference genes under defined conditions is essential. Reynoutria, also known as giant Asian knotweeds, is a Polygonaceae family genus of several medicinal plants producing a diverse array of specialized metabolites of pharmacological interest. Outside their native range, these plants are also noxious invasive weeds, causing significant environmental and economic threats. Research on stable reference genes in these species is limited, with a primary focus on R. japonica. To enable accurate gene expression analysis related to specialized metabolism and natural product biosynthesis, we aimed to identify the most stable reference genes across the most common species: R. japonica Houtt., R. sachalinensis (F. Schmidt) Nakai, and their hybrid—R. × bohemica Chrtek & Chrtková. In this study, we evaluated twelve candidate HKGs (ACT, TUA, TUB, GAPDH, EF-1γ, UBQ, UBC, 60SrRNA, eIF6A, SKD1, YLS8, and NDUFA13) across three tissue types (rhizomes, leaves, and flowers) from three Reynoutria species sampled at peak flowering. Primer specificity and amplification efficiency were confirmed through standard-curve analysis. We assessed expression stability using ΔCt, geNorm, NormFinder, and BestKeeper, and generated comprehensive rankings with RefFinder. Our integrated analysis revealed organ- and species-dependent stability differences, yet identified up to three reference genes suitable for interspecific normalization in Reynoutria. This represents the first systematic, comparative validation of HKGs across closely related knotweed species, providing a robust foundation for future transcriptomic and functional studies of their specialized metabolism and other biological processes. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

9 pages, 1106 KB  
Communication
PRMT5 Inhibition as a Potential Strategy for KRAS Mutant CRC: Downstream Mediators of the PRMT5–KRAS Crosstalk
by Mark Spivak, Moshe Pahmer, Dorna Delrahimnia, Tzuriel Sapir and David Shifteh
Curr. Issues Mol. Biol. 2025, 47(8), 665; https://doi.org/10.3390/cimb47080665 - 18 Aug 2025
Viewed by 546
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), [...] Read more.
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), an epigenetic regulator involved in diverse cellular processes, is currently under investigation as a therapeutic target in multiple cancer types. Our previous work demonstrated that PRMT5 inhibition produces stronger therapeutic effects in KRAS-mutant CRC cells than in KRAS WT cells, suggesting potential crosstalk between PRMT5 and KRAS. In this study, we aimed to identify key downstream proteins that may mediate this interaction. Through a literature review, protein–protein interaction analysis (STRING database), gene expression analysis (GEPIA database), and correlation analysis (GEPIA database), we identified MYC, E2F1, and EIF4E as critical candidates. These proteins are shown to interact with both PRMT5 and KRAS in STRING, are overexpressed in CRC tumor samples, and show positive gene expression correlations with PRMT5 and KRAS in patient data. These findings are significant, as they provide new insights into the PRMT5–KRAS crosstalk and suggest potential targets for novel and combination therapies in KRAS-mutant CRC. Further research and biological experiments are needed to verify and outline the exact molecular processes behind MYC, E2F1, and EIF4E’s interactions with both PRMT5 and KRAS. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 1217 KB  
Review
Dual Nature of Mitochondrial Integrated Stress Response: Molecular Switches from Protection to Pathology
by Jisu Jeong, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 957; https://doi.org/10.3390/genes16080957 - 13 Aug 2025
Viewed by 1124
Abstract
Background: The mitochondrial integrated stress response (ISR) represents a fundamental cellular adaptation mechanism with dual protective and pathological roles. We critically analyzed current literature on ISR mechanisms, focusing on recent paradigm shifts including the 2020 discovery of the OMA1-DELE1-HRI axis, emerging controversies over [...] Read more.
Background: The mitochondrial integrated stress response (ISR) represents a fundamental cellular adaptation mechanism with dual protective and pathological roles. We critically analyzed current literature on ISR mechanisms, focusing on recent paradigm shifts including the 2020 discovery of the OMA1-DELE1-HRI axis, emerging controversies over context-dependent activation patterns, and the January 2025 clinical trial failures that have reshaped the therapeutic landscape. Methods: We reviewed recent literature (2020–2025) examining ISR mechanisms, clinical trials, and therapeutic developments through comprehensive database searches. Results: The field has evolved from simple linear pathway models to recognition of complex, context-dependent networks. Recent findings reveal that ISR activation mechanisms vary dramatically based on cellular metabolic state, with distinct pathways operating in proliferating versus differentiated cells. The “dark microglia” phenotype in neurodegeneration and DR5-mediated apoptotic switches exemplify pathological ISR manifestations, while adaptive responses include metabolic reprogramming and quality control enhancement. Conclusions: The 2025 failures of DNL343 and ABBV-CLS-7262 in ALS trials underscore the need for precision medicine approaches that account for context-dependent ISR functions, temporal dynamics, and disease-specific mechanisms. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3149 KB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Viewed by 706
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting involvement of the response in GDF15 activation. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

16 pages, 3286 KB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Viewed by 758
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

27 pages, 7908 KB  
Article
Deciphering Cowpea Resistance to Potyvirus: Assessment of eIF4E Gene Mutations and Their Impact on the eIF4E-VPg Protein Interaction
by Fernanda Alves de Andrade, Madson Allan de Luna-Aragão, José Diogo Cavalcanti Ferreira, Fernanda Freitas Souza, Ana Carolina da Rocha Oliveira, Antônio Félix da Costa, Francisco José Lima Aragão, Carlos André dos Santos-Silva, Ana Maria Benko-Iseppon and Valesca Pandolfi
Viruses 2025, 17(8), 1050; https://doi.org/10.3390/v17081050 - 28 Jul 2025
Viewed by 725
Abstract
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It [...] Read more.
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It is known that the VPg protein interacts with the host’s translation initiation factor (eIF4E), promoting viral replication. This study aimed to investigate the relationship between mutations in the cowpea eIF4E gene and resistance to CABMV. Twenty-seven cultivars were screened by PCR and bioassays for presence/absence of mutations associated with resistance or susceptibility to Potyviruses. Of the cultivars with mutations previously associated with susceptibility, 88.24% exhibited viral symptoms, while 62.5% associated with resistance remained asymptomatic. The in silico analyses revealed that non-synonymous mutations (Pro68Arg, Gly109Arg) alter the structure of the eIF4E protein, reducing its affinity to VPg. Molecular dynamics simulations also pointed to an enhanced structural stability of eIF4E in resistant cultivars and reinforced, for the first time, key mutations and the functional role of the eIF4E gene in resistance to CABMV in cowpea. Our results offer valuable insights for virus disease management and for genetic improvement programs for this important crop. Full article
(This article belongs to the Special Issue Viral Manipulation of Plant Stress Responses)
Show Figures

Graphical abstract

Back to TopTop